1
|
Jiménez-Galea JJ, Gómez-Merino AI. Thermal Damping Applications of Coconut Oil-Silica Gels and Their Rheological Properties. Gels 2025; 11:261. [PMID: 40277697 PMCID: PMC12027126 DOI: 10.3390/gels11040261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2025] [Revised: 03/15/2025] [Accepted: 03/20/2025] [Indexed: 04/26/2025] Open
Abstract
Phase change materials (PCMs) have the advantage of using the latent thermal heat as energy storage. Coconut oil (CO) has attracted much attention as PCM due to its high stability against oxidation. Although the viscosity of CO-based dispersions has extensively been studied, little research has been performed on time-dependent flow behaviors. In this work, the rheological properties of fumed silica dispersed in CO at fractions of 1, 2, 3, and 4 vol.% were investigated. All suspensions showed shear-thinning behavior, which became more Newtonian at temperatures above the phase change. The 3 and 4 vol.% suspensions showed gel-like microstructures. The thixotropic properties of the 3 vol.% suspension at 30 °C and 35 °C were mainly studied through stepwise changes in the shear rate. The results were consistent with thixotropic behavior, with a complete recovery of the microstructure. The sweep frequency of this sample demonstrated the dominance of the elastic modulus at both temperatures. Therefore, a thixoelastic nature of this gel could be inferred. This gel-like material flowed under high stress, providing superior thermal damping capabilities compared to conventional fluids. A reduction of 8.65 °C was confirmed after 30 min. of the laptop power supply operation.
Collapse
Affiliation(s)
- Jesús Javier Jiménez-Galea
- Department of Civil, Materials and Manufacturing Engineering, University of Malaga, Dr. Ortiz Ramos s/n, 29071 Malaga, Spain;
| | - Ana Isabel Gómez-Merino
- Department of Applied Physics II, University of Malaga, Dr. Ortiz Ramos s/n, 29071 Malaga, Spain
| |
Collapse
|
2
|
Pincot A, Chin J, Murphy R, Burpo FJ, Yi C, Chen E, Bahaghighat HD, Thompson B, Yuk SF, McKinley GH, Nagelli EA, Armstrong M. Rheological, electrochemical, and microstructural properties of graphene oxides as flowable electrodes for energy storage applications. RSC Adv 2025; 15:9190-9207. [PMID: 40134685 PMCID: PMC11935737 DOI: 10.1039/d4ra08308c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Accepted: 03/07/2025] [Indexed: 03/27/2025] Open
Abstract
Interest in novel energy storage and conversion methods has prompted a broad interest in potential applications of conductive, complex materials such as graphene oxide slurries. Investigating the complex rheological, material, and chemical properties of chemically exfoliated graphene oxide suspensions is a potential means to address that interest. The morphological size and clustering, rheology, and electronic conductivity are determined to characterize the properties of graphene oxide (GO) suspensions from variable centrifugation speeds. The evolution of viscosity is then analyzed under oscillatory shear, steady shear, and transient shear characteristics. The resulting microstructure is then analyzed via neutron scattering analysis and imaged with scanning electron microscopy. Small-Angle Neutron Scattering (SANS) of a 500g centrifuged GO suspension determined that particle structure is locally flat sheet-like at lengths below 100 nm, crumpled aggregates of GO sheets with surface roughness at length scales from 200 nm to 2 μm, and a dense mass fractal of overlapping GO sheets extending up to length scales of 20 μm. Increased centrifugation force of the 1000g GO suspension corresponded with lower zero-shear viscosity, yield stress, and less pronounced thixotropic behavior. Rheo-dielectric measurements were conducted on 1000g and 500g GO suspensions to determine the ohmic resistance, electronic conductivity, and specific capacitance. The more fluid-like microstructure of 1000g with smaller monodispered thinning GO sheets in suspension had lower ohmic resistance and higher electronic conductivity compared to the 500g GO suspension with more polydispersed larger aggregates. The 1000g GO suspension had the highest specific capacitance of 4.63 mF cm-2 at the highest shear rate of 700 s-1 due to the higher frequency of particle-particle collisions during shear within the network of smaller and more intrinsically conductive GO sheets to store charge. Therefore, the results of this study have implications for future studies in flowable carbon nanomaterials in flow battery and flow capacitor technologies.
Collapse
Affiliation(s)
- André Pincot
- Department of Chemistry and Life Science, United States Military Academy West Point NY 10996 USA
- Department of Mechanical Engineering, Massachusetts Institute of Technology Cambridge MA 02139 USA
| | - Jeffrey Chin
- Department of Chemistry and Life Science, United States Military Academy West Point NY 10996 USA
- Photonics Research Center, United States Military Academy West Point NY 10996 USA
| | - Ryan Murphy
- NIST Center for Neutron Research, National Institute of Standards and Technology Gaithersburg MD 20899 USA
| | - F John Burpo
- Department of Chemistry and Life Science, United States Military Academy West Point NY 10996 USA
- Photonics Research Center, United States Military Academy West Point NY 10996 USA
| | - Caspar Yi
- Department of Chemistry and Life Science, United States Military Academy West Point NY 10996 USA
- Photonics Research Center, United States Military Academy West Point NY 10996 USA
| | - Edward Chen
- Department of Chemistry and Life Science, United States Military Academy West Point NY 10996 USA
- Photonics Research Center, United States Military Academy West Point NY 10996 USA
| | - H Daniel Bahaghighat
- Department of Chemistry and Life Science, United States Military Academy West Point NY 10996 USA
| | - Benjamin Thompson
- Department of Chemical and Biomolecular Engineering, University of Delaware Newark DE 19716 USA
| | - Simuck F Yuk
- Department of Chemistry and Life Science, United States Military Academy West Point NY 10996 USA
- Photonics Research Center, United States Military Academy West Point NY 10996 USA
| | - Gareth H McKinley
- Department of Mechanical Engineering, Massachusetts Institute of Technology Cambridge MA 02139 USA
| | - Enoch A Nagelli
- Department of Chemistry and Life Science, United States Military Academy West Point NY 10996 USA
- Photonics Research Center, United States Military Academy West Point NY 10996 USA
| | - Matthew Armstrong
- Department of Chemistry and Life Science, United States Military Academy West Point NY 10996 USA
- Department of Chemical and Biomolecular Engineering, University of Delaware Newark DE 19716 USA
| |
Collapse
|
3
|
Li X, Liu R, Lv X, Alouk I, Chen S, Li W, Miao S, Wang Y, Xu D. Fat substitute in salad dressing: The role of soybean oil body self-aggregates in enhancing texture and rheological property. Food Res Int 2025; 204:115909. [PMID: 39986763 DOI: 10.1016/j.foodres.2025.115909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 01/27/2025] [Accepted: 01/31/2025] [Indexed: 02/24/2025]
Abstract
Salad dressing have become a popular condiment in many countries. However, their high fat content may contribute to obesity and related health issues. In this study, mild and extensive purification were used to extract soybean oil body (SOB) with different protein compositions, and further modulated the interfacial charge interactions, thereby producing SOB self-aggregates for fat substitute in salad dressing. Mild purification of SOB increased extrinsic protein content, while extensive purification reduced extrinsic protein content. The mild purification system showed the largest particle size and segregated network structure close to the isoelectric point. However, the extensively purified system exhibited a charge reversal from negative to positive, forming a compact network. Both self-aggregates exhibited shear thinning and elastic properties. Increasing SOB self-aggregate concentration enhanced brightness, electrostatic repulsion and steric hindrance in salad dressing. SOB self-aggregates prepared with extensive purification at pH 5.0, formed a dense network structure that facilitated droplet arrangement, thereby imparting optimal viscoelasticity, enhanced interactions, and thixotropic recovery to salad dressing. This work presents a method based on different protein composition and charge modulation for incorporating oil body as ingredients in spreadable condiments without thickener as label-free products.
Collapse
Affiliation(s)
- Xiaoyu Li
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, School of Food and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Rui Liu
- Institute of Food and Nutrition Development, Ministry of Agriculture and Rural Affairs, China
| | - Xin Lv
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, School of Food and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Ikram Alouk
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, School of Food and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Shuai Chen
- School of Public Health, Wuhan University, 430071, China
| | - Wenlu Li
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, School of Food and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Song Miao
- Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork P61C996, lreland
| | - Yanbo Wang
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, School of Food and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Duoxia Xu
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, School of Food and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China.
| |
Collapse
|
4
|
Zhuang BJ, Shams Es-Haghi S. On the thixotropy of cellulose nanofibril suspensions. J Colloid Interface Sci 2025; 679:221-231. [PMID: 39447465 DOI: 10.1016/j.jcis.2024.10.079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 10/01/2024] [Accepted: 10/15/2024] [Indexed: 10/26/2024]
Abstract
The thixotropic behavior of mechanically disk refined cellulose nanofibril (CNF) aqueous suspensions with 100% fines content at 1 and 3 wt% concentrations was investigated through creep, shear-recovery, multiple-step oscillation, startup, and flow loop experiments. The CNF suspensions exhibited the key thixotropic characteristics such as reduction in viscosity over time and structure recovery after cessation of flow. The results of shear recovery and multiple-step oscillation experiments suggested that regardless of the CNF concentration, lower extents of deformation impede the ability of the suspension to recover its structure at rest and higher levels of shear rates and strain amplitudes facilitate the structure recovery. Furthermore, the results of the startup experiments indicate that CNF suspensions form structures at two different levels where the flocs erode each other during flow. The different types of loops found in the flow loop experiments performed at different shear rates and time intervals were categorized and analyzed in terms of the effects of erosion of flocs and fiber rearrangement during flow.
