1
|
Gély C, Monneau YR, Hologne M, Faure K. Impact of conditioning runs on hydrophilic interaction chromatography repeatability and its application as a second dimension in online comprehensive two-dimensional liquid chromatography. J Sep Sci 2024; 47:e2300935. [PMID: 38801757 DOI: 10.1002/jssc.202300935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 04/08/2024] [Accepted: 04/12/2024] [Indexed: 05/29/2024]
Abstract
A common separation approach for polar compounds involves coupling reversed-phase liquid chromatography (RPLC) with hydrophilic interaction chromatography (HILIC) in two-dimensional chromatography. The higher proportion of acetonitrile used in the HILIC mobile phase, which enhances mass spectrometry detection, encourages its use in the second dimension. Previous studies demonstrated that the HILIC column can be partially equilibrated within very short timeframes without compromising retention time stability, rendering it suitable in online comprehensive two-dimensional liquid chromatography (LC×LC) setups. In addition, a specific number of conditioning cycles seems necessary to establish stable retention times. Here, the repeatability of HILIC when employed as second dimension in LC×LC was investigated, with a focus on determining the required number of conditioning cycles to achieve repeatable retention times. Various parameters influenced by the LC×LC online modulation system were studied, such as steep gradient slopes up to 8%, and very short equilibration times, less than or equal to dead time, as well as injection volume and solvent, which depend on the first dimension. Finally, the use of HILIC as a second dimension with tailored conditioning runs was applied to the analysis of hyaluronic acid hydrogel digests. The application of an RPLC×HILIC method using five conditioning runs yielded exceptional stability in second-dimension retention times.
Collapse
Affiliation(s)
- Clémence Gély
- Universite Claude Bernard Lyon1, ISA, UMR5280, CNRS, Villeurbanne, France
| | - Yoan R Monneau
- Universite Claude Bernard Lyon1, ISA, UMR5280, CNRS, Villeurbanne, France
| | - Maggy Hologne
- Universite Claude Bernard Lyon1, ISA, UMR5280, CNRS, Villeurbanne, France
| | - Karine Faure
- Universite Claude Bernard Lyon1, ISA, UMR5280, CNRS, Villeurbanne, France
| |
Collapse
|
2
|
Molnarova K, Chobotova M, Kozlik P. IgG glycopeptide enrichment using hydrophilic interaction chromatography-based solid-phase extraction on an aminopropyl column. Anal Bioanal Chem 2024; 416:1867-1881. [PMID: 38349535 PMCID: PMC10901958 DOI: 10.1007/s00216-024-05187-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 01/26/2024] [Accepted: 01/31/2024] [Indexed: 03/01/2024]
Abstract
The sample preparation step is pivotal in glycoproteomic analysis. An effective approach in glycoprotein sample preparation involves enriching glycopeptides by solid-phase extraction (SPE) using polar stationary phases in hydrophilic interaction liquid chromatography (HILIC) mode. The aim of this work is to show how different experimental conditions influence the enrichment efficiency of glycopeptides from human immunoglobulin G (IgG) on an aminopropyl-modified SPE column. Different compositions of the elution solvent (acetonitrile, methanol, and isopropanol), along with varying concentrations of elution solvent acidifiers (formic and acetic acid), and different concentrations of acetonitrile for the conditioning and washing solvents (65%, 75%, and 85% acetonitrile) were tested to observe their effects on the glycopeptide enrichment process. Isopropanol proved less effective in enriching glycopeptides, while acetonitrile was the most efficient, with methanol in between. Higher formic acid concentrations in the elution solvent weakened the ionic interactions, particularly with sialylated glycopeptides. Substituting formic acid with acetic acid led to earlier elution of more glycopeptides. The acetonitrile concentration in conditioning and washing solutions played a key role; at 65% acetonitrile, glycopeptides were not retained on the SPE column and were detected in the flow-through fraction. Ultimately, it was proven that the enrichment method was applicable to human plasma samples, resulting in a significant decrease in the abundances of non-glycosylated peptides. To the best of our knowledge, this study represents the first systematic investigation into the impact of the mobile phase on glycopeptide enrichment using an aminopropyl-modified SPE column in HILIC mode. This study demonstrates the substantial impact of even minor variations in experimental conditions, which have not yet been considered in the literature, on SPE-HILIC glycopeptide enrichment. Consequently, meticulous optimization of these conditions is imperative to enhance the specificity and selectivity of glycoproteomic analysis, ensuring accurate and reliable quantification.
