1
|
Wise SA, Hosbas Coskun S, Hayes HV, Wilson WB, Murray JA, Lippert JA, Burdette CQ, Schantz MM, Murphy KE, Christopher SJ, Yu LL, Rimmer CA, Pasiakos SM, Kuszak AJ. Development of reference materials for dietary supplements-analytical challenges, use, limitations, and future needs. Anal Bioanal Chem 2025; 417:2439-2471. [PMID: 40087178 DOI: 10.1007/s00216-025-05787-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 02/02/2025] [Accepted: 02/03/2025] [Indexed: 03/17/2025]
Abstract
For two decades, the National Institute of Standards and Technology (NIST) and the National Institutes of Health Office of Dietary Supplements have collaborated to develop dietary supplement-matrix reference materials. During the first decade, NIST developed over 20 botanical and non-botanical dietary supplement Standard Reference Materials (SRMs®) using multiple analytical techniques to assign values for selected marker compounds and toxic elements. In the past decade, NIST has expanded the scope of materials available, and other producers of certified reference materials (CRMs) have joined to provide a limited number of additional materials. This review describes briefly the first decade in the development of CRMs for dietary supplements, primarily botanical dietary supplement ingredients (e.g., ginkgo, green tea, saw palmetto, St. Johns' wort, botanical oils, berries, and soy) and a popular multivitamin/multimineral (MVM) SRM. We discuss the analytical challenges in producing these materials and how these materials established a model for the next generation of CRMs. The second generation of dietary supplement CRMs/RMs, consisting primarily of botanical matrices, calibration solutions, and new and replacement MVM CRMs, is discussed in greater detail including improvements based on experiences from the first decade and potential future needs and developments in this emerging reference material research sector.
Collapse
Affiliation(s)
- Stephen A Wise
- IFC Contractor in Support of the Office of Dietary Supplements (ODS), National Institutes of Health (NIH), Bethesda, MD, 20817, USA.
| | - Sanem Hosbas Coskun
- Kelly Government Services Contractor in Support of the Office of Dietary Supplements (ODS), National Institutes of Health (NIH), Bethesda, MD, 20817, USA
- Chemical Sciences Division, National Institute of Standards and Technology (NIST), Gaithersburg, MD, 20899, USA
| | - Hugh V Hayes
- Chemical Sciences Division, National Institute of Standards and Technology (NIST), Gaithersburg, MD, 20899, USA
| | - Walter B Wilson
- Chemical Sciences Division, National Institute of Standards and Technology (NIST), Gaithersburg, MD, 20899, USA
| | - Jacolin A Murray
- Chemical Sciences Division, National Institute of Standards and Technology (NIST), Gaithersburg, MD, 20899, USA
| | - J Andreas Lippert
- Chemical Sciences Division, National Institute of Standards and Technology (NIST), Gaithersburg, MD, 20899, USA
- Department of Chemistry, Weber State University, Ogden, UT, 84408, USA
| | - Carolyn Q Burdette
- Chemical Sciences Division, National Institute of Standards and Technology (NIST), Gaithersburg, MD, 20899, USA
| | - Michele M Schantz
- Chemical Sciences Division, National Institute of Standards and Technology (NIST), Gaithersburg, MD, 20899, USA
| | - Karen E Murphy
- Chemical Sciences Division, National Institute of Standards and Technology (NIST), Gaithersburg, MD, 20899, USA
| | - Steven J Christopher
- Chemical Sciences Division, National Institute of Standards and Technology (NIST), Gaithersburg, MD, 20899, USA
| | - Lee L Yu
- Chemical Sciences Division, National Institute of Standards and Technology (NIST), Gaithersburg, MD, 20899, USA
| | - Catherine A Rimmer
- Chemical Sciences Division, National Institute of Standards and Technology (NIST), Gaithersburg, MD, 20899, USA
| | - Stefan M Pasiakos
- Office of Dietary Supplements (ODS), National Institutes of Health (NIH), Bethesda, MD, 20817, USA
| | - Adam J Kuszak
- Office of Dietary Supplements (ODS), National Institutes of Health (NIH), Bethesda, MD, 20817, USA
| |
Collapse
|
2
|
Moldoveanu SC, Gan H. Comparison of two methods for ginsenosides quantitation. J Sep Sci 2023; 46:e2201063. [PMID: 36625064 DOI: 10.1002/jssc.202201063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 01/05/2023] [Accepted: 01/06/2023] [Indexed: 01/11/2023]
Abstract
