1
|
Eeltink S, De Vos J, Desmet G. Toward Unrivaled Chromatographic Resolving Power in Proteomics: Design and Development of Comprehensive Spatial Three-Dimensional Liquid-Phase Separation Technology. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2024; 17:475-493. [PMID: 38424031 DOI: 10.1146/annurev-anchem-061522-044510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Spatial comprehensive three-dimensional chromatography (3D-LC) offers an innovative approach to achieve unprecedented resolving power in terms of peak capacity and sample throughput. This advanced technique separates components within a 3D separation space, where orthogonal retention mechanisms are incorporated. The parallel development of the second- and third-dimension stages effectively overcomes the inherent limitation of conventional multidimensional approaches, where sampled fractions are analyzed sequentially. This review focuses on the design aspects of the microchip for spatial 3D-LC and the selection of orthogonal separation modes to enable the analysis of intact proteins. The design considerations for the flow distributor and channel layout are discussed, along with various approaches to confine the flow during the subsequent development stages. Additionally, the integration of stationary phases into the microchip is addressed, and interfacing to mass spectrometry detection is discussed. According to Pareto optimality, the integration of isoelectric focusing, size-exclusion chromatography, and reversed-phase chromatography in a spatial 3D-LC approach is predicted to achieve an exceptional peak capacity of over 30,000 within a 1-h analysis, setting a new benchmark in chromatographic performance.
Collapse
Affiliation(s)
- Sebastiaan Eeltink
- 1Department of Chemical Engineering, Vrije Universiteit Brussel, Brussels, Belgium;
| | - Jelle De Vos
- 1Department of Chemical Engineering, Vrije Universiteit Brussel, Brussels, Belgium;
- 2Current affiliation: RIC Group, Kortrijk, Belgium
| | - Gert Desmet
- 1Department of Chemical Engineering, Vrije Universiteit Brussel, Brussels, Belgium;
| |
Collapse
|
2
|
Segmented two-dimensional liquid chromatography. Proof of concept study. J Chromatogr A 2023; 1691:463811. [PMID: 36731333 DOI: 10.1016/j.chroma.2023.463811] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 01/17/2023] [Accepted: 01/18/2023] [Indexed: 01/26/2023]
Abstract
The separation in liquid chromatography is defined either by the space domain where it proceeds until the least retained analyte reaches the outlet of the column or by the time when individual analytes elute out of the column. These two approaches lead to the four possible combinations of two-dimensional liquid chromatography with online space x time coupling being the least experimentally feasible. Here, we show the development of a novel two-dimensional liquid chromatography method combining separation defined by space and the conventional elution-based separation. First-dimension column consisted of four capillary segments coupled serially via two-position six-port valves allowing an online and comprehensive transfer of analytes from the first to the second dimension. After initial experiments using homemade monolithic capillary columns, we tested commercially available columns in both dimensions. We ended with the combination of packed capillary columns in the first dimension and monolithic capillary column in the second dimension. We used a reversed-phase retention mechanism in the first spatial dimension, while HILIC was in the second, time-based dimension. We also developed a theoretical model to describe the proposed two-dimensional separation that was further confirmed by utilizing both an isocratic and gradient elution in the second dimension. Finally, we applied our experimental setup to separate neurotransmitters contained in human urine.
Collapse
|
3
|
Flow Dynamics and Analyte Transfer in a Microfluidic Device for Spatial Two-Dimensional Separations. Chromatographia 2022. [DOI: 10.1007/s10337-022-04207-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
AbstractIn the last decade, chip-based separations have become a major area of interest in the field of separation science, especially for the development of “spatial” two-dimensional liquid chromatography (xLC × xLC). In xLC × xLC, the analytes are first separated by migration to different positions in a first-dimension (1D) channel and subsequently transferred with the aid of a flow distributor in a perpendicular direction to undergo a second-dimension (2D) separation. In this study, several designs for 2D separations are explored with the aid of computational fluid dynamics simulations. There were several aims of this work, viz. (1) to investigate the possible anomalies arising from the location of analyte bands in the first-dimension channel before transfer to the second dimension induced by the flow distributor, (2) to study the distribution ratio of the analytes across the different outlets of the 1D channel, and (3) to study the flow behaviour confinement in the flow distributor. In all designs, the simulated absolute flow velocity was not equal in all regions of the 1D channel. The extreme segments showed higher velocities compared to the central zones. This will eventually influence the migration times (first moments) and the variances (second moments), as confirmed by CFD results. The study has contributed to the understanding of the effects of the peak locations and, ultimately, to progress in spatial 2D-LC separations.
