1
|
Svrkota B, Krmar J, Petronijević F, Protić A, Otašević B. Sustainable Analysis of Diclofenac Salts: A Chemometric Approach to Mixed-Mode Liquid Chromatography With Charged Aerosol Detection. J Sep Sci 2025; 48:e70136. [PMID: 40230338 DOI: 10.1002/jssc.70136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2025]
Abstract
Active pharmaceutical ingredients (APIs) are often used in salt form because of enhanced bioavailability. This study aims to propose a new environmentally friendly method for the analysis of raw diclofenac substance, achieving simultaneous analysis of diclofenac and its counterions (Na+ and K+), utilizing mixed-mode liquid chromatography (MMLC) and charged aerosol detector (CAD). To optimize the critical method characteristic-the mobile phase composition-a 32 full factorial design of experiments and multiobjective decision making using Derringer's desirability function were employed. Two optimized methods with acceptable run times and satisfactory peak separation were developed. The methods compared the use of acetonitrile (ACN) and acetone (ACE) in terms of method sustainability. The mobile phase composition in the first method (MMLC-ACN) was 40% ACN and 60% ammonium acetate buffer (48.00 mM, pH 4.82), whereas in the second, improved method (MMLC-ACE), it was 50% ACE and 50% ammonium acetate buffer (40.00 mM, pH 4.62). The eco-friendliness of the developed methods was assessed using the GAPI, the Analytical GREEnness (AGREE) score, and the Greenness Index. The method with ACE as the mobile phase modifier demonstrated a better environmental profile, achieving an AGREE score of 0.69, compared to the ACN-based method, which scored 0.60. Method performance characteristics of the MMLC-ACE method used for the quantitative analysis of diclofenac salt raw materials were evaluated according to ICH Q2(R2) guidelines: precision-repeatability (RSD from 1.07% to 2.41% and recovery >97%), selectivity between critical peak pair (αNa/K > 1) and obtained linear response within concentration range of 50%-150% (r > 0.99).
Collapse
Affiliation(s)
- Bojana Svrkota
- Faculty of Pharmacy, Department of Drug Analysis, University of Belgrade, Belgrade, Serbia
| | - Jovana Krmar
- Faculty of Pharmacy, Department of Drug Analysis, University of Belgrade, Belgrade, Serbia
| | - Filip Petronijević
- Faculty of Pharmacy, Department of Drug Analysis, University of Belgrade, Belgrade, Serbia
| | - Ana Protić
- Faculty of Pharmacy, Department of Drug Analysis, University of Belgrade, Belgrade, Serbia
| | - Biljana Otašević
- Faculty of Pharmacy, Department of Drug Analysis, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
2
|
Zhu Z, Li W, Zhao H, Adetunji AO, Kamel AM, Min L. Effects of Varying Light Durations on Sperm Quality in Rams. Animals (Basel) 2024; 14:3592. [PMID: 39765496 PMCID: PMC11672411 DOI: 10.3390/ani14243592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 11/29/2024] [Accepted: 12/06/2024] [Indexed: 01/11/2025] Open
Abstract
This investigation aimed to study the effects of varying light exposure durations on ram sperm. A total of 25 rams were randomly divided into five groups. The control group was exposed to light durations of 12 h, while the experimental groups were exposed to light durations of 14, 16, 18, and 20 h. After three months of rearing, semen was collected from each ram four times using the artificial vagina method. The sperm motility parameters, sperm abnormality, sperm concentration, acrosome integrity, membrane integrity, semen volume, and total sperm number were measured. Thereafter, the metabolome, amino acid level, testosterone content, plasma follicle-stimulating hormone (FSH) and luteinizing hormone (LH) levels, and sperm antioxidant capacity were measured. The results showed that the sperm motility, sperm concentration, ejaculation volume, total sperm number, acrosome integrity, and membrane integrity in the 16 h light group were significantly improved compared to the control (p < 0.05), meanwhile the sperm abnormality was decreased. Moreover, we found 345 different metabolites between the control and 16 h light group. Among these, 273 were upregulated and 72 were downregulated. Furthermore, the amino acid content of the seminal plasma in the 16 h light group was significantly increased (p < 0.05) compared to the control. Interestingly, the seminal plasma testosterone content and the levels of FSH and LH in the serum in the 16 h light group were significantly increased (p < 0.05) compared to the control. In terms of the sperm antioxidant capacity, it was observed that the CAT activity was the highest in the group exposed to 16 h of light and decreased at 18 h of light exposure when compared to the control group; however, the CAT activity at 20 h was not different from the control. Additionally, within the 14 to 18 h light exposure range, prolonged light exposure increased the GSH content (p < 0.05), whereas 20 h of light exposure reduced the GSH content. The MDA levels decreased with prolonged light exposure, reaching the lowest point at 16 h (p < 0.05), but increased again at 20 h of light exposure. KEGG analysis indicated that the differential metabolites were mainly involved in metabolic and synthetic activities. Based on the results of this study, we can conclude that the artificial extension of the light duration for 16 h has a positive effect on ram sperm quality.
Collapse
Affiliation(s)
- Zhendong Zhu
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, China; (Z.Z.); (W.L.); (H.Z.)
| | - Wenjia Li
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, China; (Z.Z.); (W.L.); (H.Z.)
| | - Haolong Zhao
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, China; (Z.Z.); (W.L.); (H.Z.)
| | | | - Ahmed Mohamed Kamel
- Animal and Poultry Production Division, Desert Research Center, Mataria, Cairo 11753, Egypt;
| | - Lingjiang Min
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, China; (Z.Z.); (W.L.); (H.Z.)
| |
Collapse
|
3
|
Handlovic TT, Roy D, Barnhart WW, Haidar Ahmad IA. Role of the Power Function Value in Linearity and Universality for Charged Aerosol Detectors: Theoretical Elucidations from a Validated Model. Anal Chem 2024; 96:16045-16052. [PMID: 39325986 DOI: 10.1021/acs.analchem.4c03714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2024]
Abstract
High-throughput drug discovery on the microgram scale is now common, making analyte quantitation without molecule-specific calibration imperative. The charged aerosol detector (CAD) was invented to be a next-generation universal liquid chromatography (LC) detector with excellent response universality for nonvolatile analytes as well as sensitivity for nonchromophoric compounds. Although the CAD is a mass flow-sensitive detector, its response to mass is inherently nonlinear, which challenges traditional quantitation. In CAD software, there is a "power function value" (p) setting that can be used to linearize the signal through digital signal processing. The exact workings of this power function value algorithm remain unknown; however, its optimization is a crucial aspect of analytical method development for LC-CAD. Herein, we developed a theoretical relationship that can be used to predict the chromatogram (plus peak area, width, and height) at any p if the data are collected at p = 1. This model was validated using a diverse dataset comprising 1440 measurements including peak heights, areas, and widths. Predicted areas had an average error of less than 2% showing excellent agreement between calculated and experimental results. An open-access automated code is tested and provided, which predicts the power function value that produces the most linear response. It is vital to note that optimizing the power function value affects peaks of different heights disproportionately. Low-level impurities were shown to be minimized and eventually eliminated by increasing the power function value. This model provides an easy-to-implement tool (MATLAB or Excel) that assists in choosing the optimal p for each LC-CAD method, increasing the speed of method development and improving the accuracy of quantitative workflows.
Collapse
Affiliation(s)
- Troy T Handlovic
- Amgen Research, One Amgen Center Drive, Thousand Oaks, California 91320, United States
- Department of Chemistry and Biochemistry, University of Texas at Arlington, Arlington, Texas 76019, United States
| | - Daipayan Roy
- Amgen Research, One Amgen Center Drive, Thousand Oaks, California 91320, United States
| | - Wesley W Barnhart
- Amgen Research, One Amgen Center Drive, Thousand Oaks, California 91320, United States
| | - Imad A Haidar Ahmad
- Amgen Research, One Amgen Center Drive, Thousand Oaks, California 91320, United States
| |
Collapse
|
4
|
Liu Y, Song J, Liu S, Nan Y, Zheng W, Pang X, Chen X, Liang H, Zhang J, Ma B. A universal method for profiling and characterization of oligosaccharides in traditional Chinese medicines. J Pharm Biomed Anal 2024; 244:116129. [PMID: 38579408 DOI: 10.1016/j.jpba.2024.116129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/11/2024] [Accepted: 03/22/2024] [Indexed: 04/07/2024]
Abstract
Oligosaccharides constitute fundamental components in numerous traditional Chinese medicines (TCMs). Conventional chromatographic methods for natural product analysis are not suitable for oligosaccharides due to their large polarity and structural similarity. Herein, an ultra-high performance liquid chromatography with charged aerosol detector (UHPLC-CAD) method was developed for the profiling of oligosaccharides using 9 neutral (DP3-DP11) reference oligosaccharides. Various factors, including columns, mobile phase, elution conditions, flow rate, and column temperature were systematically examined. Optimal separation was achieved using an Amide column with gradient elution within 18 min, at 0.5 mL/min flow rate and 30°C column temperature. Moreover, an ultra-high-performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UHPLC-Q-TOF/MS) method was also optimized to provide structural information. The developed method was applied to detect oligosaccharides in several TCMs, including Morindae Officinalis Radix (MOR), Ziziphi Spinosae Semen (ZSS), Menthae Haplocalycis Herba (MHH) and Chrysanthemi Indici Flos (CIF), revealing 9 and 16 oligosaccharides being uncovered from MHH and CIF respectively for the first time. This study presents a versatile UHPLC-CAD and UHPLC-Q-TOF/MS method with the potential for advancing oligosaccharides discovery and contributing to the quality analysis of TCMs.
