1
|
Sevgen S, Kara G, Kir AS, Şahin A, Boyaci E. A critical review of bioanalytical and clinical applications of solid phase microextraction. J Pharm Biomed Anal 2025; 252:116487. [PMID: 39378761 DOI: 10.1016/j.jpba.2024.116487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/07/2024] [Accepted: 09/26/2024] [Indexed: 10/10/2024]
Abstract
Studying the functions, mechanisms, and effects of drugs and other exogenous compounds on biological systems, together with investigations performed to understand biosystems better, comprises one of the most fascinating areas of research. Although classical sample preparation techniques are dominantly used to infer the relevant information from the investigated system, they fail to meet various imperative requirements, such as being environmentally friendly, applicable in-vivo, and compatible with online analysis. As a chameleon in the analytical toolbox, solid phase microextraction (SPME) is one of the best tools available for studying biological systems in unconventional ways. In this review, SPME is spotlighted, and its capability for bioanalytical applications, including drug analysis, untargeted and targeted metabolomics, in-vivo and clinical studies, is scrutinized based on studies reported in the past five years. In addition, novel extractive phases and instrumental coupling strategies developed to serve bioanalytical research are discussed to give the perspective for state-of-the-art and future developments. The literature assessment showed that SPME could act as a critical tool to investigate in-vivo biological systems and provide information about the elusive portion of the metabolome. Moreover, recently introduced miniaturized SPME probes further improved the low-invasive nature of the sampling and enabled sampling even from a single cell. The coupling of SPME directly to mass spectrometry significantly reduced the total analytical workflow and became one of the promising tools suitable for fast diagnostic purposes and drug analysis. The numerous applications and advancements reported in bioanalysis using SPME show that it will continue to be an indispensable technique in the future.
Collapse
Affiliation(s)
- Sılanur Sevgen
- Department of Chemistry, Middle East Technical University, Ankara 06800, Türkiye
| | - Gökşin Kara
- Department of Chemistry, Middle East Technical University, Ankara 06800, Türkiye
| | - Aysegul Seyma Kir
- Department of Chemistry, Middle East Technical University, Ankara 06800, Türkiye
| | - Alper Şahin
- Department of Chemistry, Middle East Technical University, Ankara 06800, Türkiye
| | - Ezel Boyaci
- Department of Chemistry, Middle East Technical University, Ankara 06800, Türkiye.
| |
Collapse
|
2
|
Zhong Y, Li H, Lin Z, Li G. Advances in covalent organic frameworks for sample preparation. J Chromatogr A 2024; 1736:465398. [PMID: 39342731 DOI: 10.1016/j.chroma.2024.465398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 09/22/2024] [Accepted: 09/24/2024] [Indexed: 10/01/2024]
Abstract
Sample preparation is crucial in analytical chemistry, impacting result accuracy, sensitivity, and reliability. Solid-phase separation media, especially adsorbents, are vital for preparing of liquid and gas samples, commonly analyzed by most analytical instruments. With the advancements in materials science, covalent organic frameworks (COFs) constructed through strong covalent bonds, have been increasingly employed in sample preparation in recent years. COFs have outstanding selectivity and/or excellent adsorption capacity for a single target or can selectively adsorb multiple targets from complex matrix, due to their large specific surface area, adjustable pore size, easy modification, and stable chemical properties. In this review, we summarize the classification of COFs, such as pristine COFs, COF composite particles, and COFs-based substrates. We aim to provide a comprehensive understanding of the different classifications of COFs in sample preparation within the last three years. The challenges and development trends of COFs in sample preparation are also presented.
Collapse
Affiliation(s)
- Yanhui Zhong
- Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Heming Li
- Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Zian Lin
- Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108, China.
| | - Gongke Li
- School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China.
| |
Collapse
|
3
|
Ma M, Zhang Y, Huang F, Xu Y. Chiral hydroxyl-controlled covalent organic framework-modified stationary phase for chromatographic enantioseparation. Mikrochim Acta 2024; 191:203. [PMID: 38492084 DOI: 10.1007/s00604-024-06289-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 02/27/2024] [Indexed: 03/18/2024]
Abstract
Chiral covalent organic frameworks (CCOFs) possess a superior chiral recognition environment, abundant pore configuration, and favorable physicochemical stability. In the post-synthetic chiral modification of COFs, research usually focused on increasing the density of chiral sites as much as possible, and little attention has been paid to the influence of the density of chiral sites on the spatial structure and chiral separation performance of CCOFs. In this article, 1,3,5-tris(4-aminophenyl) benzene (TPB), 2,5-dihydroxyterephthalaldehyde (DHTP), and 2,5-dimethoxyterephthalaldehyde (DMTP) served as the platform molecules to directly establish hydroxyl-controlled COFs through Schiff base condensation reactions. Then the novel chiral selectors 6-deoxy-6-[1-(2-aminoethyl)-3-(4-(4-isocyanatobenzyl)phenyl)urea]-β-cyclodextrin (UB-β-CD) were pended into the micropore structures of COFs via covalent bond for further construction the [UB-β-CD]x-TPB-DMTP COFs (x represents the density of chiral sites). The chiral sites density on [UB-β-CD]x-TPB-DMTP COFs was regulated by changing the construction proportion of DHTP to obtain a satisfactory CCOFs and significantly improve the ability of chiral separation. [UB-β-CD]x-TPB-DMTP COFs were coated on the inner wall of a capillary via a covalently bonding strategy. The prepared open tubular capillary exhibited strong and broad enantioselectivity toward a variety of chiral analytes, including sixteen racemic amino acids and six model chiral drugs. By comparing the outcomes of chromatographic separation, we observed that the density of chiral sites in CCOFs was not positively correlated with their enantiomeric separation performance. The mechanism of chiral recognition [UB-β-CD]x-TPB-DMTP COFs were further demonstrated by molecular docking simulation. This study not only introduces a new high-efficiency member of the COFs-based CSPs family but also demonstrates the enantioseparation potential of CCOFs constructed with traditional post-synthetic modification (PSM) strategy by utilizing the inherent characteristics of porous organic frameworks.
