1
|
D'Atri V, Barrientos RC, Losacco GL, Rudaz S, Delobel A, Regalado EL, Guillarme D. Trends in Pharmaceutical Analysis: The Evolving Role of Liquid Chromatography. Anal Chem 2025; 97:4706-4727. [PMID: 40008977 DOI: 10.1021/acs.analchem.4c06662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2025]
Affiliation(s)
- Valentina D'Atri
- School of Pharmaceutical Sciences, University of Geneva, CMU - Rue Michel Servet 1, 1211 Geneva 4, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, CMU - Rue Michel Servet 1, 1211 Geneva 4, Switzerland
| | - Rodell C Barrientos
- Analytical Research and Development, MRL, Merck & Co., Inc., 126 E. Lincoln Avenue, Rahway, New Jersey 07065, United States
| | - Gioacchino Luca Losacco
- Analytical Research and Development, MRL, Merck & Co., Inc., 126 E. Lincoln Avenue, Rahway, New Jersey 07065, United States
| | - Serge Rudaz
- School of Pharmaceutical Sciences, University of Geneva, CMU - Rue Michel Servet 1, 1211 Geneva 4, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, CMU - Rue Michel Servet 1, 1211 Geneva 4, Switzerland
| | - Arnaud Delobel
- Quality Assistance S.A., Technnoparc de Thudinie 2, 6536 Donstiennes, Belgium
| | - Erik L Regalado
- Analytical Research and Development, MRL, Merck & Co., Inc., 126 E. Lincoln Avenue, Rahway, New Jersey 07065, United States
| | - Davy Guillarme
- School of Pharmaceutical Sciences, University of Geneva, CMU - Rue Michel Servet 1, 1211 Geneva 4, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, CMU - Rue Michel Servet 1, 1211 Geneva 4, Switzerland
| |
Collapse
|
2
|
Pawar R, Tivari S, Panchani D, Makasana J. A stability-indicating method development and validation for the determination of related substances in novel synthetic decapeptide by HPLC. J Pept Sci 2024; 30:e3610. [PMID: 38689387 DOI: 10.1002/psc.3610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 04/10/2024] [Accepted: 04/12/2024] [Indexed: 05/02/2024]
Abstract
In the present scenario, peptide is an emerging field of research having vast therapeutic applications. Diverse impurities may rise from various stages of the synthesis process and storage of the peptides. Because these contaminants may have an impact on the therapeutic safety and effectiveness of peptides in their approaching applications, they must be identified and carefully monitored. Considering the pharmaceutical importance of the extent of peptides, we were motivated to synthesize a decapeptide and establish a novel gradient reversed-phase high-performance liquid chromatography (RP-HPLC) method for its analysis along with efficient separation of its six related impurities. Different buffers, organic modifiers, and columns were used in the tests for good separation of these impurities. To establish a stability-indicating method, a stress study was also conducted. The International Conference on Harmonization (ICH) guidelines have been followed for validation of the developed analytical method. The validated method revealed sufficient accuracy, specificity, linearity, robustness, precision, and high sensitivity for its intended use. The proposed method could be appropriate for routine analysis and stability assessment of the decapeptide, which might be useful for further scientific investigation.