Collapse
Affiliation(s)
- Yue Liu
- Guangdong Pharmaceutical University, Guangzhou 510060, China; Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Juan Song
- Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Si Liu
- Beijing Institute of Radiation Medicine, Beijing 100850, China; Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Yi Nan
- Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Wei Zheng
- Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Xu Pang
- Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Xiaojuan Chen
- Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Haizhen Liang
- Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Jie Zhang
- Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Baiping Ma
- Guangdong Pharmaceutical University, Guangzhou 510060, China; Beijing Institute of Radiation Medicine, Beijing 100850, China.
| |
Collapse
|
5
|
Wang H, Jin H, Chai R, Li H, Fan J, Wang Y, Wei F, Ma S. An Analysis of Polysaccharides from Eight Plants by a Novel Heart-Cutting Two-Dimensional Liquid Chromatography Method. Foods 2024; 13:1173. [PMID: 38672845 PMCID: PMC11049114 DOI: 10.3390/foods13081173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 04/07/2024] [Accepted: 04/10/2024] [Indexed: 04/28/2024] Open
Abstract
Natural polysaccharides are important active biomolecules. However, the analysis and structural characterization of polysaccharides are challenging tasks that often require multiple techniques and maps to reflect their structural features. This study aimed to propose a new heart-cutting two-dimensional liquid chromatography (2D-LC) method for separating and analyzing polysaccharides to explore the multidimensional information of polysaccharide structure in a single map. That is, the first-dimension liquid chromatography (1D-LC) presents molecular-weight information, and the second-dimension liquid chromatography (2D-LC) shows the fingerprints of polysaccharides. In this 2D-LC system, the size-exclusion chromatography-hydrophilic interaction chromatography (SEC-HILIC) model was established. Coupling with a charged aerosol detector (CAD) eliminated the need for the derivatization of the polysaccharide sample, allowing the whole process to be completed within 80 min. The methods were all validated in terms of precision, linearity, stability, and repeatability. The capability of the new 2D-LC method was demonstrated in determining various species of natural polysaccharides. Our experimental data demonstrated the feasibility of the whole systematic approach, opening the door for further applications in the field of natural polysaccharide analysis.
Collapse
Affiliation(s)
- Haonan Wang
- National Institutes for Food and Drug Control, National Medical Products Administration, Beijing 102629, China
- National Institutes for Food and Drug Control, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Hongyu Jin
- National Institutes for Food and Drug Control, National Medical Products Administration, Beijing 102629, China
| | - Ruiping Chai
- Thermo Fisher Scientific (China) Co., Ltd., Shanghai 201206, China
| | - Hailiang Li
- National Institutes for Food and Drug Control, National Medical Products Administration, Beijing 102629, China
| | - Jing Fan
- National Institutes for Food and Drug Control, National Medical Products Administration, Beijing 102629, China
| | - Ying Wang
- National Institutes for Food and Drug Control, National Medical Products Administration, Beijing 102629, China
| | - Feng Wei
- National Institutes for Food and Drug Control, National Medical Products Administration, Beijing 102629, China
| | | |
Collapse
|
6
|
Sun H, Lou J, Chen BX, Huang JQ, Wang QL, Song SF, Jia ZY, Miao R, Wang SY, Li X, Yang WZ. Multi-level chemical characterization and anti-inflammatory activity evaluation of the polysaccharides from Prunella vulgaris. Fitoterapia 2024; 174:105841. [PMID: 38296170 DOI: 10.1016/j.fitote.2024.105841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 01/15/2024] [Accepted: 01/27/2024] [Indexed: 02/05/2024]
Abstract
Prunella vulgaris (PV) is a medicine and food homologous plant, but its quality evaluation seldom relies on the polysaccharides (PVPs). In this work, we established the multi-level fingerprinting and in vitro anti-inflammatory evaluation approaches to characterize and compare the polysaccharides of P. vulgaris collected from the major production regions in China. PVPs prepared from 22 batches of samples gave the content variation of 5.76-24.524 mg/g, but displayed high similarity in the molecular weight distribution. Hydrolyzed oligosaccharides with degrees of polymerization 2-14 were characterized with different numbers of pentose and hexose by HILIC-MS. The tested 22 batches of oligosaccharides exhibited visible differences in peak abundance, which failed to corelate to their production regions. All the PVPs contained Gal, Xyl, and Ara, as the main monosaccharides. Eleven batches among the tested PVPs showed the significant inhibitory effects on NO production on LPS-induced RAW264.7 cells at 10 μg/mL, but the exerted efficacy did not exhibit correlation with the production regions. Conclusively, we, for the first time, investigated the chemical features of PVPs at three levels, and assessed the chemical and anti-inflammatory variations among the different regions of P. vulgaris samples.
Collapse
Affiliation(s)
- He Sun
- National Key Laboratory of Chinese Medicine Modernization, State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China; Haihe Laboratory of Modern Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
| | - Jia Lou
- National Key Laboratory of Chinese Medicine Modernization, State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China; Haihe Laboratory of Modern Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
| | - Bo-Xue Chen
- National Key Laboratory of Chinese Medicine Modernization, State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China; Haihe Laboratory of Modern Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
| | - Jia-Qi Huang
- National Key Laboratory of Chinese Medicine Modernization, State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China; Haihe Laboratory of Modern Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
| | - Qi-Long Wang
- National Key Laboratory of Chinese Medicine Modernization, State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China; Haihe Laboratory of Modern Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
| | - Shao-Fei Song
- National Key Laboratory of Chinese Medicine Modernization, State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China; Haihe Laboratory of Modern Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
| | - Zi-Yue Jia
- National Key Laboratory of Chinese Medicine Modernization, State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China; Haihe Laboratory of Modern Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
| | - Rong Miao
- National Key Laboratory of Chinese Medicine Modernization, State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China; Haihe Laboratory of Modern Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
| | - Shi-Yu Wang
- National Key Laboratory of Chinese Medicine Modernization, State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China; Haihe Laboratory of Modern Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
| | - Xue Li
- National Key Laboratory of Chinese Medicine Modernization, State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China; Haihe Laboratory of Modern Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China.
| | - Wen-Zhi Yang
- National Key Laboratory of Chinese Medicine Modernization, State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China; Haihe Laboratory of Modern Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China; Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China.
| |
Collapse
|
7
|
Sobolewska E, Biesaga M. High-Performance Liquid Chromatography Methods for Determining the Purity of Drugs with Weak UV Chromophores - A Review. Crit Rev Anal Chem 2024; 55:419-433. [PMID: 38180794 DOI: 10.1080/10408347.2023.2291815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2024]
Abstract
High-performance liquid chromatography (HPLC) is one of the most useful techniques for the separation and determination of new drugs with a complex nature. The selection of an HPLC detector depends on the chemical nature of molecules, potential impurities, matrix of the sample, sensitivity, availability, and/or cost of the detector. HPLC methods with UV/Vis detectors are the most used and simple analytical procedures in pharmaceutical applications, but it is limited to compounds that possess a chromophore. Hence, this review provides an overview on the development of analytical methods for compounds with weak chromophores. The review described selected papers about HPLC based methods in the PubMed, Scopus, Semantic Scholar and ScienceDirect databases, basically between 2006 and 2023. Of the analytical studies, the HPLC methods with UV-Vis, FLD, CAD, ELSD, RID, ECD, CLND and MS detection were found. This study is a comparison of different types of detection that are described in scientific literature and are routinely used for compounds with weak chromophores. It is expected that this review will be helpful for scientists in the analytical development fields to improve research related to the drug candidates and to ensure its quality according to regulatory levels.