Collapse
Affiliation(s)
- Katarina Molnarova
- Department of Analytical Chemistry, Faculty of Science, Charles University, Hlavova 8, 128 43, Prague 2, Czech Republic
| | - Michaela Chobotova
- Department of Analytical Chemistry, Faculty of Science, Charles University, Hlavova 8, 128 43, Prague 2, Czech Republic
| | - Petr Kozlik
- Department of Analytical Chemistry, Faculty of Science, Charles University, Hlavova 8, 128 43, Prague 2, Czech Republic.
| |
Collapse
|
3
|
Redón L, Subirats X, Chapel S, Januarius T, Broeckhoven K, Rosés M, Cabooter D, Desmet G. Comprehensive analysis of the effective and intra-particle diffusion of weakly retained compounds in silica hydrophilic interaction liquid chromatography columns. J Chromatogr A 2024; 1713:464529. [PMID: 38029660 DOI: 10.1016/j.chroma.2023.464529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/21/2023] [Accepted: 11/22/2023] [Indexed: 12/01/2023]
Abstract
A detailed analysis of intra-particle volumes and layer thicknesses and their effect on the diffusion of solutes in hydrophilic interaction liquid chromatography (HILIC) was made. Pycnometric measurements and the retention volume of deuterated mobile phase constituents (water and acetonitrile) were used to estimate the void volume inside the column, including not only the volume of the mobile phase but also part of the enriched water solvent acting as the stationary phase in HILIC. The mobile phase (hold-up) volume accessible to non-retained components was estimated using a homologous series approach. The joint analysis of the different approaches indicated the formation of enriched water layers on the hydrophobic silica mesopore walls with a thickness varying significantly with mobile phase composition. The maximal thickness of the enriched water layers, which corresponded to the minimum void volume accessible to unretained solutes, marked a transition in the retention behavior of the studied analytes. Discrepancies between deuterated solvent measurements and pycnometry were explained by the existence of an irreplaceable water layer adsorbed on the silica surface. Regarding the diffusion behavior in HILIC, peak parking experiments were used to interpret the influence of the acetonitrile content on the effective diffusion coefficient Deff. A systematic decrease in Deff and molecular diffusion Dm was observed with decreasing acetonitrile concentration, primarily attributed to variations in mobile phase viscosity. Notably, Deff/Dm remained nearly unaffected by variations in mobile phase composition. Finally, the effective medium theory was used to make a comprehensive analysis of Dpart/Dm to study the contribution to band broadening when the solute resides in the mesopores. The obtained data unveiled a curvature with a minimum corresponding to conditions of maximum water-layer thickness and retention. For the weakly retained compounds (k' < 0.5) the Dpart/Dm-values were found to be relatively high (order of 0.35-0.5), which directly reflects the high γsDs/Dm-values that were observed (order 0.35-7).
Collapse
Affiliation(s)
- Lídia Redón
- Institute of Biomedicine (IBUB) and Department of Chemical Engineering and Analytical Chemistry, Universitat de Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain.
| | - Xavier Subirats
- Institute of Biomedicine (IBUB) and Department of Chemical Engineering and Analytical Chemistry, Universitat de Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain.
| | - Soraya Chapel
- Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Herestraat 49, 3000 Leuven, Belgium.
| | - Timothy Januarius
- Department of Chemical Engineering, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium.
| | - Ken Broeckhoven
- Department of Chemical Engineering, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium.
| | - Martí Rosés
- Institute of Biomedicine (IBUB) and Department of Chemical Engineering and Analytical Chemistry, Universitat de Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain.
| | - Deirdre Cabooter
- Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Herestraat 49, 3000 Leuven, Belgium.
| | - Gert Desmet
- Department of Chemical Engineering, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium.