Collapse
Affiliation(s)
- Benjamin J Zhuang
- Advanced Structures and Composites Center, The University of Maine, 35 Flagstaff Road, Orono, ME 04469-5793, USA
| | - S Shams Es-Haghi
- Advanced Structures and Composites Center, The University of Maine, 35 Flagstaff Road, Orono, ME 04469-5793, USA; Department of Chemical and Biomedical Engineering, The University of Maine, 5737 Jenness Hall, Orono, ME 04469-5737, USA; Department of Mechanical Engineering, The University of Maine, 75 Long Road, Orono, ME 04469-5744, USA.
| |
Collapse
|
5
|
Wang Y, Fan Y, Pan K, Liu Z, Zhao W, Zhou X, Qiu J. Cocklebur-Inspired Robust Non-flammable Polymer Thermo Conductor for CPU Cooling. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2405971. [PMID: 39690793 DOI: 10.1002/smll.202405971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 11/16/2024] [Indexed: 12/19/2024]
Abstract
Efficient computer central processing units (CPUs) heat dissipation demands polymer-based thermal interface materials that combine high thermal conductivity with strong mechanical properties, eliminating the need for additional fasteners. However, polymers with high thermal conductivity often suffer from insufficient mechanical strength and other challenges, including high production costs, elevated interfacial thermal resistance, and flammability. Inspired by the 3D "spininess-seeds-bark" structure of cocklebur, cast polyurethane (PUC) composites are developed using copper ethylenediamine methylene-phosphonate as the "spininess" and functionalized alumina microspheres as the "seeds" filler. This spininess configuration prevents organophosphate self-polymerization, imparting self-extinguishing properties to the polymer, while also enhancing the mechanical strength and thermal conductivity by connecting the "seeds" to the matrix. The bark-like structure enables effective interlocking of functional particles, optimizing the synergy within the composite. The elevated surface reduces interfacial thermal resistance, leading to enhanced thermal conductivity. The resulting PUC composites demonstrate impressive performance, with a tensile strength of 15.9 MPa and thermal conductivity of 2.51 W m⁻¹ K⁻¹, providing effective continuous cooling for high-power CPUs. These composites offer low density, broad availability, and environmental sustainability, making them promising candidates for sustainable electronics and new energy applications, aligned with global development strategies.
Collapse
Affiliation(s)
- Yongbin Wang
- School of Materials Science and Engineering, Tongji University, Shanghai, 201804, P. R. China
| | - Yong Fan
- School of Materials Science and Engineering, Tongji University, Shanghai, 201804, P. R. China
| | - Kaichao Pan
- School of Materials Science and Engineering, Tongji University, Shanghai, 201804, P. R. China
| | - Zunfeng Liu
- Key Laboratory of Functional Polymer Materials, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Weiqiang Zhao
- Key Laboratory of Functional Polymer Materials, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Xiang Zhou
- Department of Science, China Pharmaceutical University, Nanjing, 211198, P. R. China
| | - Jun Qiu
- School of Materials Science and Engineering, Tongji University, Shanghai, 201804, P. R. China
| |
Collapse
|
6
|
Santos PHS, Suzuki CK, Lannes SCDS. Effects of Adding Micronutrient Mixtures to a Model Dark Chocolate System and Partially Replacing the Fat Phase with a Structuring Oleogel. Foods 2025; 14:430. [PMID: 39942023 PMCID: PMC11817495 DOI: 10.3390/foods14030430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 01/21/2025] [Accepted: 01/24/2025] [Indexed: 02/16/2025] Open
Abstract
Supplements improve consumers' health and well-being. Oleogels are fat substitutes that offer nutritional and structural improvements to foods. This study aimed to formulate and observe chocolate's structural differences and properties supplemented with different premixes for immune support and oleogel based on Brazil nut oil. Six 60% dark chocolates were produced using oleogel as a partial substitute for cocoa butter (with and without premixes), and premix 1 (vitamin D3, vitamin C, and zinc) or premix 2 (vitamins D3, C, A, E, zinc, and selenium). Texture, rheology, thermal analysis DSC, color, water activity, moisture, pH, and fat profile were determined. The results revealed that the whiteness index was higher for the oleogel and supplemented products. The use of oleogel reduced the lipid content of the products by 5% and saturated fatty acids by 13%. DSC showed changes in the melting and crystallization profiles for the supplemented products. All samples showed thixotropy, and the yield value was significantly different (p ≤ 0.05) in only one sample. Hardness presented a lower value (±50%) for products with oleogel. In sum, replacing part of the cocoa butter with an oleogel made the products softer, improved their structural quality, and changed their melting and crystallization profiles, and the chocolates showed nutritional improvement.
Collapse
Affiliation(s)
| | | | - Suzana Caetano da Silva Lannes
- Pharmaceutical Sciences School, University of Sao Paulo, Av. Prof. Lineu Prestes, 580 Butantã, São Paulo CEP 05508000, Brazil; (P.H.S.S.); (C.K.S.)
| |
Collapse
|
7
|
Baburoglu E, Tang MH, Alvarez NJ. Microscale Electrical Resistivity Measurements to Investigate Particle Distribution. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:1231-1240. [PMID: 39772702 PMCID: PMC11755783 DOI: 10.1021/acs.langmuir.4c03429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 12/02/2024] [Accepted: 12/03/2024] [Indexed: 01/11/2025]
Abstract
The functional performance of a particulate thin film depends greatly on the particle distribution that forms during drying. In situ methods for monitoring the impact of different processing parameters on the distribution of particles currently require expensive and specialized equipment. This work addresses this gap by miniaturizing a geophysical prospecting method to thin-film applications. In this method, four-electrode resistivity measurements at variable probe spacing detect changes in the vertical particle concentration profile. A heuristic colloidal drying model describes the particle distribution during drying in terms of the relative effects of Brownian diffusion, sedimentation, and evaporation. For sedimentation- and evaporation-dominated drying, the film is modeled as two stratified layers of different concentrations. Solving this model simultaneously alongside Laplace's equation for electrostatic resistance identifies the parameters necessary to distinguish between diffusion-, sedimentation-, and evaporation-dominated drying. For resistive particles in a conductive solvent, simulations predict that the normalized thickness of the top layer, δt/H0, must exceed a critical value to distinguish between different drying regimes. The heuristic model results are validated theoretically by comparison to a physics-based drying model. Model predictions are experimentally validated by fabricating a custom microlithography four-line probe device and measuring the transient resistance of systems for which the drying mechanism is known. This work offers a low-cost and in situ method to identify drying mechanisms and extract physical parameters that better characterize the processing-structure-function relationships for many coatings.
Collapse
Affiliation(s)
- Emre Baburoglu
- Materials
Science and Engineering, Drexel University, 3141 Chestnut Street, Philadelphia, Pennsylvania 19104, United States
| | - Maureen H. Tang
- Materials
Science and Engineering, Drexel University, 3141 Chestnut Street, Philadelphia, Pennsylvania 19104, United States
- Chemical
and Biological Engineering, Drexel University, 3141 Chestnut Street, Philadelphia, Pennsylvania 19104, United States
| | - Nicolas J. Alvarez
- Materials
Science and Engineering, Drexel University, 3141 Chestnut Street, Philadelphia, Pennsylvania 19104, United States
- Chemical
and Biological Engineering, Drexel University, 3141 Chestnut Street, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
8
|
Wang J, Zeng D, Yan R, Huangfu J, Hu Q, Cai Y, Liu T, Zhao M, Zhao Q. Investigating the impact of static destabilization mechanism on fat crystallization dynamics, emulsion rheology, and whipping properties of whipping cream. Food Chem 2025; 463:141272. [PMID: 39306995 DOI: 10.1016/j.foodchem.2024.141272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 08/25/2024] [Accepted: 09/11/2024] [Indexed: 11/14/2024]
Abstract
In this work, the effect of storage time on the fat crystallization, rheological and whipping characteristics of emulsions was studied and the static destabilization mechanism during storage was explored. As the storage time prolonged, peak melting temperature and onset of melting temperature increased while both the crystallization temperature and crystallization rate increased. Crystal birefringence was more pronounced at the oil/water interface accompanied by the desorption of interfacial proteins from fat droplets. The droplet size (d4,3) began to increase significantly (p < 0.05) from the 5th month. The viscosity and the elastic modulus increased from 505.2 mPa·s to 908.4 mPa·s, and from 23.53 Pa to 51.38 Pa, respectively, as storing from 1st to 7th month. The whipping time decreased while the partial coalescence rate increased from 50.84 % to 65.34 %. The whipped cream at the 3rd month exhibited a smooth surface, whereas a rough surface and lost gloss was observed at the 7th month.