Collapse
Affiliation(s)
- Mingxuan Ma
- Department of Pharmacy, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu Province, 225000, People's Republic of China
| | - Yanli Zhang
- Department of Pharmacy, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu Province, 225000, People's Republic of China
| | - Fuhong Huang
- Department of Pharmacy, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu Province, 225000, People's Republic of China
| | - Yuan Xu
- Department of Pharmacy, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu Province, 225000, People's Republic of China.
| |
Collapse
|
4
|
Guo W, Tao H, Tao H, Shuai Q, Huang L. Recent progress of covalent organic frameworks as attractive materials for solid-phase microextraction: A review. Anal Chim Acta 2024; 1287:341953. [PMID: 38182358 DOI: 10.1016/j.aca.2023.341953] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 10/20/2023] [Accepted: 10/21/2023] [Indexed: 01/07/2024]
Abstract
Solid-phase microextraction (SPME) is a green, environmentally friendly, and efficient technique for sample pre-treatment. Covalent organic frameworks (COFs), a class of porous materials formed by covalent bonds, have gained prominence owing to their remarkable attributes, including large specific surface area, tunable pore size, and robust thermal/chemical stability. These characteristics have made COFs highly appealing as potential coatings for SPME fiber over the past decades. In this review, various methods used to prepare SPME coatings based on COFs are presented. These methods encompass physical adhesion, sol-gel processes, in situ growth, and chemical cross-linking strategies. In addition, the applications of COF-based SPME coating fibers for the preconcentration of various targets in environmental, food, and biological samples are summarized. Moreover, not only their advantages but also the challenges they pose in practical applications are highlighted. By shedding light on these aspects, this review aims to contribute to the continued development and utilization of COF materials in the field of sample pretreatment.
Collapse
Affiliation(s)
- Weikang Guo
- State Key Laboratory of Biogeology and Environmental Geology, Faculty of Materials Science and Chemistry, China University of Geosciences, No. 388, Lumo Road, Hongshan District, Wuhan, 430074, PR China
| | - Hui Tao
- State Key Laboratory of Biogeology and Environmental Geology, Faculty of Materials Science and Chemistry, China University of Geosciences, No. 388, Lumo Road, Hongshan District, Wuhan, 430074, PR China
| | - Haijuan Tao
- State Key Laboratory of Biogeology and Environmental Geology, Faculty of Materials Science and Chemistry, China University of Geosciences, No. 388, Lumo Road, Hongshan District, Wuhan, 430074, PR China
| | - Qin Shuai
- State Key Laboratory of Biogeology and Environmental Geology, Faculty of Materials Science and Chemistry, China University of Geosciences, No. 388, Lumo Road, Hongshan District, Wuhan, 430074, PR China
| | - Lijin Huang
- State Key Laboratory of Biogeology and Environmental Geology, Faculty of Materials Science and Chemistry, China University of Geosciences, No. 388, Lumo Road, Hongshan District, Wuhan, 430074, PR China.
| |
Collapse
|
5
|
Yu Q, Zhang W, Chen H, Wang J, Wang Z, Ding Q, Zhang L. Synthesis of stable and efficient amide-based covalent organic frameworks fiber coatings for the improved solid-phase microextraction of polar aromatic amines. Anal Chim Acta 2023; 1284:342002. [PMID: 37996159 DOI: 10.1016/j.aca.2023.342002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/31/2023] [Accepted: 11/03/2023] [Indexed: 11/25/2023]
Abstract
BACKGROUND Developing facile and general functionalization strategies to improve the durability of covalent organic framework (COF) coatings and their affinity for polar targets is of great significance for solid-phase microextraction (SPME) technology. RESULTS In this work, a facile and general amidation strategy was developed for conversion from reversible (imine) to irreversible (amide) linkages in COF coatings. After the amidation, the durability of the obtained amide-linked covalent organic framework (Am-P-COF) coating was greatly improved, and the adsorption efficiency for polar aromatic amines (AAs) was also significantly increased. Moreover, this strategy is also applicable to the amidation of other two COF coatings, showing good general applicability. The obtained Am-P-COF coated fiber was used for SPME, and then coupled with gas chromatography tandem mass spectrometry (GC-MS/MS) to detect AAs. Under the optimal SPME conditions (extraction temperature: 50 °C, extraction time: 30 min, stirring rate: 600 rpm, pH: 8, NaCl concentration: 5.0 mg mL-1, desorption temperature: 290 °C and desorption time: 10 min), a detection method for trace AAs was established. The established method possess wide linear ranges (0.5-500.0 ng L-1), good correlation coefficients (0.9986-0.9993) and low detection limits (0.1-0.5 ng L-1). Moreover, the established method had also been successfully applied to detection of trace AAs in bottled tea beverage and plastic bags packed tea with satisfactory recoveries (83.5 %-116.8 %). SIGNIFICANCE AND NOVELTY This research provides a facile and general pathway for increasing the durability of COF coatings and affinity to the polar AAs. The detection method based on the obtained fibers possesses high sensitivity, satisfactory reproducibility and good precision.
