1
|
Wolter M, Maalouf M, Janek M, Knappe C, Kramer M, Lämmerhofer M. Triphenyl-Modified Mixed-Mode Stationary Phases With and Without Embedded Ion-Exchange Sites for High-Performance Liquid Chromatography. J Sep Sci 2024; 47:e70058. [PMID: 39716842 DOI: 10.1002/jssc.70058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 12/02/2024] [Accepted: 12/06/2024] [Indexed: 12/25/2024]
Abstract
The present work reports on the preparation, characterization, and evaluation of a set of novel triphenyl-modified silica-based stationary phases without and with embedded ion-exchange sites for mixed-mode liquid chromatography. The three synthesized triphenyl phases differed in additionally incorporated ion-exchange sites. In one embodiment, allyltriphenylsilane was bonded to thiol-modified silica by thiol-ene click reaction, leading to particles with no ion-exchange sites. A second stationary phase was obtained by thiol-yne click reaction of thiol silica with 2-propinyl-triphenylphosphonium bromide, yielding a strong anion-exchanger (SAX). A third stationary phase was obtained from this SAX phase by the oxidation of residual thiols to sulfonic acid moieties, leading to a zwitterionic surface. All synthesized materials were subjected to elemental analysis, 13C and 29Si solid-state cross-polarization/magic angle spinning nuclear magnetic resonance (CP/MAS NMR) spectroscopy analysis, and pH-dependent ζ-potential determinations via electrophoretic light scattering. The prepared stationary phases were chromatographically evaluated under classical reversed-phase, ion-exchange, and hydrophilic interaction chromatography conditions and classified within a set of commercially available columns by principal component analysis of retention factors. Finally, the obtained stationary phases were applied for biomolecule separations (e.g., teicoplanin and siRNA patisiran). These LC tests proved the orthogonality of the three prepared stationary phases and indicated possible fields of application.
Collapse
Affiliation(s)
- Marc Wolter
- Institute of Pharmaceutical Sciences, Pharmaceutical (Bio-)Analysis, University of Tübingen, Tübingen, Germany
| | - Mirna Maalouf
- Institute of Pharmaceutical Sciences, Pharmaceutical (Bio-)Analysis, University of Tübingen, Tübingen, Germany
| | - Mateusz Janek
- Institute of Pharmaceutical Sciences, Pharmaceutical (Bio-)Analysis, University of Tübingen, Tübingen, Germany
| | - Cornelius Knappe
- Institute of Pharmaceutical Sciences, Pharmaceutical (Bio-)Analysis, University of Tübingen, Tübingen, Germany
| | - Markus Kramer
- Institute of Organic Chemistry, University of Tübingen, Tübingen, Germany
| | - Michael Lämmerhofer
- Institute of Pharmaceutical Sciences, Pharmaceutical (Bio-)Analysis, University of Tübingen, Tübingen, Germany
| |
Collapse
|
2
|
Wolter M, Barth C, Maalouf M, Kramer M, Sievers-Engler A, Lämmerhofer M. Wide-pore fully porous mixed-mode octyl/pyridyl-bonded silica material with pH-dependent surface charge reversal for high-performance hydrophobic charge-induction chromatography of proteins. J Chromatogr A 2024; 1737:465429. [PMID: 39426258 DOI: 10.1016/j.chroma.2024.465429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 10/05/2024] [Accepted: 10/07/2024] [Indexed: 10/21/2024]
Abstract
In an attempt to overcome silanophilic interactions like observed on popular reversed-phase butyl‑bonded silica stationary phases in protein HPLC, a mixed-mode stationary phase based on wide pore silica (3 µm, 300 Å) was prepared by co-immobilization of octyl and 2-pyridylethyl ligands. The surface modification was performed by a new approach using synthesized functional silatranes of the above ligands and prewetted silica. It allowed to generate a dense polymeric siloxane layer on the silica surface. Butyl-bonded silica and octyl/3-aminopropyl-bonded mixed-mode silica phases were prepared for comparison. The modified silicas were subsequently characterized by elemental analysis regarding ligand densities, by solid-state 29Si and 13C cross polarization/magic angle spinning nuclear magnetic resonance spectroscopy for confirming the surface-bonded structure, and by pH-dependent ζ-potential measurements via electrophoretic light scattering providing net surface charge information at distinct pH values. While the classical butyl‑bonded stationary phase revealed negative ζ-potential over the entire pH range investigated (pH 3.5-9.5) due to residual silanols and the mixed-mode octyl/3-aminopropyl-bonded silica positive ζ-potential over the entire pH range, pH-dependent charge reversal was observed at approximately pH 5.5 for the octyl/pyridyl-bonded stationary phase. Then, a test set of proteins differing in hydrophobicities and isoelectric points was employed to evaluate the retention characteristics of all three synthesized stationary phases over the pH range of 3 to 7.5 by acetonitrile-gradient elution reversed-phase HPLC. Under acidic conditions (pH 3) the mixed-mode phases octyl/pyridyl-silica and octyl/aminopropyl-silica showed reduced retention and improved peak shapes due to repulsive interactions preventing silanophilic interactions, while protein separations by their hydrophobicities were achieved (repulsive charge-assisted protein RPLC). Finally, the prepared novel mixed-mode octyl/pyridyl-bonded stationary phase was evaluated in hydrophobic charge induction chromatography mode for protein separation of the same test set. Instead of an organic modifier gradient, elution was enforced by a pH gradient from almost neutral to acidic pH at constant organic modifier content of 10 %. This chromatographic mode showed orthogonal retention characteristics and reversed elution order compared to above organic gradient RP-HPLC. In addition, significantly less organic solvent was used under these conditions, classifying it as a green protein LC technology.