Collapse
Affiliation(s)
- Junwei Wang
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Di Zeng
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; School of Food Science and Engineering, Guangdong Ocean University, Yangjiang Campus, Yangjiang 529500, China
| | - Ren Yan
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Junjing Huangfu
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Qingyan Hu
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Yongjian Cai
- School of Food Science and Bioengineering, Changsha University of Science and Technology, Changsha 410114, China.
| | - Tongxun Liu
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Mouming Zhao
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Qiangzhong Zhao
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China.
| |
Collapse
|
9
|
Pombal M, Marcet I, Rendueles M, Diaz M. Emulsifiers: Their Influence on the Rheological and Texture Properties in an Industrial Chocolate. Molecules 2024; 29:5185. [PMID: 39519825 PMCID: PMC11547402 DOI: 10.3390/molecules29215185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 10/28/2024] [Accepted: 10/31/2024] [Indexed: 11/16/2024] Open
Abstract
The complexity of the chocolate matrix leads to it having characteristic rheological properties that may pose difficulties for its industrial manufacture. Many factors influence the flow behaviour of chocolates, such as raw materials, the amount of fat, the moisture content, particle-size distribution, the concentration of emulsifiers, or manufacturing conditions, among others. This study focusses on the rheological properties of an industrially manufactured chocolate with a 48% cocoa content, and the effect caused by the addition of two emulsifiers (soya lecithin and polyglycerol polyricinoleate (PGPR)) on the rheological properties. In the case of lecithin, a clear effect has been observed on the plastic viscosity and the yield stress. Plastic viscosity decreases until a concentration of 0.6% lecithin is reached, and thereafter remains relatively constant, while yield stress increases over the studied range. This effect is not observed when PGPR is used as the emulsifying agent. In this case, a small concentration of PGPR decreases the yield stress. Thixotropy was determined using the Casson model, and its behaviour was found to be similar to that of plastic viscosity with respect to changes in the PGPR and lecithin concentrations. Textural determinations were also carried out, relating the rheology characteristics to the texturometry.
Collapse
Affiliation(s)
- Maria Pombal
- Department of Chemical and Environmental Engineering, University of Oviedo, C/Julián Clavería s/n, 33071 Oviedo, Spain; (M.P.); (I.M.); (M.D.)
- Chocolates Lacasa, 33199 Siero, Spain
| | - Ismael Marcet
- Department of Chemical and Environmental Engineering, University of Oviedo, C/Julián Clavería s/n, 33071 Oviedo, Spain; (M.P.); (I.M.); (M.D.)
| | - Manuel Rendueles
- Department of Chemical and Environmental Engineering, University of Oviedo, C/Julián Clavería s/n, 33071 Oviedo, Spain; (M.P.); (I.M.); (M.D.)
| | - Mario Diaz
- Department of Chemical and Environmental Engineering, University of Oviedo, C/Julián Clavería s/n, 33071 Oviedo, Spain; (M.P.); (I.M.); (M.D.)
| |
Collapse
|
10
|
Zheng Z, Sun Z, Li M, Yang J, Yang Y, Liang H, Xiang H, Meng J, Zhou X, Liu L, Wu Z, Yang S. An update review on biopolymer Xanthan gum: Properties, modifications, nanoagrochemicals, and its versatile applications in sustainable agriculture. Int J Biol Macromol 2024; 281:136562. [PMID: 39423988 DOI: 10.1016/j.ijbiomac.2024.136562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 09/30/2024] [Accepted: 10/11/2024] [Indexed: 10/21/2024]
Abstract
During the development of green agriculture and pesticide use, "reducing pesticides use and improving control efficiency" is imperative. To date, new pesticide formulations created by nanotechnology can be expected to overcome the difficulties that cannot be solved by the traditional pesticide processes and make pesticide formulations close to the needs of green agricultural production. As natural polysaccharides, Xanthan gum (XG) charactered by a repeated units and side chain of d-glucose, d-mannose, and d-glucuronic acid, and thereby having the unprecedented features in response to wide practice in various fields. This review introduces the properties of the natural polymer XG and its current status of application in agriculture, focusing on the pesticide adjuvant and preparation of novel pesticide and fertilizer delivery systems (such as core-shell and hydrogel), and combined with the applications in mulch film and soil engineering. Furthermore, the properties of Xantho-oligosaccharides suitable for agriculture were discussed. Finally, the potential of XG for the creation of nanopesticides and its future prospects are highlighted. Taken together, XG's excellent performance endows it with a wide range of applications in the agriculture field, and result in strong stimulating the sustainable development of agriculture and evolution of agricultural industry.
Collapse
Affiliation(s)
- Zhicheng Zheng
- State Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Zhaoju Sun
- State Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Mei Li
- State Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Jingsha Yang
- State Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Yike Yang
- State Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Hong Liang
- State Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Hongmei Xiang
- State Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Jiao Meng
- State Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Xiang Zhou
- State Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China.
| | - Liwei Liu
- State Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Zhibing Wu
- State Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Song Yang
- State Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China.
| |
Collapse
|
11
|
Zhang H, Yu R, Xia Y, Liu J, Tu R, Shi J, Dai H. Effect of magnesium and calcium ions on the strength and biofunctionality of GelMA/SAMA composite hydrogels. J Mater Chem B 2024; 12:10692-10704. [PMID: 39315761 DOI: 10.1039/d4tb00666f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Natural polymers and synthetic polymers have been extensively studied as scaffold materials, with the former offering advantages such as biocompatibility, biodegradability, and structural similarity to the natural extracellular matrix (ECM). However, the use of natural polymers in extrusion-based 3D printing has been limited by their poor mechanical properties and challenging rheological properties. In this study, gelatin and sodium alginate were utilized as scaffold materials, with the addition of Ca2+ and Mg2+ components to enhance their physical and chemical properties, and influence early cell behavior. Subsequently, these materials were fabricated into scaffolds using 3D printing. Our results demonstrated that the addition of Ca2+ and Mg2+ could improve the compactness of the 3D network structure, mechanical strength, swelling properties and degradation properties of methacrylated gelatin/methacrylated sodium alginate (GelMA/SAMA) composite hydrogel. In vitro cell tests revealed that the GelMA/SAMA composite hydrogel exhibited negligible cytotoxicity and promoted early cell viability, particularly with the higher concentration of Mg2+ in the material. Notably, the extrusion 3D printing process successfully produced GelMA/SAMA scaffolds. These results collectively indicate that GelMA/SAMA composite scaffolds hold promise as potential biomaterials for tissue engineering applications.
Collapse
Affiliation(s)
- Hongbiao Zhang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing Biomeddical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan 430070, China.
| | - Ran Yu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing Biomeddical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan 430070, China.
| | - Yuhao Xia
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing Biomeddical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan 430070, China.
| | - Jiawei Liu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing Biomeddical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan 430070, China.
| | - Rong Tu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing Biomeddical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan 430070, China.
| | - Ji Shi
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing Biomeddical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan 430070, China.
| | - Honglian Dai
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing Biomeddical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan 430070, China.
- National energy key laboratory for new hydrogen-ammonia energy technologies, Foshan Xianhu Laboratory, Foshan 528200, China
| |
Collapse
|
12
|
Tyowua AT, Harbottle D, Binks BP. 3D printing of Pickering emulsions, Pickering foams and capillary suspensions - A review of stabilization, rheology and applications. Adv Colloid Interface Sci 2024; 332:103274. [PMID: 39159542 DOI: 10.1016/j.cis.2024.103274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 07/11/2024] [Accepted: 08/05/2024] [Indexed: 08/21/2024]
Abstract
Pickering emulsions and foams as well as capillary suspensions are becoming increasingly more popular as inks for 3D printing. However, a lack of understanding of the bulk rheological properties needed for their application in 3D printing is potentially stifling growth in the area, hence the timeliness of this review. Herein, we review the stability and bulk rheology of these materials as well as the applications of their 3D-printed products. By highlighting how the bulk rheology is tuned, and specifically the inks storage modulus, yield stress and critical balance between the two, we present a rheological performance map showing regions where good prints and slumps are observed thus providing clear guidance for future ink formulations. To further advance this field, we also suggest standard experimental protocols for characterizing the bulk rheology of the three types of ink: capillary suspension, Pickering emulsion and Pickering foam for 3D printing by direct ink writing.
Collapse
Affiliation(s)
- Andrew T Tyowua
- Applied Colloid Science and Cosmeceutical Group, Department of Chemistry, Benue State University, PMB, 102119, Makurdi, Nigeria; School of Chemical Engineering, University of Birmingham, Edgbaston. B15 2TT. UK.
| | - David Harbottle
- School of Chemical and Process Engineering, University of Leeds, Leeds. LS2 9JT. UK
| | - Bernard P Binks
- Department of Chemistry, University of Hull, Hull. HU6 7RX. UK
| |
Collapse
|
13
|
Nikoumanesh E, Jouaneh CJM, Poling-Skutvik R. Elucidating the role of physicochemical interactions on gel rheology. SOFT MATTER 2024; 20:7094-7102. [PMID: 38973240 DOI: 10.1039/d4sm00516c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/09/2024]
Abstract
Soft materials are characterized by their intricate interplay of structure, dynamics, and rheological properties. This complexity makes it challenging to accurately predict their response to shear stress. Here, we investigate how the nature of bonds - electrostatic attractions, physical entanglements, physical repulsion, and covalent bonds - affects the linear and nonlinear rheology of gels. Specifically, we determine the critical roles these bonds play in the yield transition and thixotropic recovery of gel properties through a combination of linear oscillatory deformations, serial creep divergence measurements, and time-resolved flow sweeps. Different classes of gels are prepared with nearly identical linear rheology but significantly different yield transitions and nonlinear properties post-yielding. These differences are directly related to the kinetics by which the underlying elastic networks rebuild after flow. Gels which exhibit thixotropic hysteresis are able to fully recover their yield stress over time while non-thixotropic gels possess time-independent yielding metrics. This direct comparison between thixotropy and yielding reveals the intimate relationship between these phenomena and their controlling physical mechanisms within soft, amorphous materials.