The present study provides a comparison of two liquid chromatography-tandem mass spectrometry methods for ginsenosides analysis. The two methods have the same liquid chromatography separation procedure, and both use tandem mass spectrometry detection. However, one method uses multiple reaction monitoring transitions commonly recommended in the literature starting with [M + Na]+ as the molecular ions and with detection of specific fragment ions from the molecules M, while the other is an original method using [M + Cs]+ as molecular ions and Cs+ as fragment ion. The method using [M + Cs]+ as molecular ion has a very high sensitivity allowing the measurement of concentrations in the injecting solutions as low as 4 ng/ml with peaks at this concentration showing signal to noise ratio of 20 or higher. The procedures were utilized for the measurement of eight ginsenosides (Rb1, Rb2, Rc, Rd, Re, Rf (S), Rg1, and Rg2), although the method using [M + Cs]+ has the potential for measuring other ginsenosides. As an application, the ginsenosides were measured in several types of ginseng root, several dietary supplements containing ginseng extracts, four energy drinks, and a sample of ashwagandha.
Collapse
Affiliation(s)
| | - Huamin Gan
- R.J. Reynolds Tobacco Co, Winston-Salem, North Carolina, USA
| |
Collapse
|
3
|
Method development for the determination of seven ginsenosides in three Panax ginseng reference materials via liquid chromatography with tandem mass spectrometry. Anal Bioanal Chem 2022; 414:8215-8222. [PMID: 36258086 PMCID: PMC9827472 DOI: 10.1007/s00216-022-04378-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/19/2022] [Accepted: 10/11/2022] [Indexed: 01/11/2023]
Abstract
A new liquid chromatography-tandem mass spectrometry (LC-MS/MS) method was developed for the analysis of ginsenosides in three Panax ginseng reference materials (RMs). Extraction procedures were optimized to recover neutral and malonyl-ginsenosides using a methanol-water extraction under basic conditions. Optimized mass fragmentation transitions were obtained for the development of a multiple reaction monitoring (MRM) detection method with electrospray ionization in negative and positive ion mode. Mass fraction values were determined for ginsenosides Rb1, Rb2, Rc, Rd, Re, Rf, and Rg1 in the three ginseng materials (rhizomes, extract, and an oral dosage form). Quantitation of these seven compounds was accomplished with 4-methylestradiol and SRM 3389 Ginsenoside Calibration Solution serving as an internal standard (IS) and calibration standards, respectively. Mass fraction values for the seven ginsenosides ranged from 1.27 mg/g to 21.42 mg/g, 3.25 mg/g to 35.81 mg/g, and 0.56 mg/g to 2.51 mg/g for SRM 3384, SRM 3385, and RM 8664, respectively.
Collapse
|
4
|
Schreiner T, Sauter D, Friz M, Heil J, Morlock GE. Is Our Natural Food Our Homeostasis? Array of a Thousand Effect-Directed Profiles of 68 Herbs and Spices. Front Pharmacol 2021; 12:755941. [PMID: 34955829 PMCID: PMC8696259 DOI: 10.3389/fphar.2021.755941] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 11/03/2021] [Indexed: 12/11/2022] Open
Abstract
The beneficial effects of plant-rich diets and traditional medicines are increasingly recognized in the treatment of civilization diseases due to the abundance and diversity of bioactive substances therein. However, the important active portion of natural food or plant-based medicine is presently not under control. Hence, a paradigm shift from quality control based on marker compounds to effect-directed profiling is postulated. We investigated 68 powdered plant extracts (botanicals) which are added to food products in food industry. Among them are many plants that are used as traditional medicines, herbs and spices. A generic strategy was developed to evaluate the bioactivity profile of each botanical as completely as possible and to straightforwardly assign the most potent bioactive compounds. It is an 8-dimensional hyphenation of normal-phase high-performance thin-layer chromatography with multi-imaging by ultraviolet, visible and fluorescence light detection as well as effect-directed assay and heart-cut of the bioactive zone to orthogonal reversed-phase high-performance liquid chromato-graphy-photodiode array detection-heated electrospray ionization mass spectrometry. In the non-target, effect-directed screening via 16 different on-surface assays, we tentatively assigned more than 60 important bioactive compounds in the studied botanicals. These were antibacterials, estrogens, antiestrogens, androgens, and antiandrogens, as well as acetylcholinesterase, butyrylcholinesterase, α-amylase, α-glucosidase, β-glucosidase, β-glucuronidase, and tyrosinase inhibitors, which were on-surface heart-cut eluted from the bioautogram or enzyme inhibition autogram to the next dimension for further targeted characterization. This biological-physicochemical hyphenation is able to detect and control active mechanisms of traditional medicines or botanicals as well as the essentials of plant-based food. The array of 1,292 profiles (68 samples × 19 detections) showed the versatile bioactivity potential of natural food. It reveals how efficiently and powerful our natural food contributes to our homeostasis.
