1
|
Lai H, Li G. Recent progress on media for biological sample preparation. J Chromatogr A 2024; 1734:465293. [PMID: 39181092 DOI: 10.1016/j.chroma.2024.465293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 08/19/2024] [Accepted: 08/20/2024] [Indexed: 08/27/2024]
Abstract
The analysis of biological samples is highly valuable for disease diagnosis and treatment, forensic examination, and public safety. However, the serious matrix interference effect generated by biological samples severely affects the analysis of trace analytes. Sample preparation methods are introduced to address the limitation by extracting, separating, enriching, purifying trace target analytes from biological samples. With the raising demand of biological sample analysis, a review focuses on media for biological sample preparation and analysis over the last 5 years is presented. High-performance media in biological sample preparation are first reviewed, including porous organic frameworks, imprinted polymers, hydrogels, ionic liquids, and bioactive media. Then, application of media for different biological sample preparation and analysis is briefly introduced, including liquid samples of body fluids, solid samples (hair, feces, and tissues), and gas samples of exhale breath gas. Finally, conclusions and outlooks on media promoting biological sample preparation are presented.
Collapse
Affiliation(s)
- Huasheng Lai
- Jiangxi Province Key Laboratory of Pharmacology of Traditional Chinese Medicine, School of Pharmacy, Gannan Medical University, Ganzhou, 341000, China; School of chemistry, Sun Yat-Sen University, Guangzhou, 510006, China.
| | - Gongke Li
- School of chemistry, Sun Yat-Sen University, Guangzhou, 510006, China.
| |
Collapse
|
2
|
Chen H, Xia L, Li G. Recent progress of chiral metal-organic frameworks in enantioselective separation and detection. Mikrochim Acta 2024; 191:640. [PMID: 39356328 DOI: 10.1007/s00604-024-06729-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Accepted: 09/24/2024] [Indexed: 10/03/2024]
Abstract
Chiral compounds are abundantly distributed in both the natural world and biological systems. It is crucial to identify and detect chiral compounds in living systems or to separate and determine them in the natural environment. Many researchers have developed a range of chiral materials with different functionalizations to separate and detect chiral substances. Chiral metal-organic frameworks (CMOFs) have the potential to be used in enantioselective separation and detection due to their large surface areas, regulated framework topologies, particular substrate interactions, and accessible chiral sites. CMOFs contribute significantly to the development of enantiomer separation and detection in medicine, agriculture, food, environment, and other fields. This review focuses on four synthesis methods of CMOFs and their applications in chiral separation and chiral sensing in the past five years, mainly including chromatographic separation, membrane separation, optical sensing, electrochemical sensing, and other sensing methods. Finally, the challenges and potential growth direction of CMOFs in enantiomer separation and detection are discussed and prospected.
Collapse
Affiliation(s)
- Huiting Chen
- School of Chemistry, Sun Yat-Sen University, Guangzhou, 510006, People's Republic of China
| | - Ling Xia
- School of Chemistry, Sun Yat-Sen University, Guangzhou, 510006, People's Republic of China
| | - Gongke Li
- School of Chemistry, Sun Yat-Sen University, Guangzhou, 510006, People's Republic of China.
| |
Collapse
|
3
|
Li T, Li H, Chen J, Yu Y, Chen S, Wang J, Qiu H. Histidine-modified pillar[5]arene-functionalized mesoporous silica materials for highly selective enantioseparation. J Chromatogr A 2024; 1727:465011. [PMID: 38776604 DOI: 10.1016/j.chroma.2024.465011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 05/14/2024] [Accepted: 05/17/2024] [Indexed: 05/25/2024]
Abstract
Chiral enantiomers, especially the enantiomers of chiral drugs often exhibit different pharmacological activity, metabolism and toxicity, thus it is of great research significance to scientifically and reasonably develop single chiral drugs with low toxicity and high efficiency. Among them, high performance liquid chromatographic techniques based on chiral stationary phases (CSPs) has become one of the most attractive methods used to evaluate the enantiomeric purity of single-enantiomers compound of pharmacological relevance. In this work, pillar[5]arene functionalized with L- and D-histidine, respectively, were modified on the surface of mesoporous silica as novel chiral stationary phases called L/DHis-BP5-Sil. Notably, L/D-histidine had the characteristics of low steric hindrance and easy derivatization. Although the π-π interaction of imidazole group was weaker than that of benzene ring, the benzene ring bonding imidazole-conjugated ring in the structure produced better enantioseparation effect. The results showed that L/DHis-BP5-Sil can separate a variety of complex structural enantiomers with excellent reproducibility, thermal stability and separation performance. Hence, the unique advantage of the highly selective separation of L/DHis-BP5-Sil provides new insights into the enantioseparation field.