Collapse
Affiliation(s)
- Elnaz Nikoumanesh
- Department of Chemical Engineering, University of Rhode Island, Kingston, RI 02881, USA.
| | | | - Ryan Poling-Skutvik
- Department of Chemical Engineering, University of Rhode Island, Kingston, RI 02881, USA.
| |
Collapse
|
14
|
Ilyin SO. Structural Rheology in the Development and Study of Complex Polymer Materials. Polymers (Basel) 2024; 16:2458. [PMID: 39274091 PMCID: PMC11397847 DOI: 10.3390/polym16172458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/20/2024] [Accepted: 08/26/2024] [Indexed: 09/16/2024] Open
Abstract
The progress in polymer science and nanotechnology yields new colloidal and macromolecular objects and their combinations, which can be defined as complex polymer materials. The complexity may include a complicated composition and architecture of macromolecular chains, specific intermolecular interactions, an unusual phase behavior, and a structure of a multi-component polymer-containing material. Determination of a relation between the structure of a complex material, the structure and properties of its constituent elements, and the rheological properties of the material as a whole is the subject of structural rheology-a valuable tool for the development and study of novel materials. This work summarizes the author's structural-rheological studies of complex polymer materials for determining the conditions and rheo-manifestations of their micro- and nanostructuring. The complicated chemical composition of macromolecular chains and its role in polymer structuring via block segregation and cooperative hydrogen bonds in melt and solutions is considered using tri- and multiblock styrene/isoprene and vinyl acetate/vinyl alcohol copolymers. Specific molecular interactions are analyzed in solutions of cellulose; its acetate butyrate; a gelatin/carrageenan combination; and different acrylonitrile, oxadiazole, and benzimidazole copolymers. A homogeneous structuring may result from a conformational transition, a mesophase formation, or a macromolecular association caused by a complex chain composition or specific inter- and supramolecular interactions, which, however, may be masked by macromolecular entanglements when determining a rheological behavior. A heterogeneous structure formation implies a microscopic phase separation upon non-solvent addition, temperature change, or intense shear up to a macroscopic decomposition. Specific polymer/particle interactions have been examined using polyethylene oxide solutions, polyisobutylene melts, and cellulose gels containing solid particles of different nature, demonstrating the competition of macromolecular entanglements, interparticle interactions, and adsorption polymer/particle bonds in governing the rheological properties. Complex chain architecture has been considered using long-chain branched polybutylene-adipate-terephthalate and polyethylene melts, cross-linked sodium hyaluronate hydrogels, asphaltene solutions, and linear/highly-branched polydimethylsiloxane blends, showing that branching raises the viscosity and elasticity and can result in limited miscibility with linear isomonomer chains. Finally, some examples of composite adhesives, membranes, and greases as structured polymeric functional materials have been presented with the demonstration of the relation between their rheological and performance properties.
Collapse
Affiliation(s)
- Sergey O Ilyin
- A.V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, 29 Leninsky Prospect, 119991 Moscow, Russia
| |
Collapse
|
15
|
Ohsedo Y, Miyata K. Chemiluminescent Reaction Induced by Mixing of Fluorescent-Dye-Containing Molecular Organogels with Aqueous Oxidant Solutions. Gels 2024; 10:492. [PMID: 39195021 DOI: 10.3390/gels10080492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 07/18/2024] [Accepted: 07/24/2024] [Indexed: 08/29/2024] Open
Abstract
Chemiluminescence in solution-based systems has been extensively studied for the chemical analysis of biomolecules. However, investigations into the control of chemiluminescence reactions in gel-based systems, which offer flexibility in reaction conditions (such as the softness of the reaction environment), have only recently begun in polymer materials, with limited exploration in low-molecular-weight gelator (LMWG) systems. In this study, we investigated the chemiluminescence behaviors in the gel states using LMWG systems and evaluated their applicability to fluorescent-dye-containing molecular organogel systems/oxidant-containing aqueous systems. Using diethyl succinate organogels composed of 12-hydroxystearic acid as a molecular organogelator, we examined the fluorescent properties of various fluorescent dyes mixed with oxidant aqueous solutions. As the reaction medium transitioned from the solution to the gel state, the emission color and chemiluminescence duration changed significantly, and distinct characteristics were observed, for each dye. This result indicates that the chemiluminescence behavior differs significantly between the solution and gel states. Additionally, visual inspection and dynamic viscoelastic measurements of the mixed fluorescent dye-containing molecular gels and oxidant-containing aqueous solutions confirmed that the chemiluminescence induced by the mixing occurred within the gel phase. Furthermore, the transition from the solution to the gel state may allow for the modulation of the mixing degree, thereby enabling control over the progression of the chemiluminescence reaction.
Collapse
Affiliation(s)
- Yutaka Ohsedo
- Division of Engineering, Faculty of Engineering, Nara Women's University, Kitauoyahigashi-machi, Nara 630-8506, Japan
| | - Kiho Miyata
- Faculty of Human Life and Environment, Nara Women's University, Kitauoyahigashi-machi, Nara 630-8506, Japan
| |
Collapse
|
16
|
Geri M, Saint-Michel B, Divoux T, McKinley GH, Manneville S. Interplay between wall slip and shear banding in a thixotropic yield stress fluid. SOFT MATTER 2024; 20:5769-5780. [PMID: 38984407 DOI: 10.1039/d4sm00226a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2024]
Abstract
We study the local dynamics of a thixotropic yield stress fluid that shows a pronounced non-monotonic flow curve. This mechanically unstable behavior is generally not observable from standard rheometry tests, resulting in a stress plateau that stems from the coexistence of a flowing band with an unyielded region below a critical shear rate c. Combining ultrasound velocimetry with standard rheometry, we discover an original shear-banding scenario in the decreasing branch of the flow curve of model paraffin gels, in which the velocity profile of the flowing band is set by the applied shear rate instead of c. As a consequence, the material slips at the walls with a velocity that shows a non-trivial dependence on the applied shear rate. To capture our observations, we propose a differential version of the so-called lever rule, describing the extent of the flowing band and the evolution of wall slip with shear rate. This phenomenological model holds down to very low shear rates, at which the dimension of the flowing band becomes comparable to the size of the individual wax particles that constitute the gel microstructure, leading to cooperative effects. Our approach provides a framework where constraints imposed in the classical shear-banding scenario can be relaxed, with wall slip acting as an additional degree of freedom.
Collapse
Affiliation(s)
- Michela Geri
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | - Thibaut Divoux
- ENSL, CNRS, Laboratoire de Physique, F-69342 Lyon, France.
| | - Gareth H McKinley
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | |
Collapse
|
17
|
Emminger C, Cakmak UD, Major Z. Multi-Step Relaxation Characterization and Viscoelastic Modeling to Predict the Long-Term Behavior of Bitumen-Free Road Pavements Based on Polymeric Resin and Thixotropic Filler. MATERIALS (BASEL, SWITZERLAND) 2024; 17:3511. [PMID: 39063803 PMCID: PMC11278212 DOI: 10.3390/ma17143511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/10/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024]
Abstract
Asphalt pavements are fundamental to modern transportation infrastructure, requiring elasticity, firmness, and longevity. However, traditional asphalt, based on bitumen, faces several limitations. To improve pavement performance, polymer resins are being used to substitute bitumen and improve requirements. Therefore, a deep understanding of the material behavior is required. This study presents the analysis of the relaxation behavior of a poly(methyl methacrylate)-based pavement and the influence of mineral fillers. An approach using a linear elastic-viscoelastic material model was selected based on evidence and validated across the linear and nonlinear deformation range. The results reveal no influence of the mineral fillers on the relaxation behavior. The presented modification of the linear elastic and viscoelastic modeling reveals accurate results to predict long-term pavement performance. This approach offers a practical method for forecasting asphalt behavior. Further research is needed to incorporate deformation behavior into the model.