Collapse
Affiliation(s)
- Tamara Schreiner
- Institute of Nutritional Science, Chair of Food Science, and TransMIT Center for Effect-Directed Analysis, Justus Liebig University Giessen, Giessen, Germany
| | - Dorena Sauter
- Institute of Nutritional Science, Chair of Food Science, and TransMIT Center for Effect-Directed Analysis, Justus Liebig University Giessen, Giessen, Germany
| | - Maren Friz
- Institute of Nutritional Science, Chair of Food Science, and TransMIT Center for Effect-Directed Analysis, Justus Liebig University Giessen, Giessen, Germany
| | - Julia Heil
- Institute of Nutritional Science, Chair of Food Science, and TransMIT Center for Effect-Directed Analysis, Justus Liebig University Giessen, Giessen, Germany
| | - Gertrud Elisabeth Morlock
- Institute of Nutritional Science, Chair of Food Science, and TransMIT Center for Effect-Directed Analysis, Justus Liebig University Giessen, Giessen, Germany
| |
Collapse
|
5
|
Hosbas Coskun S, Wise SA, Kuszak AJ. The Importance of Reference Materials and Method Validation for Advancing Research on the Health Effects of Dietary Supplements and Other Natural Products. Front Nutr 2021; 8:786261. [PMID: 34970578 PMCID: PMC8713974 DOI: 10.3389/fnut.2021.786261] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 11/17/2021] [Indexed: 01/21/2023] Open
Abstract
Insufficient assessment of the identity and chemical composition of complex natural products, including botanicals, herbal remedies, and dietary supplements, hinders reproducible research and limits understanding mechanism(s) of action and health outcomes, which in turn impede improvements in clinical practice and advances in public health. This review describes available analytical resources and good methodological practices that support natural product characterization and strengthen the knowledge gained for designing and interpreting safety and efficacy investigations. The practice of validating analytical methods demonstrates that measurements of constituents of interest are reproducible and appropriate for the sample (e.g., plant material, phytochemical extract, and biological specimen). In particular, the utilization of matrix-based reference materials enables researchers to assess the accuracy, precision, and sensitivity of analytical measurements of natural product constituents, including dietary ingredients and their metabolites. Select case studies are presented where the careful application of these resources and practices has enhanced experimental rigor and benefited research on dietary supplement health effects.
Collapse
Affiliation(s)
| | | | - Adam J. Kuszak
- Office of Dietary Supplements, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
6
|
Kim S, Kim JH, Seok SH, Park ES. Enhanced permeability and oral absorption of Panax notoginseng saponins by borneol. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102819] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
7
|
Isolation and Identification of Non-Conjugated Linoleic Acid from Processed Panax ginseng Using LC-MS/MS and 1H-NMR. SEPARATIONS 2021. [DOI: 10.3390/separations8110208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Black ginseng exhibits numerous pharmacological activities due to higher and more diverse ginsenosides than unprocessed white ginseng. The ginsenoside derivatives have been investigated in order to determine their chemical structures and pharmacological activities. We found a peak which was increased 10-fold but unidentified in the methanol extracts of a black ginseng product. The unknown peak was tracked and identified as linoleic acid rather than a ginsenoside derivative using liquid chromatography–tandem mass spectrometry (LC-MS/MS) and nuclear magnetic resonance (NMR) spectroscopy. NMR analysis confirmed no presence of conjugated linoleic acids. Ginsenoside profiles and linoleic acid contents in black ginseng products were quantified using LC-MS/MS. Linoleic acid content was more directly proportional to the number of applied thermal cycles in the manufacturing process than any ginsenosides.