Collapse
Affiliation(s)
- Tong Li
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China; Department of Chemistry, Research Center for Analytical Sciences, College of Sciences, Northeastern University, Shenyang 110819, China
| | - Hui Li
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China.
| | - Jia Chen
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Yongliang Yu
- Department of Chemistry, Research Center for Analytical Sciences, College of Sciences, Northeastern University, Shenyang 110819, China
| | - Shuai Chen
- Department of Chemistry, Research Center for Analytical Sciences, College of Sciences, Northeastern University, Shenyang 110819, China.
| | - Jianhua Wang
- Department of Chemistry, Research Center for Analytical Sciences, College of Sciences, Northeastern University, Shenyang 110819, China
| | - Hongdeng Qiu
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China; Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou 341000, China.
| |
Collapse
|
4
|
Shchemelev IS, Ivanov AV, Ferapontov NB. Composite "Crosslinked Polyvinyl Alcohol-Magnetite" as a Stimuli-Responsive Matrix for Optical Methods. Molecules 2024; 29:2794. [PMID: 38930858 PMCID: PMC11206915 DOI: 10.3390/molecules29122794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 05/31/2024] [Accepted: 06/02/2024] [Indexed: 06/28/2024] Open
Abstract
The preparation and application of the composite material "crosslinked polyvinyl alcohol-magnetite" as a sensitive matrix for use in digital colorimetry and optical micrometry methods are discussed. The material was synthesized in the form of spherical granules (for micrometry) and thin films (for digital colorimetry). The obtained composites were characterized by the registration of magnetization curves. It was shown that the amount of grown Fe3O4 particles in the polymer gel is in linear dependence with the iron salt concentrations in the impregnating solutions. The composite granules were applied to determining monosaccharides using optical micrometry. The optimal pH value for the total amount of monosaccharides' determination was 8.6. The study of the analytical response of composite granules and films performed with a low limit of detection (7.9 mmol/dm3) of both glucose and fructose and a possibility of the control of high alcohol contention in water media. The granules were used to determine the total carbohydrate content in samples of natural honey and syrups with high fructose contents, while the films were used to control the alcohol content in hand antiseptics. The results obtained are in good agreement with the data provided by the manufacturers.
Collapse
Affiliation(s)
- Ivan S. Shchemelev
- Department of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia or (A.V.I.); (N.B.F.)
| | - Alexander V. Ivanov
- Department of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia or (A.V.I.); (N.B.F.)
- Kurnakov Institute of General and Inorganic Chemistry of the RAS, 119071 Moscow, Russia
| | - Nikolay B. Ferapontov
- Department of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia or (A.V.I.); (N.B.F.)
| |
Collapse
|
5
|
Woiwode U, Sievers-Engler A, Lämmerhofer M. Cross-linked polysiloxane-coated stable bond O-9-(2,6-diisopropylphenylcarbamoyl)quinine and quinidine chiral stationary phases as well as application in enantioselective cryo-HPLC. Electrophoresis 2024; 45:989-999. [PMID: 37916661 DOI: 10.1002/elps.202300182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/10/2023] [Accepted: 10/13/2023] [Indexed: 11/03/2023]
Abstract
In this work, brush-type chiral stationary phases (CSPs) with O-9-(2,6-diisopropylphenylcarbamoyl)-modified quinidine (DIPPCQD-brush/-SH) and O-9-(2,6-diisopropylphenylcarbamoyl)-modified quinine (DIPPCQN-brush/-SH) were prepared as benchmarks for comparison with new corresponding polymeric CSPs with more stable bonding chemistry. These polymeric CSPs were prepared by coating a thin poly(3-mercaptopropyl)-methylsiloxane film together with the chiral selector onto vinyl-modified silica. In a second step, immobilization of the quinine/quinidine derivatives as well as cross-linking of the polysiloxane film to the vinyl-silica is achieved by a double thiol-ene click reaction. The polymeric CSPs exhibited similar enantioselectivity as the corresponding brush phases, but showed lower chromatographic efficiencies. Chiral acidic substances were separated into enantiomers (e.g., N-protected amino acids, herbicides like dichlorprop) in accordance with an enantioselective anion-exchange process. Oxidation of residual thiol groups of the polymer DIPPCQN-CSP introduced sulfonic acid co-ligands on the silica surface, which resulted in greatly reduced retention times. Acting as immobilized counterions, they allowed to reduce the concentration of counterions in the mobile phase, which is favorable for liquid chromatography (LC)-electrospray ionization-mass spectrometry application. Ibuprofen showed a single peak under ambient column temperature. However, application of cryogenic cooling of the column enabled to achieve baseline separation at -20°C column temperature. It can be explained by an enthalpically dominated separation, which leads to an increase in separation factors when the temperature is reduced. While it is quite uncommon to work at subzero degree column temperature, this work illustrates the potential to exploit such temperature regime for optimization of LC enantiomer separations.