Collapse
Affiliation(s)
- Carina Emminger
- Institute of Polymer Product Engineering, Johannes Kepler University Linz, Altenbergerstraße 69, 4040 Linz, Austria; (U.D.C.); (Z.M.)
| | | | | |
Collapse
|
18
|
Gao F, Jiang H, Wang D, Wang S, Song W. Bio‐Inspired Magnetic‐Responsive Supramolecular‐Covalent Semi‐Convertible Hydrogel. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2401645. [PMID: 38754860 DOI: 10.1002/adma.202401645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 05/13/2024] [Indexed: 05/18/2024]
Abstract
Bio-inspired magnetic-responsive hydrogel is confined in exceedingly narrow spaces for soft robots and biomedicine in either gel state or magnetofluidic sol state. However, the motion of the gel state magnetic hydrogel will be inhibited in various irregular spaces due to the fixed shape and size and the sol-state magnetofluid gel may bring unpredictable residues in the confined narrow space. Inspired by the dynamic liquid lubricating mechanism of biological systems, novel magnetic-responsive semi-convertible hydrogel (MSCH) is developed through imbedding magnetic-responsive gelatin and amino-modified Fe3O4 nanoparticles network into the covalent network of polyvinyl alcohol, which can be switched between gel state and gel-sol state in response to magnetic stimuli. It can be attributed the disassembly of triple-helix structures of the gelatin under the action of the magnetic field, driven by force from the magnetic particles conjugated on the gelatin chain through electrostatic interactions, while the covalent network retains the hydrogel structural integrity. This leads to a sol layer on the MSCH surface enabling the MSCH to pass effectively through the confined channel or obstacle under magnetic field. The present MSCH will provide an alternative mode for magnetic field-related soft robots or actuators.
Collapse
Affiliation(s)
- Feng Gao
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Hongyue Jiang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Dayang Wang
- College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Shutao Wang
- CAS Key Laboratory of Bio-Inspired Materials and Interfacial Science, CAS Center for Excellence in Nanoscience, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Wenlong Song
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| |
Collapse
|
19
|
Shah P, Driscoll MM. Drop impact dynamics of complex fluids: a review. SOFT MATTER 2024; 20:4839-4858. [PMID: 38873962 DOI: 10.1039/d4sm00145a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
The impact of fluid drops on solid substrates has widespread interest in many industrial coating and spraying applications, such as ink-jet printing and agricultural pesticide sprays. Many of the fluids used in these applications are non-Newtonian, that is they contain particulate or polymeric additives that strongly modify their flow behaviour. While a large body of experimental and theoretical work has been done to understand the impact dynamics of Newtonian fluids, we as a community have much progress to make to understand how these dynamics are modified when the impact fluid has non-Newtonian rheology. In this review, we outline recent experimental, theoretical, and computational advances in the study of impact dynamics of complex fluids on solid surfaces. Here, we provide an overview of this field that is geared towards a multidisciplinary audience. Our discussion is segmented by two principal material constitutions: polymeric fluids and particulate suspensions. Throughout, we highlight promising future directions, as well as ongoing experimental and theoretical challenges in the field.
Collapse
Affiliation(s)
- Phalguni Shah
- Department of Physics and Astronomy, Northwestern University, Evanston, IL, USA.
| | - Michelle M Driscoll
- Department of Physics and Astronomy, Northwestern University, Evanston, IL, USA.
| |
Collapse
|
20
|
Zhao Y, Xie J. Numerical analysis of blood flow through stenosed microvessels using a multi-phase model. Heliyon 2024; 10:e29843. [PMID: 38694061 PMCID: PMC11058301 DOI: 10.1016/j.heliyon.2024.e29843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 04/15/2024] [Accepted: 04/16/2024] [Indexed: 05/03/2024] Open
Abstract
Blood flow in arterioles have attracted considerable research attention due to their clinical implications. However, the fluid structure interaction between red blood cells and plasma in the blood poses formidable difficulty to the computational efforts. In this contribution, we seek to represent the red blood cells in the blood as a continuous non-Newtonian phase and construct a multi-phase model for the blood flow in microvessels. The methods are presented and validated using a channel with sudden expansion. And the resulting blood flow inside a stenosed microvessel is investigated at different inlet velocity amplitudes and hematocrits. It is show that the increase of both inlet velocity amplitude and inlet hematocrit leads to longer and thicker cell-rich layer downstream the stenosis. Besides, it is found that the maximum values of wall shear stress scales up with inlet velocity amplitudes and hematocrits. These results show the validity of the proposed computational model and provide helpful insights into blood flow behaviors inside stenosed vessels.
Collapse
Affiliation(s)
- Yuhong Zhao
- Department of Blood Transfusion, The Frist Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, Zhejiang, China
| | - Jue Xie
- Department of Blood Transfusion, The Frist Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, Zhejiang, China
| |
Collapse
|
21
|
Leong YK. Direct Evidence of Electric Double Layer (EDL) Repulsive Force Being Responsible for the Time-Dependent Behavior of Clay Gels in the Structural Rejuvenation Mode. J Phys Chem B 2024; 128:3784-3793. [PMID: 38593457 DOI: 10.1021/acs.jpcb.4c00858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
A strong EDL repulsive force is needed to accentuate the time-dependent behavior of charge and shape anisotropic clay gels at the stepdown shear rate. This force was strengthened by P2O74- adsorption, increasing the negative charge density of the clay particles. At the stepdown shear rate of 10 s-1, it is strong enough to disrupt the flow-aligned structure attained at 1000 s-1 and orient the particles to form more bonds. The resultant outcome is stepdown shear stress increasing with time until these structure disruption and bond formation processes reach an equilibrium state. The number of lower energy approach configurations (-ve face - +ve edge) for bonding is reduced by the strengthened EDL repulsive force, slowing the bonding process. The time to reach the equilibrium stepdown shear stress value increased initially and then decreased and became zero at a high negative charge density where the charge anisotropy of the particles no longer exists. The need of a sufficiently strong EDL repulsive force for the display of time-dependent behavior is true for all clay gels: Laponite, hectorite, NaMnt, sepiolite, and kaolin gels. The untreated NaMnt gel already displayed time-dependent behavior as its EDL repulsive force is sufficiently strong. The same EDL-control time-dependent behavior was obtained if pH was used to vary the negative charge density of the clay particles.
Collapse
Affiliation(s)
- Yee-Kwong Leong
- Department of Chemical Engineering, The University of Western Australia, Crawley 6009, Australia
| |
Collapse
|
22
|
He X, Lu Q. A review of high internal phase Pickering emulsions: Stabilization, rheology, and 3D printing application. Adv Colloid Interface Sci 2024; 324:103086. [PMID: 38244533 DOI: 10.1016/j.cis.2024.103086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 10/25/2023] [Accepted: 01/05/2024] [Indexed: 01/22/2024]
Abstract
High internal phase Pickering emulsion (HIPPE) is renowned for its exceptionally high-volume fraction of internal phase, leading to flocculated yet deformed emulsion droplets and unique rheological behaviors such as shear-thinning property, viscoelasticity, and thixotropic recovery. Alongside the inherent features of regular emulsion systems, such as large interfacial area and well-mixture of two immiscible liquids, the HIPPEs have been emerging as building blocks to construct three-dimensional (3D) scaffolds with customized structures and programmable functions using an extrusion-based 3D printing technique, making 3D-printed HIPPE-based scaffolds attract widespread interest from various fields such as food science, biotechnology, environmental science, and energy transfer. Herein, the recent advances in preparing suitable HIPPEs as 3D printing inks for various applied fields are reviewed. This work begins with the stabilization mechanism of HIPPEs, followed by introducing the origin of their distinctive rheological behaviors and strategies to adjust the rheological behaviors to prepare more eligible HIPPEs as printing inks. Then, the compatibility between extrusion-based 3D printing and HIPPEs as building blocks was discussed, followed by a summary of the potential applications using 3D-printed HIPPE-based scaffolds. Finally, limitations and future perspectives on preparing HIPPE-based materials using extrusion-based 3D printing were presented.
Collapse
Affiliation(s)
- Xiao He
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive, NW, Calgary, Alberta, Canada
| | - Qingye Lu
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive, NW, Calgary, Alberta, Canada.
| |
Collapse
|
23
|
Barrulas RV, Corvo MC. Rheology in Product Development: An Insight into 3D Printing of Hydrogels and Aerogels. Gels 2023; 9:986. [PMID: 38131974 PMCID: PMC10742728 DOI: 10.3390/gels9120986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 12/09/2023] [Accepted: 12/15/2023] [Indexed: 12/23/2023] Open
Abstract
Rheological characterisation plays a crucial role in developing and optimising advanced materials in the form of hydrogels and aerogels, especially if 3D printing technologies are involved. Applications ranging from tissue engineering to environmental remediation require the fine-tuning of such properties. Nonetheless, their complex rheological behaviour presents unique challenges in additive manufacturing. This review outlines the vital rheological parameters that influence the printability of hydrogel and aerogel inks, emphasising the importance of viscosity, yield stress, and viscoelasticity. Furthermore, the article discusses the latest developments in rheological modifiers and printing techniques that enable precise control over material deposition and resolution in 3D printing. By understanding and manipulating the rheological properties of these materials, researchers can explore new possibilities for applications such as biomedicine or nanotechnology. An optimal 3D printing ink requires strong shear-thinning behaviour for smooth extrusion, forming continuous filaments. Favourable thixotropic properties aid viscosity recovery post-printing, and adequate yield stress and G' are crucial for structural integrity, preventing deformation or collapse in printed objects, and ensuring high-fidelity preservation of shapes. This insight into rheology provides tools for the future of material design and manufacturing in the rapidly evolving field of 3D printing of hydrogels and aerogels.