Collapse
Affiliation(s)
- Elżbieta Sobolewska
- Faculty of Chemistry, University of Warsaw, Warsaw, Poland
- Molecure SA, Warsaw, Poland
| | | |
Collapse
|
8
|
Rutz A, Wolfender JL. Automated Composition Assessment of Natural Extracts: Untargeted Mass Spectrometry-Based Metabolite Profiling Integrating Semiquantitative Detection. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:18010-18023. [PMID: 37949451 PMCID: PMC10683005 DOI: 10.1021/acs.jafc.3c03099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 09/19/2023] [Accepted: 09/22/2023] [Indexed: 11/12/2023]
Abstract
Recent developments in mass spectrometry-based metabolite profiling allow unprecedented qualitative coverage of complex biological extract composition. However, the electrospray ionization used in metabolite profiling generates multiple artifactual signals for a single analyte. This leads to thousands of signals per analysis without satisfactory means of filtering those corresponding to abundant constituents. Generic approaches are therefore needed for the qualitative and quantitative annotation of a broad range of relevant constituents. For this, we used an analytical platform combining liquid chromatography-mass spectrometry (LC-MS) with Charged Aerosol Detection (CAD). We established a generic metabolite profiling for the concomitant recording of qualitative MS data and semiquantitative CAD profiles. The MS features (recorded in high-resolution tandem MS) are grouped and annotated using state-of-the-art tools. To efficiently attribute features to their corresponding extracted and integrated CAD peaks, a custom signal pretreatment and peak-shape comparison workflow is built. This strategy allows us to automatically contextualize features at both major and minor metabolome levels, together with a detailed reporting of their annotation including relevant orthogonal information (taxonomy, retention time). Signals not attributed to CAD peaks are considered minor metabolites. Results are illustrated on an ethanolic extract of Swertia chirayita (Roxb.) H. Karst., a bitter plant of industrial interest, exhibiting the typical complexity of plant extracts as a proof of concept. This generic qualitative and quantitative approach paves the way to automatically assess the composition of single natural extracts of interest or broader collections, thus facilitating new ingredient registrations or natural-extracts-based drug discovery campaigns.
Collapse
Affiliation(s)
- Adriano Rutz
- School
of Pharmaceutical Sciences, University of
Geneva, 1211 Geneva, Switzerland
- Institute
of Pharmaceutical Sciences of Western Switzerland, University of Geneva, 1211 Geneva, Switzerland
- Institute
of Molecular Systems Biology, ETH Zürich, 8093 Zürich, Switzerland
| | - Jean-Luc Wolfender
- School
of Pharmaceutical Sciences, University of
Geneva, 1211 Geneva, Switzerland
- Institute
of Pharmaceutical Sciences of Western Switzerland, University of Geneva, 1211 Geneva, Switzerland
| |
Collapse
|
9
|
Gao J, Wang F, Zhu B, Li P, Wang Z, Wang J. Universal response method for accurate quantitative analysis of the impurities in quinolone antibiotics using liquid chromatography coupled with diode array detector and charged aerosol detector. J Chromatogr A 2023; 1710:464412. [PMID: 37757529 DOI: 10.1016/j.chroma.2023.464412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 09/03/2023] [Accepted: 09/22/2023] [Indexed: 09/29/2023]
Abstract
HPLC method is the standard method for the separation and quantification of impurities from quinolone antibiotics. However, due to the large differences in the UV absorption of the impurities in quinolone antibiotics, quantitative analysis without the availability of corresponding reference substances currently poses a challenge. A sensitive and direct method using high performance liquid chromatography coupled with diode array detector and charged aerosol detector (HPLC-DAD-CAD) was developed for the analysis of impurities in quinolone antibiotics. The chromatographic conditions were optimized for good separation and output signal of CAD detector by response surface method (RSM). The systematic variation of CAD parameter settings, such as nebulization temperature, filter constant and power function value (PFV), were used to study the effect of on the detector response of signal-to-noise ratios (S/N) and linearity for ofloxacin, ciprofloxacin and their impurities. In the method validation, good linearity of each component was obtained with coefficient of determination (r) greater than 0.999 in the range of 0.5-300 μg mL-1. The average recoveries of each component were 99.02-102.39 % by DAD, were 98.22-101.91 % by CAD, RSDs were less than 2.5 % for intra-day and inter-day precision by DAD-CAD, with good precision and accuracy. The correction factor experimental results showed that the developed method provided a uniform response to the impurities with differences chromophores and could unbiasedly and directly detect the impurities in quinolone antibiotics. The method is first reported application of HPLC-DAD-CAD method for the analysis of impurities in quinolone antibiotics and it can be used for quality control of quinolone antibiotics.
Collapse
Affiliation(s)
- Jiarui Gao
- Zhejiang University of Technology, Hangzhou 310014, China
| | - Fan Wang
- Zhejiang Institute for Food and Drug Control, Key Laboratory for Core Technology of Generic Drug Evaluation National Medical Product Administration & Key Laboratory of Drug Contacting Materials Quality Control of Zhejiang Province, Hangzhou 310052, China
| | - Bingqi Zhu
- Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Ping Li
- Zhejiang University of Technology, Hangzhou 310014, China
| | - Zhijian Wang
- Zhejiang Institute for Food and Drug Control, Key Laboratory for Core Technology of Generic Drug Evaluation National Medical Product Administration & Key Laboratory of Drug Contacting Materials Quality Control of Zhejiang Province, Hangzhou 310052, China
| | - Jian Wang
- Zhejiang University of Technology, Hangzhou 310014, China; Zhejiang Institute for Food and Drug Control, Key Laboratory for Core Technology of Generic Drug Evaluation National Medical Product Administration & Key Laboratory of Drug Contacting Materials Quality Control of Zhejiang Province, Hangzhou 310052, China.
| |
Collapse
|
10
|
Kim KH, Lee JE, Lee JC, Maharjan R, Oh H, Lee K, Kim NA, Jeong SH. Optimization of HPLCCAD method for simultaneous analysis of different lipids in lipid nanoparticles with analytical QbD. J Chromatogr A 2023; 1709:464375. [PMID: 37734240 DOI: 10.1016/j.chroma.2023.464375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 09/06/2023] [Accepted: 09/09/2023] [Indexed: 09/23/2023]
Abstract
Since lipid nanoparticles (LNP) have emerged as a potent drug delivery system, the objective of this study was to develop and optimize a robust high-performance liquid chromatography with charged aerosol detectors (HPLCCAD) method to simultaneously quantify different lipids in LNPs using the analytical quality by design (AQbD) approach. After defining analytical target profile (ATP), critical method attributes (CMAs) were established as a resolution between the closely eluting lipid peaks and the total analysis time. Thus, potential high-risk method parameters were identified through the initial risk assessment. These parameters were screened using Plackett-Burman design, and three critical method parameters (CMPs)-MeOH ratio, flow rate, and column temperature-were selected for further optimization. Box-Behnken design was employed to develop the quadratic models that explain the relationship between the CMPs and CMAs and to determine the optimal operating conditions. Moreover, to ensure the robustness of the developed method, a method operable design region (MODR) was established using the Monte Carlo simulation. The MODR was identified within the probability map, where the risk of failure to achieve the desired CMAs was less than 1%. The optimized method was validated according to the ICH guidelines (linearity: R2 > 0.995, accuracy: 97.15-100.48% recovery, precision: RSD < 5%) and successfully applied for the analysis of the lipid in the LNP samples. The development of the analytical method to quantify the lipids is essential for the formulation development and quality control of LNP-based drugs since the potency of LNPs is significantly dependent on the compositions and contents of the lipids in the formation.