Collapse
|
8
|
HPLC–MS/MS Analysis and Study on the Adsorption/Desorption Characteristics of Ginsenosides on Anion-Exchange Macroporous Resins. Chromatographia 2021. [DOI: 10.1007/s10337-021-04017-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
9
|
Quadruplex stable isotope derivatization strategy for the determination of panaxadiol and panaxatriol in foodstuffs and medicinal materials using ultra high performance liquid chromatography tandem mass spectrometry. J Chromatogr A 2020; 1616:460794. [DOI: 10.1016/j.chroma.2019.460794] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 12/07/2019] [Accepted: 12/14/2019] [Indexed: 12/17/2022]
|
10
|
Zhu Z, Shen J, Xu Y, Guo H, Kang D, Yu T, Wang H, Xu W, Wang G, Liang Y. The improved performance of MALDI-TOF MS on the analysis of herbal saponins by using DHB-GO composite matrix. JOURNAL OF MASS SPECTROMETRY : JMS 2019; 54:684-692. [PMID: 31271243 DOI: 10.1002/jms.4385] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Revised: 06/21/2019] [Accepted: 06/26/2019] [Indexed: 06/09/2023]
Abstract
Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) is an excellent analytical technique for rapid analysis of a variety of molecules with straightforward sample pretreatment. The performance of MALDI-TOF MS is largely dependent on matrix type, and the development of novel MALDI matrices has aroused wide interest. Herein, we devoted to seek more robust MALDI matrix for herbal saponins than previous reported, and ginsenoside Rb1, Re, and notoginsenoside R1 were used as model saponins. At the beginning of the present study, 2,5-dihydroxybenzoic acid (DHB) was found to provide the highest intensity for saponins in four conventional MALDI matrices, yet the heterogeneous cocrystallization of DHB with analytes made signal acquisition somewhat "hit and miss." Then, graphene oxide (GO) was proposed as an auxiliary matrix to improve the uniformity of DHB crystallization due to its monolayer structure and good dispersion, which could result in much better shot-to-shot and spot-to-spot reproducibility of saponin analysis. The satisfactory precision further demonstrated that minute quantities of GO (0.1 μg/spot) could greatly reduce the risk of instrument contamination caused by GO detachment from the MALDI target plate under vacuum. More importantly, the sensitivity and linearity of the standard curve for saponins were improved markedly by DHB-GO composite matrix. Finally, the application of detecting the Rb1 in complex biological sample was exploited in rat plasma and proved it applicable for pharmacokinetic study quickly. This work not only opens a new field for applications of DHB-GO in herbal saponin analysis but also offers new ideas for the development of composite matrices to improve MALDI MS performance.
Collapse
Affiliation(s)
- Zhangpei Zhu
- Key Lab of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Tong Jia Xiang 24, Nanjing, 210009, China
| | - Jiajia Shen
- Key Lab of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Tong Jia Xiang 24, Nanjing, 210009, China
| | - Yangfan Xu
- Key Lab of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Tong Jia Xiang 24, Nanjing, 210009, China
| | - Huimin Guo
- Key Lab of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Tong Jia Xiang 24, Nanjing, 210009, China
| | - Dian Kang
- Key Lab of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Tong Jia Xiang 24, Nanjing, 210009, China
| | - Tengjie Yu
- Key Lab of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Tong Jia Xiang 24, Nanjing, 210009, China
| | - He Wang
- Key Lab of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Tong Jia Xiang 24, Nanjing, 210009, China
| | - Wenshuo Xu
- Key Lab of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Tong Jia Xiang 24, Nanjing, 210009, China
| | - Guangji Wang
- Key Lab of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Tong Jia Xiang 24, Nanjing, 210009, China
| | - Yan Liang
- Key Lab of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Tong Jia Xiang 24, Nanjing, 210009, China
| |
Collapse
|