Collapse
Affiliation(s)
- Ulrich Woiwode
- Institute of Pharmaceutical Sciences, Pharmaceutical (Bio-)Analysis, University of Tübingen, Tübingen, Germany
| | - Adrian Sievers-Engler
- Institute of Pharmaceutical Sciences, Pharmaceutical (Bio-)Analysis, University of Tübingen, Tübingen, Germany
| | - Michael Lämmerhofer
- Institute of Pharmaceutical Sciences, Pharmaceutical (Bio-)Analysis, University of Tübingen, Tübingen, Germany
| |
Collapse
|
6
|
Yi J, Han X, Jian J, Lai Y, Lu J, Peng L, Liu Z, Xue J, Zhou H, Li X. Dual-mode detection of 2,6-pyridinedicarboxylic acid based on the enhanced peroxidase-like activity and fluorescence property of novel Eu-MOFs. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:2606-2613. [PMID: 38618990 DOI: 10.1039/d4ay00331d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
2,6-Pyridinedicarboxylic acid (DPA) is a significant biomarker of anthrax, which is a deadly infectious disease for human beings. However, the development of a convenient anthrax detection method is still a challenge. Herein, we report a novel europium metal-organic framework (Eu-MOF) with an enhanced peroxidase-like activity and fluorescence property for DPA detection. The Eu-MOF was one-step synthesized using Eu3+ ions and 2-methylimidazole. In the presence of DPA, the intrinsic fluorescence of Eu3+ ions is sensitized, the fluorescence intensity linearly increases with an increase in DPA concentration, and the fluorescence color changes from blue to purple. Simultaneously, the peroxide-like activity of the Eu-MOF is enhanced by DPA, which can promote the oxidation of TMB to oxTMB. The absorbance values increase linearly with DPA concentrations, and the colorimetric images change from colorless to blue. The dual-mode detection of DPA has good sensitivity with a colorimetric detection limit of 0.67 μM and a fluorescent detection limit of 16.67 nM. Moreover, a simple detection method for DPA was developed using a smartphone with the RGB analysis system. A portable kit with standard color cards was developed using paper test strips. The proposed methods have good practicability for DPA detection in real samples. In conclusion, the developed Eu-MOF biosensor offers a valuable and general platform for anthrax diagnosis.
Collapse
Affiliation(s)
- Jintao Yi
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou 341000, P. R. China.
| | - Xianqin Han
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou 341000, P. R. China.
| | - Jiahao Jian
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou 341000, P. R. China.
| | - Yayan Lai
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou 341000, P. R. China.
| | - Jun Lu
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou 341000, P. R. China.
| | - Lei Peng
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou 341000, P. R. China.
| | - Zhongkai Liu
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou 341000, P. R. China.
| | - Jun Xue
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou 341000, P. R. China.
| | - Hui Zhou
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou 341000, P. R. China.
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, School of Pharmacy, Guangdong Medical University, Dongguan 523808, P. R. China
| | - Xun Li
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou 341000, P. R. China.
| |
Collapse
|
7
|
Yu Z, Li Z, Zhang F, Yang B. A lysine and amide functionalized polymer-based polar stationary phase for hydrophilic interaction chromatography. J Chromatogr A 2023; 1708:464328. [PMID: 37666063 DOI: 10.1016/j.chroma.2023.464328] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/23/2023] [Accepted: 08/23/2023] [Indexed: 09/06/2023]
Abstract
A novel polymer-based polar stationary phase for hydrophilic interaction chromatography (HILIC) is described. It was obtained by grafting lysine and acrylamide onto poly (glycidyl methacrylate-divinylbenzene) (GMA-DVB) microspheres via ring-opening reaction of epoxy groups and free radical polymerization with pendant double bonds of the microspheres. Multiple types of polar groups including zwitterionic (carboxylate and amine), amide and diol onto the microspheres make them highly hydrophilic. It showed typical HILIC character and good separation performance towards model polar analytes. Negligible bleed level under gradient elution mode (up to 50% fraction of water) was observed. It also exhibited specific separation selectivity to ionic analytes and simultaneous separation of anions and cations could be achieved in ideal electrostatic selectivity elution order, e.g. I-< NO3-
Collapse
Affiliation(s)
- Ziteng Yu
- Engineering Research Center of Pharmaceutical Process Chemistry, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Zongying Li
- Engineering Research Center of Pharmaceutical Process Chemistry, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China.