Collapse
Affiliation(s)
- Ki Hyun Kim
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University, Gyeonggi 10326, Republic of Korea
| | - Ji Eun Lee
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University, Gyeonggi 10326, Republic of Korea
| | - Jae Chul Lee
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University, Gyeonggi 10326, Republic of Korea
| | - Ravi Maharjan
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University, Gyeonggi 10326, Republic of Korea
| | - Hyunsuk Oh
- Inventage Lab Inc., Seongnam, Gyeonggi 13438, Republic of Korea
| | - Kyeong Lee
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University, Gyeonggi 10326, Republic of Korea
| | - Nam Ah Kim
- College of Pharmacy, Mokpo National University, Jeonnam 58554, Republic of Korea.
| | - Seong Hoon Jeong
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University, Gyeonggi 10326, Republic of Korea.
| |
Collapse
|
11
|
Xu XY, Jiang MT, Wang Y, Sun H, Jing Q, Li XH, Xu B, Zou YD, Yu HS, Li Z, Guo DA, Yang WZ. Multiple heart-cutting two-dimensional liquid chromatography/charged aerosol detector assay of ginsenosides for quality evaluation of ginseng from diverse Chinese patent medicines. J Chromatogr A 2023; 1708:464344. [PMID: 37703763 DOI: 10.1016/j.chroma.2023.464344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 08/24/2023] [Accepted: 08/29/2023] [Indexed: 09/15/2023]
Abstract
For quality control of Chinese patent medicines (CPMs) containing the same herbal medicine or different herbal medicines that have similar chemical composition, current ″one standard for one species″ research mode leads to poor universality of the analytical approaches unfavorable to discriminate easily confused species. Herein, we were aimed to elaborate a multiple heart-cutting two-dimensional liquid chromatography/charged aerosol detector (MHC-2DLC/CAD) approach to quantitatively assess ginseng from multiple CPMs. Targeting baseline resolution of 16 ginsenosides (noto-R1/Rg1/Re/Rf/Ra2/Rb1/Rc/Ro/Rb2/Rb3/Rd/Rh1/Rg2/Rg3/Rg3(R)/24(R)-p-F11), experiments were conducted to optimize key parameters and validate its performance. A Poroshell 120 EC-C18 column and an XBridge Shield RP18 column were separately utilized in the first-dimensional (1D) and the second-dimensional (2D) chromatography. Eight consecutive cuttings could achieve good separation of 16 ginsenosides within 85 min. The developed MHC-2DLC/CAD method showed good linearity (R2 > 0.999), repeatability (RSD < 6.73%), stability (RSD < 5.63%), inter- and intra-day precision (RSD < 5.57%), recovery (93.76-111.14%), and the limit of detection (LOD) and limit of quantification (LOQ) varied between 0.45-2.37 ng and 0.96-4.71 ng, respectively. We applied it to the content determination of 16 ginsenosides simultaneously from 28 different ginseng-containing CPMs, which unveiled the ginsenoside content difference among the tested CPMs, and gave useful information to discriminate ginseng in the preparation samples, as well. The MHC-2DLC/CAD approach exhibited advantages of high specificity, good separation ability, and relative high analysis efficiency, which also justified the feasibility of our proposed ″Monomethod Characterization of Structure Analogs″ strategy in quality evaluation of diverse CPMs that contained different ginseng.
Collapse
Affiliation(s)
- Xiao-Yan Xu
- National Key Laboratory of Chinese Medicine Modernization, State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
| | - Mei-Ting Jiang
- National Key Laboratory of Chinese Medicine Modernization, State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
| | - Yu Wang
- National Key Laboratory of Chinese Medicine Modernization, State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
| | - He Sun
- National Key Laboratory of Chinese Medicine Modernization, State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
| | - Qi Jing
- National Key Laboratory of Chinese Medicine Modernization, State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
| | - Xiao-Hang Li
- National Key Laboratory of Chinese Medicine Modernization, State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
| | - Bei Xu
- National Key Laboratory of Chinese Medicine Modernization, State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
| | - Ya-Dan Zou
- National Key Laboratory of Chinese Medicine Modernization, State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
| | - He-Shui Yu
- National Key Laboratory of Chinese Medicine Modernization, State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China; College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Zheng Li
- National Key Laboratory of Chinese Medicine Modernization, State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China; College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - De-An Guo
- National Key Laboratory of Chinese Medicine Modernization, State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China; National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, China.
| | - Wen-Zhi Yang
- National Key Laboratory of Chinese Medicine Modernization, State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China.
| |
Collapse
|
12
|
Jones M, Goodyear RL. High-Throughput Purification in Drug Discovery: Scaling New Heights of Productivity. ACS Med Chem Lett 2023; 14:916-919. [PMID: 37465307 PMCID: PMC10351054 DOI: 10.1021/acsmedchemlett.3c00073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 05/16/2023] [Indexed: 07/20/2023] Open
Abstract
With the "low hanging fruit" of early drug discovery gone, pharmaceutical companies are increasingly turning to developing high-throughput synthetic platforms capable of greatly shortening the design-make-test cycle of new drugs. Purification has long been considered the bottleneck of this procedure; however, new technologies and systems are now being integrated into these high-throughput synthetic workflows, providing compounds of high purity capable of being used directly in biological screening.
Collapse
Affiliation(s)
- Mark Jones
- Liverpool ChiroChem Ltd, The Heath Business & Technical
Park, Runcorn, Cheshire WA7 4QX, U.K.
| | - Ross L. Goodyear
- Liverpool ChiroChem Ltd, The Heath Business & Technical
Park, Runcorn, Cheshire WA7 4QX, U.K.
| |
Collapse
|
13
|
Liu S, Lu B, Peng Z, Liu C, Liu Y, Jiao H, Wu D, Li P, Zhao X, Song S. HPLC-CAD as a supplementary method for the quantification of related structure impurities for the purity assessment of organic CRMs. Anal Bioanal Chem 2023:10.1007/s00216-023-04719-2. [PMID: 37154936 DOI: 10.1007/s00216-023-04719-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/20/2023] [Accepted: 04/24/2023] [Indexed: 05/10/2023]
Abstract
In organic purity assessment, chromatography separation with a suitable detector is required. Diode array detection (DAD) has been a widely used technique for high-performance liquid chromatography (HPLC) analyses, but its application is limited to compounds with sufficient UV chromophores. Charged aerosol detector (CAD), as a mass-dependent detector, is advantageous for providing a nearly uniform response for analytes, regardless of their structures. In this study, 11 non-volatile compounds with/without UV chromophores were analyzed by CAD using continuous direct injection mode. The RSDs of CAD responses were within 17%. For saccharides and bisphenols, especially, the RSDs were lower (2.12% and 8.14%, respectively). Since bisphenols exist in UV chromophores, their HPLC-DAD responses were studied and compared with CAD responses, with CAD showing a more uniform response. Besides, the key parameters of HPLC-CAD were optimized and the developed method was verified using a Certified Reference Material (CRM, dulcitol, GBW06144). The area normalization result of dulcitol measured by HPLC-CAD was 99.89% ± 0.02% (n = 6), consistent with the certified value of 99.8% ± 0.2% (k = 2). The result of this work indicated that the HPLC-CAD method could be a good complementary tool to traditional techniques for the purity assessment of organic compounds, especially for compounds lacking UV chromophores.
Collapse
Affiliation(s)
- Si Liu
- National Institute of Metrology, China, Beijing, 100029, China
- Tianjin University of Technology, Tianjin, 300384, China
| | - Boling Lu
- Guangxi Zhuang Autonomous Region Ecological and Environmental Monitoring Centre, Nanning, 530028, China
| | - Zijuan Peng
- National Institute of Metrology, China, Beijing, 100029, China
| | - Chunyu Liu
- Tianjin University of Technology, Tianjin, 300384, China
| | - Yuhui Liu
- National Institute of Metrology, China, Beijing, 100029, China
| | - Hui Jiao
- National Institute of Metrology, China, Beijing, 100029, China
| | - Dan Wu
- Tianjin Eco-Environmental Monitoring Center, Tianjin, 300191, China.
| | - Penghui Li
- Tianjin University of Technology, Tianjin, 300384, China
| | - Xingchen Zhao
- Department for Evolutionary Ecology and Environmental Toxicology, Goethe University, Frankfurt Am Main, 60438, Germany
| | - Shanjun Song
- National Institute of Metrology, China, Beijing, 100029, China.