| |
Collapse
|
4
|
Redón L, Safar Beiranvand M, Subirats X, Rosés M. Characterization of solute-solvent interactions in liquid chromatography systems: A fast method based on Abraham's linear solvation energy relationships. Anal Chim Acta 2023; 1277:341672. [PMID: 37604624 DOI: 10.1016/j.aca.2023.341672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/12/2023] [Accepted: 07/28/2023] [Indexed: 08/23/2023]
Abstract
The Abraham's solvation parameter model, based on linear solvation energy relationships (LSER), allows the accurate characterization of the selectivity of chromatographic systems according to solute-solvent interactions (polarizability, dipolarity, hydrogen bonding, and cavity formation). However, this method, based on multilinear regression analysis, requires the measurement of the retention factors of a considerably high number of compounds, turning it into a time-consuming low throughput method. Simpler methods such as Tanaka's scheme are preferred. In the present work, the Abraham's model is revisited to develop a fast and reliable method, similar to the one proposed by Tanaka, for the characterization of columns employed in reversed-phase liquid chromatography and particularly in hydrophilic interaction liquid chromatography. For this purpose, pairs of compounds are carefully selected in order to have in common all molecular descriptors except for a specific one (for instance, similar molecular volume, dipolarity, polarizability, and hydrogen bonding basicity features, but different hydrogen bonding acidity). Thus, the selectivity factor of a single pair of test compounds can provide information regarding the extent of the dissimilar solute-solvent interactions and their influence on chromatographic retention. The proposed characterization method includes the determination of the column hold-up volume and Abraham's cavity term by means of the injection of four alkyl ketone homologues. Therefore, five chromatographic runs in a reversed-phase column (four pairs of test solutes and a mixture of four homologues) are enough to characterize the selectivity of a chromatographic system. Tanaka's method is also analyzed from the LSER point of view.
Collapse
Affiliation(s)
- Lídia Redón
- Institute of Biomedicine (IBUB) and Department of Chemical Engineering and Analytical Chemistry, Universitat de Barcelona, Martí i Franquès 1-11, 08028, Barcelona, Spain
| | - Mahmoud Safar Beiranvand
- Institute of Biomedicine (IBUB) and Department of Chemical Engineering and Analytical Chemistry, Universitat de Barcelona, Martí i Franquès 1-11, 08028, Barcelona, Spain
| | - Xavier Subirats
- Institute of Biomedicine (IBUB) and Department of Chemical Engineering and Analytical Chemistry, Universitat de Barcelona, Martí i Franquès 1-11, 08028, Barcelona, Spain.
| | - Martí Rosés
- Institute of Biomedicine (IBUB) and Department of Chemical Engineering and Analytical Chemistry, Universitat de Barcelona, Martí i Franquès 1-11, 08028, Barcelona, Spain.
| |
Collapse
|
5
|
Chapel S, Rouvière F, Guillarme D, Heinisch S. Reversed HILIC Gradient: A Powerful Strategy for On-Line Comprehensive 2D-LC. Molecules 2023; 28:molecules28093907. [PMID: 37175317 PMCID: PMC10179806 DOI: 10.3390/molecules28093907] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/25/2023] [Accepted: 04/27/2023] [Indexed: 05/15/2023] Open
Abstract
The aim of the present work is to evaluate the possibilities and limitations of reversed hydrophilic interaction chromatography (revHILIC) mode in liquid chromatography (LC). This chromatographic mode consists of combining a highly polar stationary phase (bare silica) with a gradient varying from very low (1-5%) to high (40%) acetonitrile content (reversed gradient compared to HILIC). The retention behavior of revHILIC was first compared with that of reversed-phase LC (RPLC) and HILIC using representative mixtures of peptides and pharmaceutical compounds. It appears that the achievable selectivity can be ranked in the order RPLC > revHILIC > HILIC with the two different samples. Next, two-dimensional liquid chromatography (2D-LC) conditions were evaluated by combining RPLC, revHILIC, or HILIC with RPLC in an on-line comprehensive (LC × LC) mode. evHILIC × RPLC not only showed impressive performance in terms of peak capacity and sensitivity, but also provided complementary selectivity compared to RPLC × RPLC and HILIC × RPLC. Indeed, both the elution order and the retention time range differ significantly between the three techniques. In conclusion, there is no doubt that revHILIC should be considered as a viable option for 2D-LC analysis of small molecules and also peptides.