Collapse
Affiliation(s)
| | - Marta C. Corvo
- i3N|Cenimat, Department of Materials Science (DCM), NOVA School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal;
| |
Collapse
|
24
|
Vujičić NŠ, Makarević J, Popović J, Štefanić Z, Žinić M. ( N-Alkyloxalamido)-Amino Acid Amides as the Superior Thixotropic Phase Selective Gelators of Petrol and Diesel Fuels. Gels 2023; 9:852. [PMID: 37998942 PMCID: PMC10670479 DOI: 10.3390/gels9110852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 10/19/2023] [Accepted: 10/24/2023] [Indexed: 11/25/2023] Open
Abstract
(N-Alkyloxalamido)-amino acid amides 9-12 exhibit excellent gelation capacities toward some lipophilic solvents as well as toward the commercial fuels, petrol and diesel. Gelator 10 exhibits an excellent phase-selective gelation (PSG) ability and also possesses the highest gelation capacity toward petrol and diesel known to date, with minimum gelation concentration (MGC) values (%, w/v) as low as 0.012 and 0.015, respectively. The self-assembly motif of 10 in petrol and toluene gel fibres is determined from xerogel X-ray powder diffraction (XRPD) data via the simulated annealing procedure (SA) implemented in the EXPO2014 program and refined using the Rietveld method. The elucidated motif is strongly supported by the NMR (NOE and variable temperature) study of 10 toluene-d8 gel. It is shown that the triple unidirectional hydrogen bonding between gelator molecules involving oxalamide and carboxamide groups, together with their very low solubility, results in the formation of gel fibres of a very high aspect ratio (d = 10-30 nm, l = 0.6-1.3 μm), resulting in the as-yet unprecedented capacity of gelling commercial fuels. Rheological measurements performed at low concentrations of 10 confirmed the strength of the self-assembled network with the desired thixotropic properties that are advantageous for multiple applications. Instantaneous phase-selective gelation was obtained at room temperature through the addition of the 10 solution to the biphasic mixture of diesel and water in which the carrier solvent was congealed along with the diesel phase. The superior gelling properties and PSG ability of 10 may be used for the development of more efficient marine and surface oil spill recovery and waste water treatment technologies as well as the development of safer fuel storage and transport technologies.
Collapse
Affiliation(s)
- Nataša Šijaković Vujičić
- Ruđer Bošković Institute, Division of Organic Chemistry and Biochemistry, Bijenička 54, 10000 Zagreb, Croatia;
| | - Janja Makarević
- Ruđer Bošković Institute, Division of Organic Chemistry and Biochemistry, Bijenička 54, 10000 Zagreb, Croatia;
| | - Jasminka Popović
- Ruđer Bošković Institute, Division of Materials Physics, Laboratory for Synthesis and Crystallography of Functional Materials, Bijenička 54, 10000 Zagreb, Croatia;
| | - Zoran Štefanić
- Ruđer Bošković Institute, Division of Physical Chemistry, Laboratory for Chemical and Biological Crystallography, Bijenička 54, 10000 Zagreb, Croatia;
| | - Mladen Žinić
- Croatian Academy of Sciences and Arts, Nikole Šubića Zrinskog 11, 10000 Zagreb, Croatia
| |
Collapse
|
25
|
Rathinaraj JDJ, Lennon KR, Gonzalez M, Santra A, Swan JW, McKinley GH. Elastoviscoplasticity, hyperaging, and time-age-time-temperature superposition in aqueous dispersions of bentonite clay. SOFT MATTER 2023; 19:7293-7312. [PMID: 37694731 DOI: 10.1039/d3sm00492a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Clay slurries are both ubiquitous and essential in the oil exploration industry, and are most commonly employed as drilling fluids. Due to its natural abundance, bentonite clay is often the de facto choice for these materials. Understanding and predicting the mechanical response of these fluids is critical for safe and efficient drilling operations. However, rheological modeling of bentonite clay suspensions is complicated by the fact that thermally-driven microscopic arrangements of particle aggregates lead to a continual evolution of the viscoelastic properties and the yield stress of the suspension with time. Ergodic relations fundamental to linear viscoelastic theory, such as the Boltzmann superposition principle, do not hold in this scenario of 'rheological aging'. We present an approach for modeling the linear viscoelastic response of aging bentonite suspensions across a range of temperatures that is based on the transformation from laboratory time to an effective 'material time' domain in which time-translation invariance holds, and the typical relations of non-aging linear viscoelastic theory apply. In particular, we model the constitutive relationship between stress and strain-rate in the bentonite suspensions as fractional Maxwell gels with constant relaxation dynamics in the material time domain, in parallel with a non-aging Newtonian viscous contribution to the total stress. This approach is supported by experimental measurements of the stress relaxation and rapid time-resolved measurements of the linear viscoelastic properties performed using optimized exponential chirps. This data is then reduced to master curves in the material domain using time-age-time superposition to obtain best fits of the model parameters over a range of operating temperatures.
Collapse
Affiliation(s)
| | - Kyle R Lennon
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Miguel Gonzalez
- Aramco Services Company: Aramco Research Center, Houston, TX, USA
| | - Ashok Santra
- Aramco Services Company: Aramco Research Center, Houston, TX, USA
| | - James W Swan
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Gareth H McKinley
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
26
|
Martínez-Padilla LP. Rheology of liquid foods under shear flow conditions: Recently used models. J Texture Stud 2023. [PMID: 37726094 DOI: 10.1111/jtxs.12802] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 08/17/2023] [Accepted: 08/30/2023] [Indexed: 09/21/2023]
Abstract
Proper modeling of flow or viscosity curves as a function of shear rate is a useful tool in any engineering activity. The rheology of foods depends on the composition, processing to which they have been subjected and the state of dispersion in which they are found. Liquid foods are complex biosystems, that show non-Newtonian behavior under flow conditions. This review presents models used in recent decades to describe the experimental rheological behavior of various liquid foods, ranging from Newtonian fluids to the most complex. Some non-Newtonian parameters such as those of the Ostwald-de Waele, Bingham, Herschel-Bulkley, Casson, Cross, and Carreau models are summarized. Examples of thixotropic behavior described by the Weltman and Abu-Jdayil models are also presented. In each model, explanations based on the composition and dispersion state of the food are made. This is useful in innovative processing technologies and for scientists new to the field of food rheology. An attempt is made to exemplify and group the expected behavior for most fluid foods, including some for a dysphagia diet, depending on their composition or the dispersed system formed, which will be useful for professionals who wish to compare reported rheological parameters with those obtained experimentally.
Collapse
Affiliation(s)
- Laura Patricia Martínez-Padilla
- Laboratorio de Propiedades Reológicas y Funcionales en Alimentos, FES Cuautitlán, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
27
|
Ohsedo Y, Shinoda T. Creation of Molecular Gel Materials Using Polyrotaxane-Derived Polymeric Organogelator. Gels 2023; 9:730. [PMID: 37754411 PMCID: PMC10529233 DOI: 10.3390/gels9090730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/05/2023] [Accepted: 09/07/2023] [Indexed: 09/28/2023] Open
Abstract
Molecular gels, which are soft and flexible materials, are candidates for healthcare, cosmetic base, and electronic applications as new materials. In this study, a new polymeric organogelator bearing a polyrotaxane (PR) structure was developed and could induce the gelation of N',N″-dimethylformamide (DMF), a known solvent for dissolving polymeric materials and salts. Furthermore, the resulting DMF molecular gels exhibited thixotropic properties, observed by the inversion method using vials, which are essential for gel spreading. The scanning electron microscopy of the xerogels suggested that the gel-forming ability and thixotropic property of gels were imparted by the network of the laminated aggregates of thin layer material similar to those of other gels made of clay materials. This thin layer material would be formed by the aggregation of polymeric organogelators. The dynamic viscoelasticity measurements of the obtained gels revealed the stability and pseudo-thixotropic behaviors of the obtained gels, as well as a specific concentration effect on the mechanical behavior of the gels attributed to the introduction of the PR structure. Additionally, the preparation of the polymer organogelator/polymer composites was investigated to improve the mechanical properties via the filler effect induced by the agglomerates of organogelator. Moreover, the tensile tests confirmed that the introduction of the gelator enhanced the mechanical properties of the composites.
Collapse
Affiliation(s)
- Yutaka Ohsedo
- Division of Engineering, Faculty of Engineering, Nara Women’s University, Kitauoyahigashi-machi, Nara 630-8506, Japan
| | - Tomoka Shinoda
- Faculty of Human Life and Environment, Nara Women’s University, Kitauoyahigashi-machi, Nara 630-8506, Japan
| |
Collapse
|
28
|
Müller FJ, Isa L, Vermant J. Toughening colloidal gels using rough building blocks. Nat Commun 2023; 14:5309. [PMID: 37652918 PMCID: PMC10471594 DOI: 10.1038/s41467-023-41098-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 08/22/2023] [Indexed: 09/02/2023] Open
Abstract
Colloidal gels, commonly used as mesoporous intermediates or functional materials, suffer from brittleness, often showing small yield strains on the order of 1% or less for gelled colloidal suspensions. The short-range adhesive forces in most such gels are central forces-combined with the smooth morphology of particles, the resistance to yielding and shear-induced restructuring is limited. In this study, we propose an innovative approach to improve colloidal gels by introducing surface roughness to the particles to change the yield strain, giving rise to non-central interactions. To elucidate the effects of particle roughness on gel properties, we prepared thermoreversible gels made from rough or smooth silica particles using a reliable click-like-chemistry-based surface grafting technique. Rheological and optical characterization revealed that rough particle gels exhibit enhanced toughness and self-healing properties. These remarkable properties can be utilized in various applications, such as xerogel fabrication and high-fidelity extrusion 3D-printing, as we demonstrate in this study.