- Tianjin University of Technology, Tianjin, 300384, China.
| |
Collapse
|
14
|
Blasi F, Ianni F, Mangiapelo L, Pinna N, Cossignani L. In vitro anti-obesity activity by pancreatic lipase inhibition - Simple HPLC approach using EVOO as natural substrate. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:2786-2793. [PMID: 36583522 DOI: 10.1002/jsfa.12417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 11/28/2022] [Accepted: 12/30/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Pancreatic lipase (PL) is a key lipolytic enzyme in humans for the digestion and absorption of dietary fats. Thereby, PL is a well-recognized target in the management of obesity and its inhibition attracts the interest of researchers globally. The screening of new natural PL inhibitors as alternative strategy to the synthesis of chemical ones represents nowadays a hot topic in research. The main challenge in this matter is the lack of a universal analytical method allowing the monitoring of PL activity and the reliable quantification of lipid digestion products. RESULTS The (normal phase)-high-performance liquid chromatography-evaporative light scattering detector [(NP)-HPLC-ELSD] method proposed in this work represents a direct and rapid strategy to simultaneously quantify the products obtained from in vitro PL digestion. As one of the main novelties, the triacylglycerol (TAG) fraction from extra-virgin olive oil was selected as natural substrate. The PL activity was measured by monitoring the levels of remaining TAGs and formed free fatty acids (FFAs), using Orlistat as known inhibitor. The method validation confirmed the adequacy of the analytical method for quantitative purposes, showing high recovery percentage values (between 99% and 103%) and low relative standard deviation (RSD%) values (between 2% and 7%) for triolein and oleic acid standard solutions, as well as appreciably low limit of detection (LOD) and limit of quantification (LOQ) values (respectively 58 and 177 ng mL-1 for triolein; 198 and 602 ng mL-1 for oleic acid). Finally, the developed HPLC-ELSD method was successfully applied to evaluate the inhibitory effect of a polyphenolic extract obtained from apple pomace. The results showed a comparable inhibition degree between a 4.0 mg mL-1 apple pomace solution and a 1.0 μg mL-1 Orlistat solution. CONCLUSION The proposed innovative method reveals highly sensitive and simple to follow the fate of PL digestion, thus opening the way to further investigations in the research of new potentially anti-obesity compounds. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Francesca Blasi
- Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy
| | - Federica Ianni
- Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy
| | - Luciano Mangiapelo
- Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy
| | - Nicola Pinna
- Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy
| | - Lina Cossignani
- Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy
- Center for Perinatal and Reproductive Medicine, Santa Maria della Misericordia University Hospital, University of Perugia, Perugia, Italy
| |
Collapse
|
15
|
Wang S, Wang S, Li P, Li L, Ye J. Establishment of SI-traceable purity assessment of Fumonisin B1 using a combination of quantitative 1H NMR and mass balance. Microchem J 2023. [DOI: 10.1016/j.microc.2022.108282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
16
|
Toussaint B, Immame Hassane Beck T, Surget E, Boudy V, Jaccoulet E. Exploration of the effects of chloride ions on the analysis of polar compounds at low concentrations by hydrophilic interaction liquid chromatography coupled to a charged aerosol detector: Application to tromethamine. J Sep Sci 2023; 46:e2200766. [PMID: 36621867 DOI: 10.1002/jssc.202200766] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 12/24/2022] [Accepted: 12/26/2022] [Indexed: 01/10/2023]
Abstract
In this study, we discuss the origin of the slightly increased response of the charged aerosol detector when low-concentration polar drugs formulated with sodium chloride are analyzed by hydrophilic interaction liquid chromatography coupled to the charged aerosol detector. In the case of tromethamine mixed with saline solutions, we investigated several levels including the mobile phase, sample matrix, and detection. We show that the analysis of the rich-salted sample results in both interactions with the mobile phase modifiers and the stationary phase during the run time. With 150 mM NaCl as a compounding solution, a slight increase in the tromethamine peak area was observed (<5.5%). Our study suggests that chloride ions in excess sequentially interact firstly with the counterions from the organic modifiers and secondly with the analyte via the stationary phase and the contribution of hydrophilic interaction liquid chromatography retention mechanisms. Because of these effects, the hydrophilic interaction liquid chromatography-charged aerosol detector analysis of drugs in saline solutions requires particular attention, and a correction factor for quantitative purposes that accounts for formulation ions remains appropriate.
Collapse
Affiliation(s)
- Balthazar Toussaint
- Département recherche et développement pharmaceutique, Etablissement pharmaceutique, Agence générale des équipements et produits de santé, AP-HP, Paris, France.,Université de Paris Cité, CNRS, INSERM, UTCBS, Unité de Technologies Chimiques et Biologiques pour la santé, Faculté de Pharmacie, F-75006, Paris, France
| | - Taslyne Immame Hassane Beck
- Département recherche et développement pharmaceutique, Etablissement pharmaceutique, Agence générale des équipements et produits de santé, AP-HP, Paris, France
| | - Estelle Surget
- Département recherche et développement pharmaceutique, Etablissement pharmaceutique, Agence générale des équipements et produits de santé, AP-HP, Paris, France
| | - Vincent Boudy
- Département recherche et développement pharmaceutique, Etablissement pharmaceutique, Agence générale des équipements et produits de santé, AP-HP, Paris, France.,Université de Paris Cité, CNRS, INSERM, UTCBS, Unité de Technologies Chimiques et Biologiques pour la santé, Faculté de Pharmacie, F-75006, Paris, France
| | - Emmanuel Jaccoulet
- Département recherche et développement pharmaceutique, Etablissement pharmaceutique, Agence générale des équipements et produits de santé, AP-HP, Paris, France
| |
Collapse
|
17
|
Zhao GH, Hu YY, Zeng X, Zhang M, Zhou Z, Qin L, Yin FW, Zhou DY, Shahidi F. sA direct and facile simultaneous quantification of non-polar and polar lipids in different species of marine samples using normal-phase HPLC–CAD. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2022.104813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
18
|
Wu L, Gong X, Pan J, Qu H. Establishing a chromatographic fingerprint using tandem UV/charged aerosol detection and similarity analysis for Shengmai capsule: A novel method for natural product quality control. PHYTOCHEMICAL ANALYSIS : PCA 2022; 33:460-472. [PMID: 35048433 DOI: 10.1002/pca.3102] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/24/2021] [Accepted: 12/14/2021] [Indexed: 06/14/2023]
Abstract
INTRODUCTION Shengmai San, a well-known traditional Chinese medicine formula, is used to treat coronary heart diseases and myocardial infarction. The complex composition and complicated mechanism of the Shengmai preparations bring a significant challenge in the development of a suitable quality control method. OBJECTIVES This work aims to establish a chromatographic fingerprinting method and propose a weighting algorithm for application in fingerprint similarity analysis to ensure consistent quality of the Shengmai capsule. METHODOLOGY A chromatographic fingerprint method was established using tandem UV/charged aerosol detection (CAD) for Shengmai capsule quality control. After method verification, the developed method was applied to analyze 15 batches of the samples. Then a weighting algorithm of the fingerprint peak was proposed and used for the fingerprint similarity analysis. RESULTS An HPLC-UV/CAD fingerprint method was successfully developed for the Shengmai capsules. Chromatographic conditions of the HPLC-UV/CAD method were optimized with a definitive screening design, and the optimized ranges of operating parameters were obtained with a Monte Carlo simulation method. The combined use of the proposed weighting algorithm and similarity analysis on fingerprint data improves the sensitivity of distinguishing batch-to-batch quality differences. CONCLUSION The developed HPLC-UV/CAD fingerprint method is robust, reliable, and efficient. The proposed weighting algorithm combined with similarity analysis is promising and meaningful for the quality consistency assessment of HPLC-UV/CAD fingerprints.
Collapse
Affiliation(s)
- Linlin Wu
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- Innovation Center in Zhejiang University, State Key Laboratory of Component-Based Chinese Medicine, Zhejiang University, Hangzhou, China
| | - Xingchu Gong
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- Innovation Center in Zhejiang University, State Key Laboratory of Component-Based Chinese Medicine, Zhejiang University, Hangzhou, China
| | - Jianyang Pan
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- Innovation Center in Zhejiang University, State Key Laboratory of Component-Based Chinese Medicine, Zhejiang University, Hangzhou, China
| | - Haibin Qu
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- Innovation Center in Zhejiang University, State Key Laboratory of Component-Based Chinese Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
19
|
Liu J, Wang HD, Yang FF, Chen BX, Li X, Huang QX, Li J, Li XY, Li Z, Yu HS, Guo DA, Yang WZ. Multi-level fingerprinting and cardiomyocyte protection evaluation for comparing polysaccharides from six Panax herbal medicines. Carbohydr Polym 2022; 277:118867. [PMID: 34893272 DOI: 10.1016/j.carbpol.2021.118867] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 10/16/2021] [Accepted: 11/04/2021] [Indexed: 02/06/2023]
Abstract
The role of polysaccharides in quality control of ginseng is underestimated. Large-scale comparison on the polysaccharides of Panax ginseng (PG), P. quinquefolius (PQ), P. notoginseng (PN), Red ginseng (RG), P. japonicus (ZJS), and P. japonicus var. major (ZZS), was performed by both chemical and biological approaches. Holistic fingerprinting at polysaccharide and the hydrolyzed oligosaccharide and monosaccharide levels utilized various chromatography methods, while OGD and OGD/R models on H9c2 cells were introduced to evaluate the protective effects on cell viability and mitochondrial function. Polysaccharides from six ginseng species exhibited remarkable content difference (RG > PG/ZZS/ZJS/PQ > PN), but weak differentiations in molecular weight distribution and oligosaccharide profiles, while Glc and GalA were richer for monosaccharide compositions of PG and RG polysaccharides, respectively. RG polysaccharides (25/50/100 μg/mL) showed significant cardiomyocyte protection by regulating mitochondrial functions. These new evidences may provide support for the supplementary role of polysaccharides in quality control of ginseng.