Collapse
Affiliation(s)
- Soraya Chapel
- Institut Des Sciences Analytiques, Université de Lyon, UMR 5280, CNRS, 5 rue de la Doua, 69100 Villeurbanne, France
- Pharmaceutical Analysis, Department of Pharmaceutical and Pharmacological Sciences, University of Leuven (KU Leuven), Herestraat 49, 3000 Leuven, Belgium
| | - Florent Rouvière
- Institut Des Sciences Analytiques, Université de Lyon, UMR 5280, CNRS, 5 rue de la Doua, 69100 Villeurbanne, France
| | - Davy Guillarme
- School of Pharmaceutical Sciences, University of Geneva, CMU-Rue Michel Servet 1, 1211 Geneva 4, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, CMU-Rue Michel Servet 1, 1211 Geneva 4, Switzerland
| | - Sabine Heinisch
- Institut Des Sciences Analytiques, Université de Lyon, UMR 5280, CNRS, 5 rue de la Doua, 69100 Villeurbanne, France
| |
Collapse
|
6
|
Evaluation of Hold-Up Volume Determination Methods and Markers in Hydrophilic Interaction Liquid Chromatography. Molecules 2023; 28:molecules28031372. [PMID: 36771038 PMCID: PMC9920175 DOI: 10.3390/molecules28031372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/19/2023] [Accepted: 01/24/2023] [Indexed: 02/04/2023] Open
Abstract
Common methods for hold-up time and volume determination in Reversed-Phase Liquid Chromatography (RPLC) have been tested for Hydrophilic Interaction Liquid Chromatography (HILIC). A zwitterionic ZIC-HILIC column has been used for the testing. The pycnometric determination method, based on differences in column weight when filled with water or organic solvent, provides the overall volume of solvent inside the column. This includes the volume of eluent semi-sorbed on the packing of the column, which acts as the main stationary phase. The homologous series approach, based on the retention behavior of homologues in relation to their molecular volume, allows the determination of accurate hold-up volumes. However, the application of this method is time-consuming. In some cases, large neutral markers with poor dipolarity/polarizability and hydrogen bonding interactions can be used as hold-up volume markers. This is the case of dodecylbenzene and nonadecane-2-one in clearly HILIC behaving chromatographic systems, the use of decanophenone as a marker can be even extended to the boundary between HILIC and RPLC. The elution volume of the marker remains nearly unaffected by the concentration of ammonium acetate in the mobile phase up to 20 mM. The injection of pure solvents to produce minor base-line disturbance as hold-up markers is strongly discouraged, since solvent peaks are complex to interpret and depend on the ionic strength of the eluent.
Collapse
|
7
|
Cortés S, Subirats X, Rosés M. Solute–Solvent Interactions in Hydrophilic Interaction Liquid Chromatography: Characterization of the Retention in a Silica Column by the Abraham Linear Free Energy Relationship Model. J SOLUTION CHEM 2022. [DOI: 10.1007/s10953-022-01161-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
AbstractThe Abraham linear free energy relationship model has been used to characterize a hydrophilic interaction liquid chromatography (HILIC) silica column with acetonitrile/water and methanol/water mobile phases. Analysis by the model for acetonitrile/water mobile phases points to solute volume and hydrogen bond basicity as the main properties affecting retention, whereas solute hydrogen bond acidity, dipolarity and polarizability practically do not affect it. Formation of a cavity is easier in acetonitrile-rich mobile phases than in the aqueous stationary phase, and hence increase of solute volume decreases retention. Conversely, hydrogen bond acidity is stronger in the aqueous stationary phase than in the acetonitrile-rich mobile phase and thus an increase of solute hydrogen bond basicity increases retention. Results are similar for methanol/water mobile phases with the difference that solute hydrogen bond acidity is significant too. Increase in hydrogen bond acidity of the solute decreases retention showing that methanol mobile phases must be better hydrogen bond acceptors than acetonitrile ones, and even than water-rich stationary phases. The results are like the ones obtained in zwitterionic HILIC columns bonded to silica or polymer supports for acetonitrile/water mobile phases, but different for solute hydrogen bond acidity for a polymer bonded zwitterionic column with methanol/water mobile phases, indicating that bonding support plays an important role in HILIC retention. Comparison to RPLC characterized systems confirms the complementarity of HILIC systems to RPLC ones because the main properties affecting retention are the same but with reversed coefficients. The least retained solutes in RPLC are the most retained in HILIC.