Collapse
|
4
|
Foster SW, Parker D, Kurre S, Boughton J, Stoll DR, Grinias JP. A review of two-dimensional liquid chromatography approaches using parallel column arrays in the second dimension. Anal Chim Acta 2022; 1228:340300. [DOI: 10.1016/j.aca.2022.340300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 08/18/2022] [Accepted: 08/20/2022] [Indexed: 11/26/2022]
|
5
|
Niezen LE, Staal BBP, Lang C, Pirok BWJ, Schoenmakers PJ. Thermal modulation to enhance two-dimensional liquid chromatography separations of polymers. J Chromatogr A 2021; 1653:462429. [PMID: 34371364 DOI: 10.1016/j.chroma.2021.462429] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 07/13/2021] [Accepted: 07/13/2021] [Indexed: 11/30/2022]
Abstract
Many materials used in a wide range of fields consist of polymers that feature great structural complexity. One particularly suitable technique for characterising these complex polymers, that often feature correlated distributions in e.g. microstructure, chemical composition, or molecular weight, is comprehensive two-dimensional liquid chromatography (LC × LC). For example, using a combination of reversed-phase LC and size-exclusion chromatography (RPLC × SEC). Efficient and sensitive LC × LC often requires focusing of the analytes between the two stages. For the analysis of large-molecule analytes, such as synthetic polymers, thermal modulation (or cold trapping) may be feasible. This approach is studied for the analysis of a styrene/butadiene "star" block copolymer. Trapping efficiency is evaluated qualitatively by monitoring the effluent of the trap with an evaporative light-scattering detector and quantitatively by determining the recovery of polystyrene standards from RPLC × SEC experiments. The recovery was dependant on the molecular weight and the temperatures of the first-dimension column and of the trap, and ranged from 46% for a molecular weight of 2.78 kDa to 86% (or up to 94.5% using an optimized set-up) for a molecular weight of 29.15 kDa, all at a first-dimension-column temperature of 80 °C and a trap temperature of 5 °C. Additionally a strategy to reduce the pressure pulse from the modulation has been developed, bringing it down from several tens of bars to only a few bar.
Collapse
Affiliation(s)
- Leon E Niezen
- Analytical-Chemistry Group, Van't Hoff Institute for Molecular Sciences, Faculty of Science, University of Amsterdam, Science Park 904, Amsterdam 1098 XH, the Netherland; Centre for Analytical Sciences Amsterdam (CASA), the Netherland.
| | | | - Christiane Lang
- BASF SE, Carl-Bosch-Strasse 38, Ludwigshafen am Rhein 67056, Germany
| | - Bob W J Pirok
- Analytical-Chemistry Group, Van't Hoff Institute for Molecular Sciences, Faculty of Science, University of Amsterdam, Science Park 904, Amsterdam 1098 XH, the Netherland; Centre for Analytical Sciences Amsterdam (CASA), the Netherland
| | - Peter J Schoenmakers
- Analytical-Chemistry Group, Van't Hoff Institute for Molecular Sciences, Faculty of Science, University of Amsterdam, Science Park 904, Amsterdam 1098 XH, the Netherland; Centre for Analytical Sciences Amsterdam (CASA), the Netherland
| |
Collapse
|
6
|
Gupta V, Paull B. PolyJet printed high aspect ratio three-dimensional bifurcating microfluidic flow distributor and its application in solid-phase extraction. Anal Chim Acta 2021; 1168:338624. [PMID: 34051999 DOI: 10.1016/j.aca.2021.338624] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 04/18/2021] [Accepted: 05/04/2021] [Indexed: 10/21/2022]
Abstract
Microfluidic distributors that can uniformly distribute fluid from a single channel to multiple channels and into, or across, 3D spaces and vice versa has always represented a challenge. Recently, significant interest has been observed in 3D printing three-dimensional flow distributors. However, they either lack their use at low flow rates or in high aspect ratio environments, which are usually encountered in various applications, such as generating organs-on-a-chip, chromatographic columns, solid-phase extractors, etc. Hence, herein, a three-dimensional bifurcating microfluidic distributor that can be used in both low flow rate and high aspect ratio environments has been designed and developed using PolyJet printing. A 1:4 aspect ratio distributor has been developed with 64 exit channels (array of 16 X 4), however, it can be easily customised to modulate both the aspect ratio and the number of exit channels (in the order of 2). Computational fluid dynamic (CFD) simulation of 0.2 and 0.1 mL min-1 flow through the distributor recorded a maldistribution factor of only 2.29% and 1.72%, respectively. The distributor has resulted in low-dispersion divergence and convergence of flow to and from 64 parallel channels while operating at flow rates ranging from 0.25 mL min-1 to 2 mL min-1. It has been further used to develop a high-performance online solid-phase extractor. The extractor was designed with the three-dimensional bifurcating distributor based inlet and outlet and a packed bed of 15 × 20 × 8 mm (length × breadth × height), which resulted in extraction efficiency of 88.8% ± 0.3. In comparison, the extraction efficiency of 81.1% ± 1.1 and 70.4% ± 0.8 was obtained with its two-dimensional distributor and single-channel inlet and outlet based counterparts, respectively.