Collapse
Affiliation(s)
- Jie Liu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai, Tianjin 301617, China
| | - Hong-da Wang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai, Tianjin 301617, China
| | - Fei-Fei Yang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai, Tianjin 301617, China
| | - Bo-Xue Chen
- State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai, Tianjin 301617, China
| | - Xue Li
- State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai, Tianjin 301617, China
| | - Qing-Xia Huang
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Jing Li
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Xiang-Yan Li
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Zheng Li
- State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai, Tianjin 301617, China; College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - He-Shui Yu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai, Tianjin 301617, China; College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - De-An Guo
- State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai, Tianjin 301617, China; Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, China.
| | - Wen-Zhi Yang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai, Tianjin 301617, China.
| |
Collapse
|
20
|
Xu X, Wang S, Wang H, Hu W, Han L, Chen B, Li X, Wang H, Li H, Gao X, Guo D, Yang W. Simultaneous quantitative assays of 15 ginsenosides from 119 batches of ginseng samples representing 12 traditional Chinese medicines by ultra-high performance liquid chromatography coupled with charged aerosol detector. J Chromatogr A 2021; 1655:462504. [PMID: 34487881 DOI: 10.1016/j.chroma.2021.462504] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 08/16/2021] [Accepted: 08/25/2021] [Indexed: 11/25/2022]
Abstract
Despite the extensive consumption of ginseng, precise quality control of different ginseng products is highly challenging due to the containing of ginsenosides in common for different Panax species or different parts (e.g. root, leaf, and flower) of a same species. Herein we performed a comparative investigation of diverse ginseng products by simultaneously assaying 15 saponins (notoginsenoside R1, ginsenosides Rg1, -Re, -Rf, -Ra2, -Rb1, -Rc, -Ro, -Rb2, -Rb3, -Rd, 20(R)-ginsenoside Rg3, 24(R)-pseudoginsenoside F11, chikusetsusaponins IV, and -IVa) using an ultra-high-performance liquid chromatography/charged aerosol detector (UHPLC-CAD) approach. Twelve Panax-derived ginseng products (involving P. ginseng root, P. quinquefolius root, P. notoginseng root, Red ginseng, P. ginseng leaf, P. quinquefolius leaf, P. notoginseng leaf, P. ginseng flower, P. quinquefolius flower, P. notoginseng flower, P. japonicus root, and P. japonicus var. major root) were considered. Benefiting from the condition optimization, the baseline resolution of 15 ginsenosides was achieved on a CORTECS UPLC Shield RP18 column. This method was validated as specific, precise (0.81-1.94% intra-day variation; 0.86-2.35% inter-day variation), and accurate (recovery: 90.73-107.5%), with good linearity (R2 > 0.999), high sensitivity (limit of detection: 0.02-0.21 μg; limit of quantitation: 0.04-0.42 μg) and sample stability (1.49-4.74%). Its application to 119 batches of ginseng samples unveiled vital information enabling the authentication of these different ginseng products. Detection of ginsenosides by CAD exhibited superiority over UV in sensitivity and the ability to monitor chromophore-free structures. Large-scale comparative studies by quantifying multiple markers provide methodological reference to the precise quality control of herbal medicine.
Collapse
Affiliation(s)
- Xiaoyan Xu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai, Tianjin 301617, China
| | - Simiao Wang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai, Tianjin 301617, China
| | - Huimin Wang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai, Tianjin 301617, China
| | - Wandi Hu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai, Tianjin 301617, China
| | - Lifeng Han
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai, Tianjin 301617, China
| | - Boxue Chen
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai, Tianjin 301617, China
| | - Xue Li
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai, Tianjin 301617, China
| | - Hongda Wang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai, Tianjin 301617, China
| | - Huifang Li
- Thermo Fisher Scientific, Building #6, No.27, Xinjinqiao Road, Pudong, Shanghai 201206, China
| | - Xiumei Gao
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai, Tianjin 301617, China
| | - Dean Guo
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai, Tianjin 301617, China.
| | - Wenzhi Yang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai, Tianjin 301617, China.
| |
Collapse
|
21
|
Infantes-Garcia M, Verkempinck S, Guevara-Zambrano J, Hendrickx M, Grauwet T. Development and validation of a rapid method to quantify neutral lipids by NP-HPLC-charged aerosol detector. J Food Compost Anal 2021. [DOI: 10.1016/j.jfca.2021.104022] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
22
|
Liu G, Zhu B, Wang F, Ren X, Li Y, Zhang F, Wang J. Quantitative analysis of impurities in leucomycin bulk drugs and tablets: A high performance liquid chromatography-charged aerosol detection method and its conversion to ultraviolet detection method. J Pharm Biomed Anal 2021; 202:114148. [PMID: 34052548 DOI: 10.1016/j.jpba.2021.114148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 03/13/2021] [Accepted: 05/15/2021] [Indexed: 11/24/2022]
Abstract
Toxic impurities were found in leucomycin and its preparation, however the content determination of impurities was challengeable due to the lacking of their reference standards. In this study, we developed high-performance liquid chromatography method coupled with charged aerosol detection (CAD) for the quantification of related substance of leucomycin (kitasamycin) bulk drugs and tablets, however, the CAD was not yet popular. In order to carry out quantitation work conveniently in the laboratory without CAD instruments, a high-performance liquid chromatography method coupled with ultraviolet (UV) detection was developed with the assistant of the HPLC-CAD results. The relative response of impurities on CAD chromatogram was used for guiding the establishment of HPLC-UV method, which could achieve the quantitation task in the absence of impurity reference standards. The developed HPLC-UV method was validated according to the ICH guideline and showed good precision, reproducibility and linearity with determination coefficient higher than 0.9999. The limit of detection and quantitation were 0.3 and 0.5 μg mL-1, respectively. The recoveries were 92.9 %-101.5 % at the spiked concentration levels of 0.1 %, 0.8 %, 1.0 and 1.2 % with relative standard deviations (RSDs, n = 3) lower than 2.0 %. Finally, the developed HPLC-CAD and -UV methods were compared by the determination of impurities in several batches of leucomycin bulk drugs and tablets. The results demonstrated that the developed HPLC-UV method was simple and reliable. This study developed methods to quantify the related substance in leucomycin and tablets, and discussed a strategy of the conversion of HPLC-CAD method to HPLC-UV method. The developed methods could be considered for implementation into pharmacopeial monographs in the future.
Collapse
Affiliation(s)
- Guijun Liu
- Green Pharmaceutical Collaborative Innovation Center of Yangtze River Delta region, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Bingqi Zhu
- Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Fan Wang
- School of Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Xiaojuan Ren
- Green Pharmaceutical Collaborative Innovation Center of Yangtze River Delta region, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Yasheng Li
- Green Pharmaceutical Collaborative Innovation Center of Yangtze River Delta region, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Fengmei Zhang
- Key Laboratory for Core Technology of Generic Drug Evaluation National Medical Product Administration, Zhejiang Institute for Food and Drug Control, Hangzhou, 310052, China
| | - Jian Wang
- Green Pharmaceutical Collaborative Innovation Center of Yangtze River Delta region, Zhejiang University of Technology, Hangzhou, 310014, China; Key Laboratory for Core Technology of Generic Drug Evaluation National Medical Product Administration, Zhejiang Institute for Food and Drug Control, Hangzhou, 310052, China.