Collapse
Affiliation(s)
| | - Lucio Isa
- Department of Materials, ETH Zurich, Switzerland
| | - Jan Vermant
- Department of Materials, ETH Zurich, Switzerland.
| |
Collapse
|
29
|
Vujičić NŠ, Sajko JS, Brkljačić L, Radošević P, Jerić I, Kurečić I. Self-Healing Oxalamide Organogelators of Vegetable Oil. Gels 2023; 9:699. [PMID: 37754380 PMCID: PMC10528235 DOI: 10.3390/gels9090699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/26/2023] [Accepted: 08/26/2023] [Indexed: 09/28/2023] Open
Abstract
The aim of this study was to assess the gelling potential of chiral oxalamide derivatives in vegetable oils. Special emphasis was given to the potential applications of the examined oil gels as sustained delivery systems and as fat substitutes in food products. The applicability of oil gelators is envisaged in food, cosmetics, and the pharmaceutical industry. The regulations requiring the elimination of saturated fats and rising concerns among consumers health motivated us to investigate small organic molecules capable of efficiently transforming from liquid oil to a gel state. The oxalamide organogelators showed remarkable gelation efficiency in vegetable oils, thermal and mechanical stability, self-healing properties, and a long period of stability. The physical properties of the gels were analysed by TEM microscopy, DSC calorimetry, and oscillatory rheology. The controlled release properties of acetylsalicylic acid, ibuprofen, and hydrocortisone were analysed by the LC-MS method. The influence of the oil type (sunflower, soybean, and olive oil) on gelation efficiency of diverse oxalamide derivatives was examined by oscillatory rheology. The oxalamide gelators showed thermoreversible and thixotropic properties in vegetable oils with a minimum gelation concentration of just 0.025 wt%. The substitution of palm fats with gelled sunflower oil applied in cocoa and milk spreads at gelator concentrations lower than 0.2 wt% have shown promising viscoelastic properties compared to that of the original food products.
Collapse
Affiliation(s)
- Nataša Šijaković Vujičić
- Division of Organic Chemistry, Ruđer Bošković Institute, Bijenička 54, HR-10000 Zagreb, Croatia;
| | - Josipa Suć Sajko
- Laboratory for Biomimetic Chemistry, Ruđer Bošković Institute, Bijenička 54, HR-10000 Zagreb, Croatia; (J.S.S.); (L.B.); (I.J.); (I.K.)
| | - Lidija Brkljačić
- Laboratory for Biomimetic Chemistry, Ruđer Bošković Institute, Bijenička 54, HR-10000 Zagreb, Croatia; (J.S.S.); (L.B.); (I.J.); (I.K.)
| | - Petra Radošević
- Division of Organic Chemistry, Ruđer Bošković Institute, Bijenička 54, HR-10000 Zagreb, Croatia;
| | - Ivanka Jerić
- Laboratory for Biomimetic Chemistry, Ruđer Bošković Institute, Bijenička 54, HR-10000 Zagreb, Croatia; (J.S.S.); (L.B.); (I.J.); (I.K.)
| | - Ivona Kurečić
- Laboratory for Biomimetic Chemistry, Ruđer Bošković Institute, Bijenička 54, HR-10000 Zagreb, Croatia; (J.S.S.); (L.B.); (I.J.); (I.K.)
| |
Collapse
|
30
|
Qiao Y, Liu Z, Ma X, Keim NC, Cheng X. Heterogeneous Dynamics of Sheared Particle-Laden Fluid Interfaces with Janus Particle Doping. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:12032-12040. [PMID: 37590891 DOI: 10.1021/acs.langmuir.3c01085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/19/2023]
Abstract
The formation of particle clusters can substantially modify the dynamics and mechanical properties of suspensions in both two and three dimensions. While it has been well established that large network-spanning clusters increase the rigidity of particle systems, it is still unclear how the presence of localized nonpercolating clusters affects the dynamics and mechanical properties of particle suspensions. Here, we introduce self-assembled localized particle clusters at a fluid-fluid interface by mixing a fraction of Janus particles in a monolayer of homogeneous colloids. Each Janus particle binds to a few nearby homogeneous colloids, resulting in numerous small clusters uniformly distributed across the interface. Using a custom magnetic rod interfacial stress rheometer, we apply linear oscillatory shear to the particle-laden fluid interface. By analyzing the local affine deformation of particles from optical microscopy, we show that particles in localized clusters experience substantially lower shear-induced stretching than their neighbors outside clusters. We hypothesize that such heterogeneous dynamics induced by particle clusters increase the effective surface coverage of particles, which in turn enhances the shear moduli of the interface, as confirmed by direct interfacial rheological measurements. Our study illustrates the microscopic dynamics of small clusters in a shear flow and reveals their profound effects on the macroscopic rheology of particle-laden fluid interfaces. Our findings open an avenue for designing interfacial materials with improved mechanical properties via the control of formation of localized particle clusters.
Collapse
Affiliation(s)
- Yiming Qiao
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Zhengyang Liu
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Xiaolei Ma
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Nathan C Keim
- Department of Physics, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Xiang Cheng
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
31
|
Ohsedo Y, Ueno W. Creation of Polymer Hydrogelator/Poly(Vinyl Alcohol) Composite Molecular Hydrogel Materials. Gels 2023; 9:679. [PMID: 37754361 PMCID: PMC10528823 DOI: 10.3390/gels9090679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 08/21/2023] [Accepted: 08/22/2023] [Indexed: 09/28/2023] Open
Abstract
Polymer hydrogels, including molecular hydrogels, are expected to become materials for healthcare and medical applications, but there is a need to create new functional molecular gels that can meet the required performance. In this paper, for creating new molecular hydrogel materials, the gel formation behavior and its rheological properties for the molecular gels composed of a polymer hydrogelator, poly(3-sodium sulfo-p-phenylene-terephthalamide) polymer (NaPPDT), and water-soluble polymer with the polar group, poly(vinyl alcohol) (PVA) in various concentrations were examined. Molecular hydrogel composites formed from simple mixtures of NaPPDT aqueous solutions (0.1 wt.%~1.0 wt.%) and PVA aqueous solutions exhibited thixotropic behavior in the relatively low concentration region (0.1 wt.%~1.0 wt.%) and spinnable gel formation in the dense concentration region (4.0 wt.%~8.0 wt.%) with 1.0 wt.% NaPPDT aq., showing a characteristic concentration dependence of mechanical behavior. In contrast, each single-component aqueous solution showed no such gel formation in the concentration range in the present experiments. No gel formation behavior was also observed when mixed with common anionic polymers other than NaPPDT. This improvement in gel-forming ability due to mixing may be due to the increased density of the gel's network structure composed of hydrogelator and PVA and rigidity owing to NaPPDT.
Collapse
Affiliation(s)
- Yutaka Ohsedo
- Division of Engineering, Faculty of Engineering, Nara Women’s University, Kitauoyahigashi-Machi, Nara 630-8506, Japan
| | - Wakana Ueno
- Faculty of Human Life and Environment, Nara Women’s University, Kitauoyahigashi-Machi, Nara 630-8506, Japan
| |
Collapse
|
32
|
Wang X, Gao W, Liao B, Fatehi P. In Situ Copolymerization Studies of Lignin, Acrylamide, and Diallyldimethylammonium Chloride: Mechanism, Kinetics, and Rheology. ACS OMEGA 2023; 8:27156-27169. [PMID: 37546615 PMCID: PMC10398705 DOI: 10.1021/acsomega.3c02296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 07/04/2023] [Indexed: 08/08/2023]
Abstract
In this work, free-radical polymerization of kraft lignin, acrylamide (AM), and diallyldimethylammonium chloride (DADMAC) was studied in detail. In situ nuclear magnetic resonance (NMR), rheological analysis, and particle size techniques were conducted to understand the physicochemical characteristics of this copolymerization system. The copolymerization of lignin-AM and lignin-DADMAC had activation energies of 65.7 and 69.3 kJ/mol, respectively, and followed the first-order kinetic model, which was monitored by in situ H1 NMR results. The highest conversions of AM and DADMAC were 96 and 68%, respectively, in the copolymerization of lignin, AM, and DADMAC at the molar ratio of 5.5:2.4:1, pH 2 and 85 °C. The results illustrated that the participation of AM in the reaction was essential for polymerizing DADMAC to lignin due to less steric hindrance of AM than DADMAC facilitating its bridging performance. The monomer conversion ratio and dynamic rheology of the reaction system indicated that lignin acted as an inhibitor in the copolymerization reaction. The particle size analysis of the reaction mixtures reflected the alteration in the size of particles from coarse particles (>300 μm) to fine particles (<10 and 10-50 μm) and suspension to colloidal systems when the reaction progressed. The oscillation study of the reaction media confirmed the gradual increase in the viscosity of the reaction media, illustrating the crosslinking of lignin, AM, and DADMAC.