Collapse
Affiliation(s)
- Vipul Gupta
- Australian Centre for Research on Separation Sciences (ACROSS) and ARC Centre of Excellence for Electromaterials Science (ACES), School of Natural Sciences, University of Tasmania, Sandy Bay, Hobart, 7001, Tasmania, Australia.
| | - Brett Paull
- Australian Centre for Research on Separation Sciences (ACROSS) and ARC Centre of Excellence for Electromaterials Science (ACES), School of Natural Sciences, University of Tasmania, Sandy Bay, Hobart, 7001, Tasmania, Australia
| |
Collapse
|
7
|
De Vos J, Stoll D, Buckenmaier S, Eeltink S, Grinias JP. Advances in ultra-high-pressure and multi-dimensional liquid chromatography instrumentation and workflows. ANALYTICAL SCIENCE ADVANCES 2021; 2:171-192. [PMID: 38716447 PMCID: PMC10989561 DOI: 10.1002/ansa.202100007] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 03/01/2021] [Indexed: 11/17/2024]
Abstract
The present contribution discusses recent advances in ultra-high-pressure liquid chromatography (UHPLC) and multi-dimensional liquid chromatography (MDLC) technology. First, new developments in UHPLC column technology and system design are highlighted. The latter includes a description of a novel injector concept enabling method speed-up, emerging detectors, and instrument diagnostics approaches. Next, online MDLC workflows are reviewed and advances in modulation technology are highlighted. Finally, key applications published in 2020 are reviewed.
Collapse
Affiliation(s)
- Jelle De Vos
- Department of Chemical EngineeringVrije Universiteit Brussel (VUB)BrusselsBelgium
| | - Dwight Stoll
- Department of ChemistryGustavus Aldophus CollegeSaint PeterMinnesotaUSA
| | | | - Sebastiaan Eeltink
- Department of Chemical EngineeringVrije Universiteit Brussel (VUB)BrusselsBelgium
| | - James P. Grinias
- Department of Chemistry and BiochemistryRowan UniversityGlassboroNew JerseyUSA
| |
Collapse
|
8
|
Can 3D Printing Bring Droplet Microfluidics to Every Lab?-A Systematic Review. MICROMACHINES 2021; 12:mi12030339. [PMID: 33810056 PMCID: PMC8004812 DOI: 10.3390/mi12030339] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 03/12/2021] [Accepted: 03/17/2021] [Indexed: 12/14/2022]
Abstract
In recent years, additive manufacturing has steadily gained attention in both research and industry. Applications range from prototyping to small-scale production, with 3D printing offering reduced logistics overheads, better design flexibility and ease of use compared with traditional fabrication methods. In addition, printer and material costs have also decreased rapidly. These advantages make 3D printing attractive for application in microfluidic chip fabrication. However, 3D printing microfluidics is still a new area. Is the technology mature enough to print complex microchannel geometries, such as droplet microfluidics? Can 3D-printed droplet microfluidic chips be used in biological or chemical applications? Is 3D printing mature enough to be used in every research lab? These are the questions we will seek answers to in our systematic review. We will analyze (1) the key performance metrics of 3D-printed droplet microfluidics and (2) existing biological or chemical application areas. In addition, we evaluate (3) the potential of large-scale application of 3D printing microfluidics. Finally, (4) we discuss how 3D printing and digital design automation could trivialize microfluidic chip fabrication in the long term. Based on our analysis, we can conclude that today, 3D printers could already be used in every research lab. Printing droplet microfluidics is also a possibility, albeit with some challenges discussed in this review.