Collapse
Affiliation(s)
- Ramesh Pawar
- Department of Chemistry, Faculty of Science, Marwadi University, Rajkot, Gujarat, India
| | - Sunil Tivari
- Department of Chemistry, Faculty of Science, Marwadi University, Rajkot, Gujarat, India
| | - Divya Panchani
- Department of Chemistry, Faculty of Science, Marwadi University, Rajkot, Gujarat, India
| | - Jayanti Makasana
- Department of Chemistry, Faculty of Science, Marwadi University, Rajkot, Gujarat, India
| |
Collapse
|
3
|
Goyon A, Wang S, Hofmann K, Nguyen DN, Yehl P, Zhang K. Unified and Versatile Multiplex Platform for Expedited Method Development and Comprehensive Characterization of Therapeutic Peptides. Anal Chem 2024. [PMID: 39152894 DOI: 10.1021/acs.analchem.4c02941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/19/2024]
Abstract
Agile analytical approaches are needed for fast and comprehensive characterization of peptide drug candidates. In this study, a unified and versatile multiplex platform was developed to expedite method development and enable the routine determination of multiple quality attributes simultaneously. The platform integrates the automation of size exclusion chromatography (SEC), reversed phase liquid chromatography coupled to reversed phase liquid chromatography (RPLC-RPLC), and hydrophilic interaction liquid chromatography hyphenated to charged aerosol detection (HILIC-CAD). Various therapeutic peptide constructs, including macrocyclic peptides and disulfide constrained peptides, across different lots were studied. The effect of the mobile phase acetonitrile content on the impurity profiles was systematically studied using two SEC columns. A prototype MaxPeak Premier SEC 125 Å column packed with BEH PEO particles achieved the separation of impurities (>2.0% area), whereas no impurities could be observed with an ACQUITY UPLC Protein BEH SEC 125 Å column packed with BEH diol particles. Comprehensive impurity profiling and expedited method development was performed utilizing RPLC-RPLC. Each peptide was analyzed by a combination of 12 conditions in the second dimension, using four columns with octadecyl, phenyl-hexyl, and cyano bonded phases, and three mobile phases with various solvents, modifiers, and pH compositions. Additionally, a HILIC-CAD method was developed for the quantification of TFA, commonly present in peptide products.
Collapse
Affiliation(s)
- Alexandre Goyon
- Synthetic Molecule Pharmaceutical Sciences, Genentech, 1 DNA Way, South San Francisco, California 94080, United States
| | - Shirley Wang
- Synthetic Molecule Pharmaceutical Sciences, Genentech, 1 DNA Way, South San Francisco, California 94080, United States
| | - Kate Hofmann
- Synthetic Molecule Pharmaceutical Sciences, Genentech, 1 DNA Way, South San Francisco, California 94080, United States
| | - Daniel Ngoc Nguyen
- Synthetic Molecule Pharmaceutical Sciences, Genentech, 1 DNA Way, South San Francisco, California 94080, United States
| | - Peter Yehl
- Synthetic Molecule Pharmaceutical Sciences, Genentech, 1 DNA Way, South San Francisco, California 94080, United States
| | - Kelly Zhang
- Synthetic Molecule Pharmaceutical Sciences, Genentech, 1 DNA Way, South San Francisco, California 94080, United States
| |
Collapse
|
4
|
Aly AA, Górecki T. Two-dimensional liquid chromatography with reversed phase in both dimensions: A review. J Chromatogr A 2024; 1721:464824. [PMID: 38522405 DOI: 10.1016/j.chroma.2024.464824] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 03/14/2024] [Accepted: 03/16/2024] [Indexed: 03/26/2024]
Abstract
Two-dimensional liquid chromatography (2D-LC), and in particular comprehensive two-dimensional liquid chromatography (LC×LC), offers increased peak capacity, resolution and selectivity compared to one-dimensional liquid chromatography. It is commonly accepted that the technique produces the best results when the separation mechanisms in the two dimensions are completely orthogonal; however, the use of similar separation mechanisms in both dimensions has been gaining popularity as it helps avoid difficulties related to mobile phase incompatibility and poor column efficiency. The remarkable advantages of using reversed phase in both dimensions (RPLC×RPLC) over other separation mechanisms made it a promising technique in the separation of complex samples. This review discusses some physical and practical considerations in method development for 2D-LC involving the use of RP in both dimensions. In addition, an extensive overview is presented of different applications that relied on RPLC×RPLC and 2D-LC with reversed phase column combinations to separate components of complex samples in different fields including food analysis, natural product analysis, environmental analysis, proteomics, lipidomics and metabolomics.
Collapse
Affiliation(s)
- Alshymaa A Aly
- Analytical Chemistry Department, Faculty of Pharmacy, Minia University, Menia Governorate, Arab Republic of Egypt; Department of Chemistry, University of Waterloo, ON, Canada
| | - Tadeusz Górecki
- Department of Chemistry, University of Waterloo, ON, Canada.
| |
Collapse
|