| | - Feifang Zhang
- Engineering Research Center of Pharmaceutical Process Chemistry, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Bingcheng Yang
- Engineering Research Center of Pharmaceutical Process Chemistry, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China.
| |
Collapse
|
8
|
Liu H, Wu Z, Chen J, Wang J, Qiu H. Recent advances in chiral liquid chromatography stationary phases for pharmaceutical analysis. J Chromatogr A 2023; 1708:464367. [PMID: 37714014 DOI: 10.1016/j.chroma.2023.464367] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 08/23/2023] [Accepted: 09/05/2023] [Indexed: 09/17/2023]
Abstract
Chirality is a common phenomenon in nature. Different enantiomers of chiral drug compounds have obvious differences in their effects on the human body. Therefore, the separation of chiral drugs plays an extremely important role in the safe utilization of drugs. High-performance liquid chromatography (HPLC) is an effective tool for the separation and analysis of compounds, in which the chromatographic packing plays a key role in the separation. Chiral pharmaceutical separation and analysis in HPLC rely on chiral stationary phases (CSPs). Thus, various CSPs are being developed to meet the needs of chiral drug separation and analysis. In this review, recent developments in CSPs, including saccharides (cyclodextrin, cellulose, amylose and chitosan), macrocycles (macrocyclic glycopeptides, pillar[n]arene and polyamide) and porous organic materials (metal-organic frameworks, covalent organic frameworks, and porous organic cages), for pharmaceutical analysis in HPLC were summarized, the advantages and disadvantages of various stationary phases were introduced, and their development prospects were discussed.
Collapse
Affiliation(s)
- Huifeng Liu
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China; Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China
| | - Zhihai Wu
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Jia Chen
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China.
| | - Jianhua Wang
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China
| | - Hongdeng Qiu
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China.
| |
Collapse
|
9
|
Cai T, Sun X, Chen J, Qiu H. Tetraethylenepentamine-derived carbon dots and tetraethylenepentamine co-immobilized silica stationary phase for hydrophilic interaction chromatography. J Chromatogr A 2023; 1707:464325. [PMID: 37639850 DOI: 10.1016/j.chroma.2023.464325] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 08/08/2023] [Accepted: 08/22/2023] [Indexed: 08/31/2023]
Abstract
In this work, tetraethylenepentamine (TEPA) was used as precursor and reaction medium to prepare tetraethylenepentamine-functionalized carbon dots (TEPACDs), the resultant mixture was subsequently silanized and then grafted on the surface of bare silica. The obtained tetraethylenepentamine-functionalized carbon dots and tetraethylenepentamine co-modified silica stationary phase (Sil-TEPA/CDs) was characterized by multiple ways, such as Fourier transformed infrared spectroscopy (FTIR), elemental analysis and transmission electron microscope, which revealed the successful preparation of the mixed stationary phase and higher density of functional groups on co-modified stationary phase than precursor single-modified stationary phase. The synergistic effect of TEPACDs and TEPA was proved by comparing the separation performance of Sil-TEPA/CDs and Sil-TEPA toward amino acids, nucleosides, and nucleobases, which distinctly enhanced the selectivity of Sil-TEPA/CDs. Thus, 12 nucleosides and nucleobases and 11 amino acids was nicely separated on Sil-TEPA/CDs. By study the influences of the changes of mobile phase composition, mobile phase buffer concentration and buffer pH on the retention behaviors of Sil-TEPA and Sil-TEPA/CDs, it was found that both hydrophilic partitioning and adsorption of analytes on Sil-TEPA/CDs were enhanced benefit from the co-existence of TEPA and TEPACDs, which provided the analytes better separation performance. By comparing the column quality of Sil-TEPA/CDs with four commercially available columns, Sil-TEPA/CDs exhibited the best peak asymmetry of 0.98, and second best column efficiency of 43895 m-1 using guanosine as analyte. The RSD (n = 9) of the retention times of five selected analytes on Sil-TEPA/CDs were within 0.30-0.61% during 40 h of continuously elution, which implied excellent stability of prepared packing material.
Collapse
Affiliation(s)
- Tianpei Cai
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China; School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng, Jiangsu, 224000, China
| | - Xiaoyu Sun
- School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng, Jiangsu, 224000, China
| | - Jia Chen
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Hongdeng Qiu
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|