Collapse
|
9
|
Themelis T, Amini A, De Vos J, Eeltink S. Towards spatial comprehensive three-dimensional liquid chromatography: A tutorial review. Anal Chim Acta 2021; 1148:238157. [DOI: 10.1016/j.aca.2020.12.032] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 12/15/2020] [Accepted: 12/16/2020] [Indexed: 01/19/2023]
|
10
|
Davis JJ, Foster SW, Grinias JP. Low-cost and open-source strategies for chemical separations. J Chromatogr A 2021; 1638:461820. [PMID: 33453654 PMCID: PMC7870555 DOI: 10.1016/j.chroma.2020.461820] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/12/2020] [Accepted: 12/14/2020] [Indexed: 12/18/2022]
Abstract
In recent years, a trend toward utilizing open access resources for laboratory research has begun. Open-source design strategies for scientific hardware rely upon the use of widely available parts, especially those that can be directly printed using additive manufacturing techniques and electronic components that can be connected to low-cost microcontrollers. Open-source software eliminates the need for expensive commercial licenses and provides the opportunity to design programs for specific needs. In this review, the impact of the "open-source movement" within the field of chemical separations is described, primarily through a comprehensive look at research in this area over the past five years. Topics that are covered include general laboratory equipment, sample preparation techniques, separations-based analysis, detection strategies, electronic system control, and software for data processing. Remaining hurdles and possible opportunities for further adoption of open-source approaches in the context of these separations-related topics are also discussed.
Collapse
Affiliation(s)
- Joshua J Davis
- Department of Chemistry & Biochemistry, Rowan University, Glassboro, NJ 08028, United States
| | - Samuel W Foster
- Department of Chemistry & Biochemistry, Rowan University, Glassboro, NJ 08028, United States
| | - James P Grinias
- Department of Chemistry & Biochemistry, Rowan University, Glassboro, NJ 08028, United States.
| |
Collapse
|
11
|
Chiral chromatography method screening strategies: Past, present and future. J Chromatogr A 2021; 1638:461878. [PMID: 33477025 DOI: 10.1016/j.chroma.2021.461878] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 12/31/2020] [Accepted: 01/02/2021] [Indexed: 11/23/2022]
Abstract
Method screening is an integral part of chromatographic method development for the separation of racemates. Due to the highly complex retention mechanism of a chiral stationary-phase, it is often difficult, if not impossible, to device predefined method-development steps that can be successfully applied to a wide group of molecules. The standard approach is to evaluate or screen a series of stationary and mobile-phase combinations to increase the chances of detecting a suitable separation condition. Such a process is often the rate-limiting step for high-throughput analyses and purification workflows. To address the problem, several solutions and strategies have been proposed over the years for reduction of net method-screening time. Some of the strategies have been adopted in practice while others remained confined in the literature. The main objective of this review is to revisit, critically discuss and compile the solutions published over the last two decades. We expect that making the diverse set of solutions available in a single document will help assessing the adequacy of existing screening protocols in laboratories conducting chiral separation.
Collapse
|
12
|
Kaplitz AS, Kresge GA, Selover B, Horvat L, Franklin EG, Godinho JM, Grinias KM, Foster SW, Davis JJ, Grinias JP. High-Throughput and Ultrafast Liquid Chromatography. Anal Chem 2019; 92:67-84. [DOI: 10.1021/acs.analchem.9b04713] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Alexander S. Kaplitz
- Department of Chemistry & Biochemistry, Rowan University, Glassboro, New Jersey 08028, United States
| | - Glenn A. Kresge
- Department of Chemistry & Biochemistry, Rowan University, Glassboro, New Jersey 08028, United States
| | - Benjamin Selover
- Department of Chemistry & Biochemistry, Rowan University, Glassboro, New Jersey 08028, United States
| | - Leah Horvat
- Department of Chemistry & Biochemistry, Rowan University, Glassboro, New Jersey 08028, United States
| | | | - Justin M. Godinho
- Advanced Materials Technology, Inc., Wilmington, Delaware 19810, United States
| | - Kaitlin M. Grinias
- Analytical Platforms & Platform Modernization, GlaxoSmithKline, Upper Providence, Collegeville, Pennsylvania 19426, United States
| | - Samuel W. Foster
- Department of Chemistry & Biochemistry, Rowan University, Glassboro, New Jersey 08028, United States
| | - Joshua J. Davis
- Department of Chemistry & Biochemistry, Rowan University, Glassboro, New Jersey 08028, United States
| | - James P. Grinias
- Department of Chemistry & Biochemistry, Rowan University, Glassboro, New Jersey 08028, United States
| |
Collapse
|