Collapse
Affiliation(s)
- Marc Wolter
- Institute of Pharmaceutical Sciences, Pharmaceutical (Bio-)Analysis, University of Tübingen, Auf der Morgenstelle 8, Tübingen 72076, Germany
| | - Christoph Barth
- Institute of Pharmaceutical Sciences, Pharmaceutical (Bio-)Analysis, University of Tübingen, Auf der Morgenstelle 8, Tübingen 72076, Germany
| | - Mirna Maalouf
- Institute of Pharmaceutical Sciences, Pharmaceutical (Bio-)Analysis, University of Tübingen, Auf der Morgenstelle 8, Tübingen 72076, Germany
| | - Markus Kramer
- Institute of Organic Chemistry, University of Tübingen, Auf der Morgenstelle 18, Tübingen 72076, Germany
| | - Adrian Sievers-Engler
- Institute of Pharmaceutical Sciences, Pharmaceutical (Bio-)Analysis, University of Tübingen, Auf der Morgenstelle 8, Tübingen 72076, Germany
| | - Michael Lämmerhofer
- Institute of Pharmaceutical Sciences, Pharmaceutical (Bio-)Analysis, University of Tübingen, Auf der Morgenstelle 8, Tübingen 72076, Germany.
| |
Collapse
|
3
|
Ibrahim AE, El Gohary NA, Aboushady D, Samir L, Karim SEA, Herz M, Salman BI, Al-Harrasi A, Hanafi R, El Deeb S. Recent advances in chiral selectors immobilization and chiral mobile phase additives in liquid chromatographic enantio-separations: A review. J Chromatogr A 2023; 1706:464214. [PMID: 37506464 DOI: 10.1016/j.chroma.2023.464214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 07/10/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023]
Abstract
For decades now, the separation of chiral enantiomers of drugs has been gaining the interest and attention of researchers. In 1991, the first guidelines for development of chiral drugs were firstly released by the US-FDA. Since then, the development in chromatographic enantioseparation tools has been fast and variable, aiming at creating a suitable environment where the physically and chemically identical enantiomers can be separated. Among those tools, the immobilization of chiral selectors (CS) on different stationary phases and the chiral mobile phase additives (CMPA) which have been progressed and studied extensively. This review article highlights the major advances in immobilization of CS together with their different recognition mechanisms as well as CMPA as a cheaper and successful alternative for chiral stationary phases. Moreover, the role of molecular modeling tool as a pre-step in the choice of CS for evaluating possible interactions with different ligands has been pointed up. Illustrations of reported methods and updates for immobilized CS and CMPA have been included.
Collapse
Affiliation(s)
- Adel Ehab Ibrahim
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Port-Said University, Port-Said 42511, Egypt; Natural and Medical Sciences Research Center, University of Nizwa, P.O. Box 33, Birkat Al Mauz, Nizwa 616, Sultanate of Oman
| | - Nesrine Abdelrehim El Gohary
- Pharmaceutical Chemistry Department, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo 11835, Egypt
| | - Dina Aboushady
- Pharmaceutical Chemistry Department, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo 11835, Egypt
| | - Liza Samir
- Pharmaceutical Chemistry Department, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo 11835, Egypt
| | - Shereen Ekram Abdel Karim
- Pharmaceutical Chemistry Department, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo 11835, Egypt
| | - Magy Herz
- Pharmaceutical Chemistry Department, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo 11835, Egypt
| | - Baher I Salman
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut, 71524, Egypt
| | - Ahmed Al-Harrasi
- Natural and Medical Sciences Research Center, University of Nizwa, P.O. Box 33, Birkat Al Mauz, Nizwa 616, Sultanate of Oman
| | - Rasha Hanafi
- Pharmaceutical Chemistry Department, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo 11835, Egypt
| | - Sami El Deeb
- Institute of Medicinal and Pharmaceutical Chemistry, Technische Universität Braunschweig, Braunschweig 38092, Germany; Institute of Pharmacy, Freie Universität Berlin, Königin-Luise-Str. 2+4, 14195 Berlin, Germany.