| |
Collapse
|
23
|
Qiu X, Zuo L, Sun S, Zhao X, Xu S, Zhu Z, Zhao T, Sun Z, Yao J, Shan G. Impurity profiling of Compound Amino Acid Injection (6AA) using ion-pair high performance liquid chromatography coupled with corona-charged aerosol detection and high resolution mass spectrometry. J Pharm Biomed Anal 2021; 201:114099. [PMID: 33957362 DOI: 10.1016/j.jpba.2021.114099] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/20/2021] [Accepted: 04/21/2021] [Indexed: 12/30/2022]
Abstract
The complex industrial production process of amino acids (AAs) leads to the existence of a certain amount of impurities in Compound Amino Acid Injection (6AA). It is difficult to obtain its comprehensive and systematic impurity profile using conventional ultraviolet (UV) detectors due to lack of a suitable chromophore in the structures of AAs and their impurities. In our study, a universal ion-pair high performance liquid chromatography (HPLC) method combined with high resolution mass spectrometer (HRMS) and charged aerosol detection (CAD) was developed to identify and determine the content of impurities in Compound Amino Acid Injection (6AA), respectively. After optimizing the content of trifluoroacetic acid (TFA) and heptafluorobutyric acid (HFBA) in the mobile phase on a C18 AQ column, HPLC-CAD method was developed and nine unknown impurities were detected. These impurities were successfully identified using HPLC coupled with orbitrap mass spectrometry and confirmed with their reference substances. The CAD parameters setting was optimized to improve the sensitivity and linearity of the methods before the developed method was validated. The results of validation reflected that the limit of detection (LOD) was approximately 2 ng (corresponding to approximately 0.02 % of L-isoleucine in injection). Under the optimized power function value (PFV) of CAD, the linear range of each impurity was 1 ∼ 200 μg mL-1 (the linear range of one of the impurities with higher content was 2 ∼ 400 μg mL-1) with coefficients of determination (R2) greater than 0.998. The recovery rates for nine impurities were 93.37 % ∼ 110.23 %. This study made full use of the qualitative functions of HRMS and the versatility of CAD, revealing possible impurities in the 6AA injection, which could provide reference for the safety research of it.
Collapse
Affiliation(s)
- Xiaodan Qiu
- Institute of Medicinal Biotechnology, Peking Union Medical College & Chinese Academy of Medical Sciences, No. 1, Tian Tan Xi Li, 100050, Beijing, PR China
| | - Limin Zuo
- Institute of Medicinal Biotechnology, Peking Union Medical College & Chinese Academy of Medical Sciences, No. 1, Tian Tan Xi Li, 100050, Beijing, PR China
| | - Shengnan Sun
- Institute of Medicinal Biotechnology, Peking Union Medical College & Chinese Academy of Medical Sciences, No. 1, Tian Tan Xi Li, 100050, Beijing, PR China
| | - Xuejia Zhao
- Institute of Medicinal Biotechnology, Peking Union Medical College & Chinese Academy of Medical Sciences, No. 1, Tian Tan Xi Li, 100050, Beijing, PR China
| | - Shijie Xu
- Institute of Medicinal Biotechnology, Peking Union Medical College & Chinese Academy of Medical Sciences, No. 1, Tian Tan Xi Li, 100050, Beijing, PR China
| | - Zhiling Zhu
- Institute of Medicinal Biotechnology, Peking Union Medical College & Chinese Academy of Medical Sciences, No. 1, Tian Tan Xi Li, 100050, Beijing, PR China
| | - Ting Zhao
- Institute of Medicinal Biotechnology, Peking Union Medical College & Chinese Academy of Medical Sciences, No. 1, Tian Tan Xi Li, 100050, Beijing, PR China
| | - Zhonghao Sun
- Institute of Medicinal Biotechnology, Peking Union Medical College & Chinese Academy of Medical Sciences, No. 1, Tian Tan Xi Li, 100050, Beijing, PR China
| | - Jing Yao
- China National Institutes for Food and Drug Control, No. 2, Tian Tan Xi Li, 100050, Beijing, PR China.
| | - Guangzhi Shan
- Institute of Medicinal Biotechnology, Peking Union Medical College & Chinese Academy of Medical Sciences, No. 1, Tian Tan Xi Li, 100050, Beijing, PR China.
| |
Collapse
|
24
|
Shelor CP, Yoshikawa K, Dasgupta PK. Automated Programmable Generation of Broad pH Range Volatile Ionic Eluents for Liquid Chromatography. Anal Chem 2021; 93:5442-5450. [PMID: 33759496 DOI: 10.1021/acs.analchem.0c05089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Many of the universal detectors in liquid chromatography, including mass spectrometry, must completely volatilize the chromatographic eluent first before further processing and detection of the analytes. A basic requirement is that the eluent does not contain a nonvolatile dissolved component. However, separation of biomolecules must be conducted in mostly aqueous media of compatible pH and ionic strength if their biological activity must survive the separation process. Combinations of ammonia with acetic and formic acids are commonly used as eluent for this purpose but generally maximum concentrations that can be tolerated are relatively low. Further, buffering is good only over a limited pH range. We describe a system where the eluent is generated in an automated pressure-programmed manner from high-purity gaseous NH3 and CO2 through gas-permeable membrane devices. This can be aided by the prior presence of formic/acetic acids in the mobile phase to extend the attainable low pH limit. We outline the fundamental pH, ionic strength, and buffer intensity considerations and demonstrate the application of such eluents in the separation of amino acids, proteins, and monoclonal antibodies. We also demonstrate the use of dissolved CO2 as an ion-pairing agent in the separation of chiral amines.
Collapse
Affiliation(s)
- Charles Phillip Shelor
- Department of Chemistry and Biochemistry, University of Texas at Arlington, Arlington, Texas 76019-0065, United States
| | - Kenji Yoshikawa
- Department of Chemistry and Biochemistry, University of Texas at Arlington, Arlington, Texas 76019-0065, United States
| | - Purnendu K Dasgupta
- Department of Chemistry and Biochemistry, University of Texas at Arlington, Arlington, Texas 76019-0065, United States
| |
Collapse
|
25
|
De Vos J, Stoll D, Buckenmaier S, Eeltink S, Grinias JP. Advances in ultra-high-pressure and multi-dimensional liquid chromatography instrumentation and workflows. ANALYTICAL SCIENCE ADVANCES 2021; 2:171-192. [PMID: 38716447 PMCID: PMC10989561 DOI: 10.1002/ansa.202100007] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 03/01/2021] [Indexed: 11/17/2024]
Abstract
The present contribution discusses recent advances in ultra-high-pressure liquid chromatography (UHPLC) and multi-dimensional liquid chromatography (MDLC) technology. First, new developments in UHPLC column technology and system design are highlighted. The latter includes a description of a novel injector concept enabling method speed-up, emerging detectors, and instrument diagnostics approaches. Next, online MDLC workflows are reviewed and advances in modulation technology are highlighted. Finally, key applications published in 2020 are reviewed.
Collapse
Affiliation(s)
- Jelle De Vos
- Department of Chemical EngineeringVrije Universiteit Brussel (VUB)BrusselsBelgium
| | - Dwight Stoll
- Department of ChemistryGustavus Aldophus CollegeSaint PeterMinnesotaUSA
| | | | - Sebastiaan Eeltink
- Department of Chemical EngineeringVrije Universiteit Brussel (VUB)BrusselsBelgium
| | - James P. Grinias
- Department of Chemistry and BiochemistryRowan UniversityGlassboroNew JerseyUSA
| |
Collapse
|
26
|
Comprehensive Investigation on Ginsenosides in Different Parts of a Garden-Cultivated Ginseng Root and Rhizome. Molecules 2021; 26:molecules26061696. [PMID: 33803599 PMCID: PMC8003075 DOI: 10.3390/molecules26061696] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 03/05/2021] [Accepted: 03/15/2021] [Indexed: 02/04/2023] Open
Abstract
Background: Ginseng is widely used as herb or food. Different parts of ginseng have diverse usages. However, the comprehensive analysis on the ginsenosides in different parts of ginseng root is scarce. Methods: An ultra-high-performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UHPLC-Q-TOF/MS) combined with UNIFI informatics platform and ultra-high-performance liquid chromatography-charged aerosol detection (UHPLC-CAD) were employed to evaluate the different parts of cultivated ginseng root. Results: 105 ginsenosides including 16 new compounds were identified or tentatively characterized. 22 potential chemical markers were identified, 20, 17, and 19 for main root (MR) and fibrous root (FR), main root (MR) and branch root (BR), and main root (MR) and rhizome (RH), respectively. The relative contents of Re, Rb1, 20(R)-Rh1, Rd, and Rf were highest in FR. The relative content of Rg1 was highest in RH. The total relative content of pharmacopoeia indicators Rg1, Re, and Rb1 was highest in FR. Conclusion: The differences among these parts were the compositions and relative contents of ginsenosides. Under our research conditions, the peak area ratio of Rg1 and Re could distinguish the MR and FR samples. Fibrous roots showed rich ingredients and high ginsenosides contents which should be further utilized.