Collapse
|
8
|
Ruan Y, Xu J, Chu J, Shi J, Shi Q. Processing tactics for low-cost production of pure nuciferine from lotus leaf. ULTRASONICS SONOCHEMISTRY 2022; 86:106026. [PMID: 35537315 PMCID: PMC9096679 DOI: 10.1016/j.ultsonch.2022.106026] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 04/19/2022] [Accepted: 05/03/2022] [Indexed: 06/14/2023]
Abstract
Nuciferine is an important drug candidate for the treatment of many diseases. However, there is no general method for its low - cost production. In this work, a feasible method for the production of nuciferine from lotus leaf, using ultrasonic-assisted extraction-solid phase extraction (UAE-SPE) as extraction and cleanup procedure, was developed. Petroleum ether and silica gel have been successfully used as extraction solvent and adsorbent to integrate UAE with SPE, respectively. Except for filtration, no treatment (e.g. concentration and redissolution, etc) was needed on UAE extract before SPE and the effluents obtained in the loading process of SPE could be used as UAE extraction solvent without purification. No obvious decline in the extraction efficiency of UAE and adsorption capacity of SPE was observed at least for 5 runs, which provides a feasible way for the continuous production of nuciferine in industry, i.e. Cyclic UAE-SPE. Moreover, SPE column could be conveniently regenerated and reused without significant decline in its adsorption capacity at least for 5 cycles, which can be used to reduce the cost of the whole system further. In comparison with other cleanup procedures, Cyclic UAE-SPE showed apparent advantages in energy conservation and emission reduction. LLE and crystallization were applied to separate nuciferine from other impurities further. Under optimum conditions, the total recovery rate of nuciferine with a purity over 90.0% from lotus leaf reached 50.1%. All in all, the developed method has advantages in convenient operation, low cost, and high efficiency, thus, is fitting for the production of high purity nuciferine.
Collapse
Affiliation(s)
- Yeqing Ruan
- School of Pharmacy, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Jiahuan Xu
- School of Pharmacy, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Jianbo Chu
- School of Pharmacy, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Jing Shi
- School of Pharmacy, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Qiyuan Shi
- School of Pharmacy, Hangzhou Medical College, Hangzhou, Zhejiang, China.
| |
Collapse
|
9
|
Guo Y. A Survey of Polar Stationary Phases for Hydrophilic Interaction Chromatography and Recent Progress in Understanding Retention and Selectivity. Biomed Chromatogr 2022; 36:e5332. [PMID: 35001408 DOI: 10.1002/bmc.5332] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 12/08/2021] [Accepted: 12/13/2021] [Indexed: 11/10/2022]
Abstract
Various polar stationary phases have become available for hydrophilic interaction chromatography (HILIC) and help drive continuous applications in biomedical, environmental and pharmaceutical areas in the past decade. Although the stationary phases for HILIC have been reviewed previously, it is an appropriate time to take another look at the progresses during the past five years. The current review provides an overview of the polar stationary phases commercially available for HILIC applications in an effort to assist scientists in selecting suitable columns. New types of stationary phase that were published in literature in the past five years are summarized and discussed. The trend in stationary phase research and development is also highlighted. Of particular interest is the experimental evidence for direct interactions of polar analytes with the ligands of the stationary phases under HILIC conditions. In addition, two different approaches have been developed to delineate the relative significance of the partitioning and adsorption mechanisms in HILIC, representing an important advancement in our understanding of the retention mechanisms in HILIC.
Collapse
Affiliation(s)
- Yong Guo
- School of Pharmacy and Health Sciences, Fairleigh Dickinson University, New Jersey, USA
| |
Collapse
|
10
|
Walter TH, Alden BA, Berthelette K, Field JA, Lawrence NL, McLaughlin J, Patel AV. Characterization of a highly stable zwitterionic hydrophilic interaction chromatography stationary phase based on hybrid organic/inorganic particles. J Sep Sci 2021; 45:1389-1399. [PMID: 34937126 PMCID: PMC9487986 DOI: 10.1002/jssc.202100859] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 12/14/2021] [Accepted: 12/16/2021] [Indexed: 11/08/2022]
Abstract
We have characterized a sulfobetaine stationary phase based on 1.7 μm ethylene-bridged hybrid organic/inorganic particles, which is intended for use in hydrophilic interaction chromatography. The efficiency of columns packed with this material were determined as a function of flow rate, demonstrating a minimum reduced plate height of 2.4. The batch-to-batch reproducibility was assessed using the separation of a mixture of acids, bases and neutrals. We compared the retention and selectivity of the hybrid sulfobetaine stationary phase to that of several benchmark materials. The hybrid sulfobetaine material gave strong retention for polar neutrals and high selectivity for methyl groups, hydroxy groups and configurational isomers. Large differences in cation and anion retention were observed among the columns. We characterized the acid and base stability of the hybrid sulfobetaine stationary phase, using accelerated tests at pH 1.3 and 11.0, both at 70°C. The results support a recommended pH range of 2 to 10. We also investigated the performance of columns packed with this material for metal-sensitive analytes, comparing conventional stainless steel column hardware to hardware that incorporates hybrid surface technology to mitigate interactions with metal surfaces. Compared to the conventional columns, the hybrid surface technology columns showed greatly improved peak shape. This article is protected by copyright. All rights reserved.
Collapse
|