| |
Collapse
|
4
|
Mousavimanesh Z, Shahnani M, Faraji-Shovey A, Bararjanian M, Sadr AS, Ghassempour A, Salehi P. A new chiral stationary phase based on noscapine: Synthesis, enantioseparation, and docking study. Chirality 2022; 34:1371-1382. [PMID: 35778873 DOI: 10.1002/chir.23488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 05/28/2022] [Accepted: 06/12/2022] [Indexed: 11/07/2022]
Abstract
Noscapine is an isolated compound from the opium poppy, with distinctive chiral structure and chemistry, interacts with other compounds due to having multiple π-acceptors, hydrogen bond acceptors, and ionic sites. Therefore, it has promising applicability for the enantioselective separation of a wide range of polar, acidic, basic, and neutral compounds. A new noscapine derivative chiral stationary phase (ND-CSP) has been synthesized by consecutive N-demethylation, reduction, and N-propargylation of noscapine followed by attachment of a solid epoxy-functionalized silica bed through the 1,3-dipolar Huisgen cycloaddition. The noscapine derivative-based stationary phase provides a considerable surface coverage, which is greater than some commercial CSPs and can validate better enantioresolution performance. The major advantages inherent to this chiral selector are stability, reproducibility after more than 200 tests, and substantial loading capacity. The characterization by Fourier transform infrared (FTIR) spectroscopy and elemental analysis indicated successful functionalization of the silica surface. Chromatographic method conditions like flow rate and mobile phase composition for enantioseparation of various compounds such as warfarin, propranolol, mandelic acid, and a sulfanilamide derivative were optimized. Comparing the experimental results with docking data revealed a clear correlation between the calculated binding energy of ND-CSP and each enantiomer with the resolution of enantiomer peaks.
Collapse
Affiliation(s)
- Zohreh Mousavimanesh
- Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, Tehran, Iran
| | - Mostafa Shahnani
- Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, Tehran, Iran
| | | | - Morteza Bararjanian
- Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, Tehran, Iran
| | - Ahmad Shahir Sadr
- School of Biological Sciences, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran
- Bioinformatics Research Center, Sabzevar University of Medical Sciences, School of Medicine, Sabzevar, Iran
| | - Alireza Ghassempour
- Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, Tehran, Iran
| | - Peyman Salehi
- Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, Tehran, Iran
| |
Collapse
|
5
|
Wolter M, Geibel C, Olfert M, Su M, Bicker W, Kramer M, Lindner W, Lämmerhofer M. Development and chromatographic exploration of stable-bonded crosslinked amino silica against classical amino phases. J Sep Sci 2022; 45:3286-3300. [PMID: 35652610 DOI: 10.1002/jssc.202200268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/08/2022] [Accepted: 05/19/2022] [Indexed: 11/11/2022]
Abstract
The present work reports on a novel stable-bonded amino silica stationary phase obtained by crosslinking of surface aminopropyl moieties using triglycidyl isocyanurate. The obtained crosslinked amido-amino network silica material exhibited superior hydrolytic stability compared to classical 3-aminopropyl phases and showed, inter alia, excellent separation of nine therapeutically effective sulfonamides in hydrophilic interaction / weak anion exchange chromatography elution mode. Additionally, the separation of carbohydrates was investigated under classical hydrophilic interaction chromatography conditions as well proving the suitability of the novel phase for such applications. For the evaluation of the hydrolytic stability the prepared material, as well as two commercially available benchmark columns and a set of in-house synthesized amino modified materials, were exposed to harsh aqueous mobile phase conditions for in total 50 hours at elevated temperature. In this context, the materials were examined by elemental analysis, (13 C and 29 Si cross-polarization/magic angle spinning) solid-state NMR and a chromatographic test before and subsequent to the exposure to these stress conditions. Lastly, the new stationary phase was classified in comparison to a set of commercially available stationary phases by principal component analysis of resultant retention factors gained from chromatographic standard tests. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Marc Wolter
- Institute of Pharmaceutical Sciences, Pharmaceutical (Bio-)Analysis, University of Tübingen, Auf der Morgenstelle 8, 72076, Tübingen, Germany
| | - Christian Geibel
- Institute of Pharmaceutical Sciences, Pharmaceutical (Bio-)Analysis, University of Tübingen, Auf der Morgenstelle 8, 72076, Tübingen, Germany
| | - Matthias Olfert
- Institute of Pharmaceutical Sciences, Pharmaceutical (Bio-)Analysis, University of Tübingen, Auf der Morgenstelle 8, 72076, Tübingen, Germany
| | - Min Su
- Institute of Pharmaceutical Sciences, Pharmaceutical (Bio-)Analysis, University of Tübingen, Auf der Morgenstelle 8, 72076, Tübingen, Germany
| | - Wolfgang Bicker
- Institute of Analytical Chemistry, University of Vienna, Währinger Straße 38, Vienna, 1090, Austria.,FTC - Forensic-Toxicological Laboratory, Gaudenzdorfer Gürtel 43-45, Vienna, 1120, Austria
| | - Markus Kramer
- Institute of Organic Chemistry, University of Tübingen, Auf der Morgenstelle 18, 72076, Tübingen, Germany
| | - Wolfgang Lindner
- Institute of Analytical Chemistry, University of Vienna, Währinger Straße 38, Vienna, 1090, Austria
| | - Michael Lämmerhofer
- Institute of Pharmaceutical Sciences, Pharmaceutical (Bio-)Analysis, University of Tübingen, Auf der Morgenstelle 8, 72076, Tübingen, Germany
| |
Collapse
|
6
|
Comprehensive profiling of conjugated fatty acid isomers and their lipid oxidation products by two-dimensional chiral RP×RP liquid chromatography hyphenated to UV- and SWATH-MS-detection. Anal Chim Acta 2022; 1202:339667. [DOI: 10.1016/j.aca.2022.339667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 02/25/2022] [Accepted: 02/27/2022] [Indexed: 11/23/2022]
|
7
|
Zhang JH, Xie SM, Yuan LM. Recent progress in the development of chiral stationary phases for high-performance liquid chromatography. J Sep Sci 2021; 45:51-77. [PMID: 34729907 DOI: 10.1002/jssc.202100593] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 10/25/2021] [Accepted: 10/27/2021] [Indexed: 12/20/2022]
Abstract
Separations and analyses of chiral compounds are important in many fields, including pharmaceutical production, preparation of chemical intermediates, and biochemistry. High-performance liquid chromatography using a chiral stationary phase is regarded as one of the most valuable methods for enantiomeric separation and analysis because it is highly efficient, is broadly applicable, and has powerful separation capability. The focus for development of this method is the identification of novel chiral stationary phases with superior recognition performance and good stability. The present article reviews recent progress in the development of new chiral stationary phases for high-performance liquid chromatography between January 2018 and June 2021. These newly reported chiral stationary phases are divided into three categories: small organic molecule-based (cyclodextrin and its derivatives, macrocyclic antibiotics, cinchona alkaloids, and other low molecular weight chiral molecules), macromolecule-based (cellulose and amylose derivatives, chitin and chitosan derivatives, and synthetic helical polymers) and chiral porous material-based (chiral metal-organic frameworks, chiral covalent organic frameworks, and chiral inorganic mesoporous silicas). Each type of chiral stationary phase is discussed in detail.