Collapse
|
27
|
Haidar Ahmad IA, Blasko A, Wang H, Lu T, Mangion I, Regalado EL. Charged aerosol detection in early and late-stage pharmaceutical development: selection of regressionmodels at optimum power function value. J Chromatogr A 2021; 1641:461997. [PMID: 33676111 DOI: 10.1016/j.chroma.2021.461997] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Revised: 02/05/2021] [Accepted: 02/08/2021] [Indexed: 10/22/2022]
Abstract
In recent years, the use of quantitative liquid chromatography (LC) coupled charged aerosol detection (CAD) for poor UV absorbing analytes in multicomponent mixtures has grown exponentially across academic and industrial sectors. The ballpark of previous LC-CAD reports is focused on practical applications, as well as optimization of critical parameters such as: response dependencies on temperature, nebulization process, analyte volatility, and mobile-phase composition. However, straightforward approaches to deal with the characteristic nonlinear response of CAD still scarce. A highly overlooked parameter is the power function value (PFV), whose optimization enables a detection signal that is more linear with higher signal-to-noise ratio (S/N) and lower relative standard deviation (RSD) of area counts. Herein, a systematic investigation of different regression models (log-log, first-and second-degree polynomial) by both interpolation and extrapolation process in conjunction with PFV optimization throughout the development of LC-CAD assays is reported. The accuracy of the results via interpolation is always good (< 5%) when operating in the vicinity of the optimum PFV regardless the regression model choice. On the contrary, extrapolation process only worked when applying log-log regression at the optimum PFV (accuracy <5%). This outcome indicates that a first-order regression via interpolation can be a safe and simple choice for quantitative LC-CAD in highly regulated laboratories (GLP, GMP, etc.). Whereas a straightforward extrapolation combined with log-log regression can enable the deployment of high-throughput LC-CAD assays, especially but not limited to laboratories where the synthetic process route is undergoing rapid change and optimization (medicinal chemistry, discovery, biocatalysis, process chemistry, etc.). This approach is crucial in developing quantitative LC-CAD assays for poor UV absorbing pharmaceuticals that are sensitive, precise, accurate and robust across early and late-stage pharmaceutical development.
Collapse
Affiliation(s)
- Imad A Haidar Ahmad
- Analytical Research & Development, MRL, Merck & Co., Inc., Rahway, NJ 07065, USA.
| | - Andrei Blasko
- California Life Sciences Institute, FAST Advisory Program, South San Francisco, CA, USA
| | - Heather Wang
- Analytical Research & Development, MRL, Merck & Co., Inc., Rahway, NJ 07065, USA
| | - Tian Lu
- Analytical Research & Development, MRL, Merck & Co. Inc., West Point, PA 19486, USA
| | - Ian Mangion
- Analytical Research & Development, MRL, Merck & Co., Inc., Rahway, NJ 07065, USA
| | - Erik L Regalado
- Analytical Research & Development, MRL, Merck & Co., Inc., Rahway, NJ 07065, USA.
| |
Collapse
|
28
|
Pawellek R, Muellner T, Gamache P, Holzgrabe U. Power function setting in charged aerosol detection for the linearization of detector response - optimization strategies and their application. J Chromatogr A 2020; 1637:461844. [PMID: 33445033 DOI: 10.1016/j.chroma.2020.461844] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 12/18/2020] [Accepted: 12/21/2020] [Indexed: 12/26/2022]
Abstract
Charged aerosol detection (CAD) is an universal technique in liquid chromatography that is increasingly used for the quality control of drugs. Consequently, it has found its way into compendial monographs promoted by its simple and robust application. However, the response of CAD is inherently nonlinear due to its principle of function. Thus, easy and rapid linearization procedures, in particular regarding compendial applications, are highly desirable. One effective approach to linearize the detector's signal makes use of the built-in power function value (PFV) setting of the instrument. The PFV is basically a multiplication factor to the power law exponent of the equation describing the CAD's response, thereby altering the detector's signal output to optimize the quasi-linear range of the response curve. The experimental optimization of the PFV for a series of analytes is a time-consuming process, limiting the practicability of this approach. Here, two independent approaches for the determination of the optimal PFV based on an empirical model and a mathematical transformation in each case, are evaluated. Both approaches can be utilized to predict the optimal PFV for each analyte solely based on the experimental results of a series of calibration standards obtained at a single PFV. The approaches were applied to the HPLC-UV-CAD impurity analysis of the drug gabapentin to improve the observed nonlinear response of the impurities in the range of interest. The predicted optimal PFV of both approaches were in good agreement with the experimentally obtained optimal PFV of the analytes. As a result, the accuracy of the method was significantly improved when using the optimal PFV (90 - 105% versus 81 - 115% recovery rate for quantitation by either single-point calibration or linear regression) for the majority of the analytes. The final method with a PFV adjusted to 1.30 was validated with respect to ICH guideline Q2(R1).
Collapse
Affiliation(s)
- Ruben Pawellek
- University of Würzburg, Institute for Pharmacy and Food Chemistry, 97074 Würzburg, Germany
| | | | - Paul Gamache
- Thermo Fisher Scientific, Chelmsford, MA 01824, USA
| | - Ulrike Holzgrabe
- University of Würzburg, Institute for Pharmacy and Food Chemistry, 97074 Würzburg, Germany.
| |
Collapse
|
29
|
Weber F, Rahnfeld L, Luciani P. Analytical profiling and stability evaluation of liposomal drug delivery systems: A rapid UHPLC-CAD-based approach for phospholipids in research and quality control. Talanta 2020; 220:121320. [DOI: 10.1016/j.talanta.2020.121320] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 06/19/2020] [Accepted: 06/22/2020] [Indexed: 01/26/2023]
|
30
|
Development of a comprehensive method combining UHPLC-CAD fingerprint, multi-components quantitative analysis for quality evaluation of Zishen Yutai Pills: A step towards quality control of Chinese patent medicine. J Pharm Biomed Anal 2020; 191:113570. [DOI: 10.1016/j.jpba.2020.113570] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 08/10/2020] [Accepted: 08/12/2020] [Indexed: 12/24/2022]
|
31
|
Liu G, Zhu B, Ren X, Wang J. Universal response method for the quantitative analysis of multi-components in josamycin and midecamycin using liquid chromatography coupled with charged aerosol detector. J Pharm Biomed Anal 2020; 192:113679. [PMID: 33120309 DOI: 10.1016/j.jpba.2020.113679] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 10/05/2020] [Accepted: 10/05/2020] [Indexed: 02/06/2023]
Abstract
Josamycin and midecamycin are consisted of three groups of components with different ultraviolet maximum absorption wavelengths (λmax), which are 231 nm, 280 nm and 205 nm. The quantitative analysis of all these components is challengeable due to the absence of the respective reference substances. To address this problem, universal and reliable methods were developed using high performance liquid chromatography coupled with charged aerosol detector (HPLC-CAD) for the quantitative analysis of components in josamycin and midecamycin. The chromatographic conditions and CAD parameters setting were optimized. Subsequently, the components were identified using HPLC coupled with ion trap/time-of-flight mass spectrometry (IT/TOF MS). The developed methods were validated by assessing linearity, limit of quantitation (LOQ), accuracy, precision and robustness. Good separations were achieved for all components and the adjustment of the filter valve and power function value efficiently improved sensitivity. The developed methods were more comprehensive than current HPLC-UV method. The experimental results demonstrated good linearity with coefficients of determination (R2) greater than 0.999 in the range of 0.002-0.30 mg mL-1. The limits of detection (LOD) were ranging from 1.8 to 2.0 μg·mL-1. The intra-day and inter-day RSD values were less than 2.0 % (n = 6) and 5.6 % (n = 9) respectively. The recoveries were 95.0 %-124.0 % at the spiked concentration levels of 0.05 %, 0.50 %, 0.10 % and 2.5 % with relative standard deviations (RSDs, n = 3) lower than 2.0 %. Finally, the developed methods were successfully applied to the quantitative analysis of minor components and used main components (leucomycin A3 and midecamycin A1) as alternative reference substance of minor components. The overall results demonstrated that the HPLC-CAD was a good alternative for the quantitative analysis of multi-components in 16-membered macrolides.
Collapse
Affiliation(s)
- Guijun Liu
- Zhejiang University of Technology, Hangzhou 310014, China
| | - Bingqi Zhu
- Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Xiaojuan Ren
- Zhejiang University of Technology, Hangzhou 310014, China
| | - Jian Wang
- Zhejiang University of Technology, Hangzhou 310014, China; Key Laboratory for Core Technology of Generic Drug Evaluation National Medical Product Administration, Zhejiang Institute for Food and Drug Control, Hangzhou 310052, China.
| |
Collapse
|