Collapse
Affiliation(s)
- Qidong Yu
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Province Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, China
| | - Wenmin Zhang
- Department of Chemistry and Biotechnology, Minjiang Teachers College, Fuzhou, Fujian, 350108, China
| | - Hui Chen
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Province Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, China
| | - Jingyi Wang
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Province Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, China
| | - Zhiyong Wang
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Province Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, China
| | - Qingqing Ding
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Province Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, China
| | - Lan Zhang
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Province Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, China.
| |
Collapse
|
6
|
Ma J, Zhang X, Huang X, Gong J, Xie Z, Li P, Chen Y, Liao Q. Advanced porous organic materials for sample preparation in pharmaceutical analysis. J Sep Sci 2023; 46:e2300205. [PMID: 37525342 DOI: 10.1002/jssc.202300205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 07/12/2023] [Accepted: 07/13/2023] [Indexed: 08/02/2023]
Abstract
The development of novel sample preparation media plays a crucial role in pharmaceutical analysis. To facilitate the extraction and enrichment of pharmaceutical molecules in complex samples, various functionalized materials have been developed and prepared as adsorbents. Recently, some functionalized porous organic materials have become adsorbents for pharmaceutical analysis due to their unique properties of adsorption and recognition. These advanced porous organic materials, combined with consequent analytical techniques, have been successfully used for pharmaceutical analysis in complex samples such as environmental and biological samples. This review encapsulates the progress of advanced porous materials for pharmaceutical analysis including pesticides, antibiotics, chiral drugs, and other compounds in the past decade. In addition, we also address the limitations and future trends of these porous organic materials in pharmaceutical analysis.
Collapse
Affiliation(s)
- Juanqiong Ma
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xingyuan Zhang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xinyu Huang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jing Gong
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhiyong Xie
- School of Pharmaceutical Sciences, Sun Yat-sen University, Shenzhen, China
| | - Pei Li
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yanlong Chen
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Qiongfeng Liao
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
7
|
Zhang N, Mu M, Qin M, Zhu J, Tian X, Lou X, Zhou Q, Lu M. Confinement effect of ionic liquid: Improve of the extraction performance of parent metal organic framework for phthalates. J Chromatogr A 2023; 1703:464101. [PMID: 37271083 DOI: 10.1016/j.chroma.2023.464101] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 05/22/2023] [Accepted: 05/23/2023] [Indexed: 06/06/2023]
Abstract
In order to better identify the hazards of pollutants, developing the analytical methods that can sensitively detect and precisely monitor the content of trace pollutants has been the constant pursuit. In this paper, a new solid phase microextraction coating-ionic liquid/metal organic framework (IL/MOF) was obtained through the IL-induced strategy and used for the solid phase microextraction (SPME) process. IL was introduced into metal-organic framework (MOF) cage based on the anion of ionic liquid could interact strongly with the zirconium nodes of UiO-66-NH2. The introduction of IL not only increased the stability of composite, the hydrophobicity of IL also changed the environment of MOF channel, providing the hydrophobic effect to the targets. The confinement effect of IL effectively improved the extraction performance of parent MOF and the extraction performance of synthesized IL/UiO-66-NH2 for phthalates (PAEs) were 1.3-3.0 times that of parent UiO-66-NH2. Thanks to the strong interaction force (hydrogen bonding interaction, π-π stacking, hydrophobic interaction force), the IL/UiO-66-NH2-coated fiber coupled with gas chromatography-mass spectrometer showed a wide linear ranges (1-5000 ng L-1) with good correlation (R2, 0.9855-0.9987), lower detection limit (0.2-0.4 ng L-1) and satisfactory recoveries (95.3-119.3%) for PAEs. This article is dedicated to provide another way to improve the extraction performance of material.
Collapse
Affiliation(s)
- Ning Zhang
- College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, China.
| | - Mengyao Mu
- College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, China
| | - Mengjie Qin
- College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, China
| | - Jiawen Zhu
- College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, China
| | - Xiao Tian
- College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, China
| | - Xuejing Lou
- College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, China
| | - Qian Zhou
- College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, China
| | - Minghua Lu
- College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, China.
| |
Collapse
|