Collapse
Affiliation(s)
- Jun-Hui Zhang
- Department of Chemistry, Yunnan Normal University, Kunming, P. R. China
| | - Sheng-Ming Xie
- Department of Chemistry, Yunnan Normal University, Kunming, P. R. China
| | - Li-Ming Yuan
- Department of Chemistry, Yunnan Normal University, Kunming, P. R. China
| |
Collapse
|
8
|
Chen D, Shi F, Zhou Y, Xu W, Shen H, Zhu Y. Hyperbranched anion exchangers prepared from polyethylene polyamine modified polymeric substrates for ion chromatography. J Chromatogr A 2021; 1655:462508. [PMID: 34492579 DOI: 10.1016/j.chroma.2021.462508] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 08/25/2021] [Accepted: 08/26/2021] [Indexed: 12/14/2022]
Abstract
High hydrophilic anion stationary phases play a crucial role in the separation behavior of ion chromatography. Herein, we report novel polymeric anion exchangers grafted with polyethylene polyamines, including ethylenediamine, diethylenetriamine, triethylenetetramine and tetraethylene pentaamine, via a facile epoxy-amine polymerization method. The anion exchangers were characterized by scanning electron microscopy, thermogravimetry, Fourier transform infrared spectrometry and elemental analysis. The chromatographic performance of the stationary phases was evaluated with the separation of common inorganic anions, organic weak acids and highly polarizable anions. Seven common anions (F-, Cl-, NO2-, Br-, NO3-, SO42- and HPO42-) can be separated within 18 min by using hydroxide eluent in isocratic mode. By adopting different polyethylene polyamines as hyperbranched units, the four types of new stationary phases displayed high efficiencies and good reproducibility. The columns exhibit large exchange capacities at 76.5-184.8 μmol•column-1 (4.6 × 150 mm, i.d.) with efficiency up to 20293 plate m-1 (Cl-). The RSDs of the retention time were less than 0.27% and the RSDs of the efficiency were less than 1.95% by consecutive injections after working for two months. The self-fabricated column was successfully applied to determine the chloride content in exhaled breath condensate.
Collapse
Affiliation(s)
- Dingning Chen
- School of Biological and Chemical Engineering, NingboTech University, Ningbo 315100, China; College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Fang Shi
- Department of Chemistry, Zhejiang University, Xixi Campus, Hangzhou 310028, China
| | - Yangye Zhou
- Department of Chemistry, Zhejiang University, Xixi Campus, Hangzhou 310028, China
| | - Wen Xu
- Zhejiang University Hospital, Zhejiang University, Hangzhou 310027, China
| | - Haoyu Shen
- School of Biological and Chemical Engineering, NingboTech University, Ningbo 315100, China; Key Laboratory of Carbonaceous Wastes Processing and Process Intensification of Zhejiang Province, The University of Nottingham Ningbo China, Ningbo 315100, China..
| | - Yan Zhu
- Department of Chemistry, Zhejiang University, Xixi Campus, Hangzhou 310028, China.
| |
Collapse
|
9
|
Controllable organosilane monolayer density of surface bonding using silatranes for thiol functionalization of silica particles for liquid chromatography and validation of microanalytical method for elemental composition determination. J Chromatogr A 2021; 1653:462418. [PMID: 34340056 DOI: 10.1016/j.chroma.2021.462418] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 07/15/2021] [Accepted: 07/17/2021] [Indexed: 11/24/2022]
Abstract
The present work systematically investigates a new strategy for the functionalization of silica gel using alkyl silatrane chemistry instead of alkylsilanes for synthesis of chromatographic stationary phases. In this work, silica was chemically modified for further functionalization by a thiol-ene click reaction. Thus, 3-mercaptopropylsilatrane (MPS) was used which is capable to form self-assembled monolayers (SAM) on top of silanol surfaces in a controlled manner as previously shown for silicon wafers. The utility of this chemistry for stationary phase synthesis in liquid chromatography was not evaluated yet. Hence, silica surface modifications using MPS were studied in comparison to established 3-mercaptopropyltrimethoxysilane (MPTMS) chemistry. First, the employed elemental analysis method was validated and it showed excellent intra-day and inter-day precisions (typically less than 5% RSD). It could be shown that the reaction kinetics of MPS was roughly 35-times faster than with MPTMS. After 30 min reaction time with MPS, the thiol content reached 74% of the maximal coverage. Due to controlled chemistry with MPS, which does not lead to oligomeric siloxane network at the silica surface, the ligand coverage was lower. However, multiple silanization cycles with MPS led to a dense surface coverage (around 4 µmol m-2). 29Si cross polarization/magic angle spinning (CP/MAS) solid-state NMR revealed distinct T1/T2/T3 ratios for MPS and MPTMS materials with up to 80% T3 (indicative for trifunctional siloxane linkage) for MPS and around 20% T3 for MPTMS. This indicates a more homogeneous, thinner monolayer film of MPS on the silica surface, as compared to an irregular thick oligomeric siloxane network with MPTMS. Bonding of quinine carbamate as chiral selector afforded an efficient chiral stationary phase (CSP) for chromatographic enantiomer separation. Separation factors were comparable to MPTMS-bonded CSP, however, chromatographic efficiency was much better for the MPS-bonded CSP. H/u curves indicated a reduced mass transfer resistance by roughly factor 3 for MPS- compared to MPTMS-bonded CSP. This confirms better chromatographic performance of surfaces with homogeneous monolayer compared to network structures on the silica surface which suffer from poor stationary phase mass transfer.
Collapse
|