Collapse
|
33
|
Shriky B, Vigato AA, Sepulveda AF, Machado IP, de Araujo DR. Poloxamer-based nanogels as delivery systems: how structural requirements can drive their biological performance? Biophys Rev 2023; 15:475-496. [PMID: 37681104 PMCID: PMC10480380 DOI: 10.1007/s12551-023-01093-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 06/30/2023] [Indexed: 09/09/2023] Open
Abstract
Poloxamers or Pluronics®-based nanogels are one of the most used matrices for developing delivery systems. Due to their thermoresponsive and flexible mechanical properties, they allowed the incorporation of several molecules including drugs, biomacromolecules, lipid-derivatives, polymers, and metallic, polymeric, or lipid nanocarriers. The thermogelling mechanism is driven by micelles formation and their self-assembly as phase organizations (lamellar, hexagonal, cubic) in response to microenvironmental conditions such as temperature, osmolarity, and additives incorporated. Then, different biophysical techniques have been used for investigating those structural transitions from the mechanisms to the preferential component's orientation and organization. Since the design of PL-based pharmaceutical formulations is driven by the choice of the polymer type, considering its physico-chemical properties, it is also relevant to highlight that factors inherent to the polymeric matrix can be strongly influenced by the presence of additives and how they are able to determine the nanogels biopharmaceuticals properties such as bioadhesion, drug loading, surface interaction behavior, dissolution, and release rate control. In this review, we discuss the general applicability of three of the main biophysical techniques used to characterize those systems, scattering techniques (small-angle X-ray and neutron scattering), rheology and Fourier transform infrared absorption spectroscopy (FTIR), connecting their supramolecular structure and insights for formulating effective therapeutic delivery systems. Supplementary Information The online version contains supplementary material available at 10.1007/s12551-023-01093-2.
Collapse
Affiliation(s)
- Bana Shriky
- Department of Mechanical and Energy Systems Engineering, Faculty of Engineering and Informatics, University of Bradford, Bradford, UK
| | - Aryane Alves Vigato
- Natural and Human Sciences Centre, Federal University of ABC, Av. dos Estados 5001, Bloco A, Torre 3, Lab 503-3, Bairro Bangu, Santo André, São Paulo, CEP 090210-580 Brazil
| | - Anderson Ferreira Sepulveda
- Natural and Human Sciences Centre, Federal University of ABC, Av. dos Estados 5001, Bloco A, Torre 3, Lab 503-3, Bairro Bangu, Santo André, São Paulo, CEP 090210-580 Brazil
| | | | - Daniele Ribeiro de Araujo
- Natural and Human Sciences Centre, Federal University of ABC, Av. dos Estados 5001, Bloco A, Torre 3, Lab 503-3, Bairro Bangu, Santo André, São Paulo, CEP 090210-580 Brazil
| |
Collapse
|
34
|
Liard M, Lootens D, Hébraud P. Aggregation kinetics of a concentrated colloidal suspension under oscillatory flow. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2023; 46:49. [PMID: 37351717 DOI: 10.1140/epje/s10189-023-00294-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 04/22/2023] [Indexed: 06/24/2023]
Abstract
The aggregation behavior of an attractive colloidal silica suspension under oscillatory flow is studied using rheological measurement. We show that the competition between the aggregation of the particles and the aggregate breakup under external stress leads to a non-monotonous evolution of the elastic modulus with time. Remarkably, under certain conditions, the elasticity is not an increasing function of time but exhibits a maximum. The value of the maximum of the elastic modulus depends on the applied shear amplitude and the ionic strength of the suspension. Scaling laws that describes the evolutions of the elastic modulus as a function of the salinity and of the deformation amplitude are proposed and discussed.
Collapse
Affiliation(s)
- Maxime Liard
- Sika Technology AG, Tüffenwies 16, 8048, Zurich, Switzerland
| | - Didier Lootens
- Sika Technology AG, Tüffenwies 16, 8048, Zurich, Switzerland
| | - Pascal Hébraud
- IPCMS/CNRS, Université de Strasbourg, 23 rue du Loess, 67034, Strasbourg, France.
| |
Collapse
|
35
|
Construction of fracturing fluid with excellent proppant transport capacity using low molecular weight hydrophobic association polymer and surfactant. J Mol Liq 2023. [DOI: 10.1016/j.molliq.2023.121546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
|
36
|
Abbasi Moud A, Abbasi Moud A. Flow and assembly of cellulose nanocrystals (CNC): A bottom-up perspective - A review. Int J Biol Macromol 2023; 232:123391. [PMID: 36716841 DOI: 10.1016/j.ijbiomac.2023.123391] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 01/17/2023] [Accepted: 01/19/2023] [Indexed: 01/28/2023]
Abstract
Cellulosic sources, such as lignocellulose-rich biomass, can be mechanically or acid degraded to produce inclusions called cellulose nanocrystals (CNCs). They have several uses in the sectors of biomedicine, photonics, and material engineering because of their biodegradability, renewability, sustainability, and mechanical qualities. The processing and design of CNC-based products are inextricably linked to the rheological behaviour of CNC suspension or in combination with other chemicals, such as surfactants or polymers; in this context, rheology offers a significant link between microstructure and macro scale flow behaviour that is intricately linked to material response in applications. The flow behaviour of CNC items must be properly specified in order to produce goods with value-added characteristics. In this review article, we provide new research on the shear rheology of CNC dispersion and CNC-based hydrogels in the linear and nonlinear regime, with storage modulus values reported to range from ~10-3 to 103 Pa. Applications in technology and material science are also covered simultaneously. We carefully examined the effects of charge density, aspect ratio, concentration, persistence length, alignment, liquid crystal formation, the cause of chirality in CNCs, interfacial behaviour and interfacial rheology, linear and nonlinear viscoelasticity of CNC suspension in bulk and at the interface using the currently available literature.
Collapse
Affiliation(s)
- Aref Abbasi Moud
- Department of Chemical and Biological Engineering, The University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada; Biomedical Engineering Department, AmirKabir University of Technology, P.O. Box 15875/4413, PC36+P45 District 6, Tehran, Tehran Province 1591634311, Iran.
| | - Aliyeh Abbasi Moud
- Biomedical Engineering Department, AmirKabir University of Technology, P.O. Box 15875/4413, PC36+P45 District 6, Tehran, Tehran Province 1591634311, Iran
| |
Collapse
|
37
|
Bercea M. Rheology as a Tool for Fine-Tuning the Properties of Printable Bioinspired Gels. Molecules 2023; 28:2766. [PMID: 36985738 PMCID: PMC10058016 DOI: 10.3390/molecules28062766] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 03/12/2023] [Accepted: 03/15/2023] [Indexed: 03/30/2023] Open
Abstract
Over the last decade, efforts have been oriented toward the development of suitable gels for 3D printing, with controlled morphology and shear-thinning behavior in well-defined conditions. As a multidisciplinary approach to the fabrication of complex biomaterials, 3D bioprinting combines cells and biocompatible materials, which are subsequently printed in specific shapes to generate 3D structures for regenerative medicine or tissue engineering. A major interest is devoted to the printing of biomimetic materials with structural fidelity after their fabrication. Among some requirements imposed for bioinks, such as biocompatibility, nontoxicity, and the possibility to be sterilized, the nondamaging processability represents a critical issue for the stability and functioning of the 3D constructs. The major challenges in the field of printable gels are to mimic at different length scales the structures existing in nature and to reproduce the functions of the biological systems. Thus, a careful investigation of the rheological characteristics allows a fine-tuning of the material properties that are manufactured for targeted applications. The fluid-like or solid-like behavior of materials in conditions similar to those encountered in additive manufacturing can be monitored through the viscoelastic parameters determined in different shear conditions. The network strength, shear-thinning, yield point, and thixotropy govern bioprintability. An assessment of these rheological features provides significant insights for the design and characterization of printable gels. This review focuses on the rheological properties of printable bioinspired gels as a survey of cutting-edge research toward developing printed materials for additive manufacturing.
Collapse
Affiliation(s)
- Maria Bercea
- "Petru Poni" Institute of Macromolecular Chemistry, 41-A Grigore Ghica Voda Alley, 700487 Iasi, Romania
| |
Collapse
|
38
|
Iqbal N, Hazra DK, Purkait A, Agrawal A, Saini MK, Kumar J. Eco-Oriented Formulation and Stabilization of Oil-Colloidal Biodelivery Systems Based on GC-MS/MS-Profiled Phytochemicals from Wild Tomato for Long-Term Retention and Penetration on Applied Surfaces for Effective Crop Protection. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:3719-3731. [PMID: 36802590 DOI: 10.1021/acs.jafc.2c08612] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Vegetable oils as hydrophobic reserves in oil dispersions (OD) provide a practical approach to halt bioactive degradation for user and environment-efficient pest management. Using biodegradable soybean oil (57%), castor oil ethoxylate (5%), calcium dodecyl benzenesulfonates as nonionic and an-ionic surfactants, bentonite (2%), and fumed silica as rheology modifiers, we created an oil-colloidal biodelivery sytem (30%) of tomato extract with homogenization. The quality-influencing parameters, such as particle size (4.5 μm), dispersibility (97%), viscosity (61 cps), and thermal stability (2 years), have been optimized in accordance with specifications. Vegetable oil was chosen for its improved bioactive stability, high smoke point (257 °C), coformulant compatibility, and as a green build-in-adjuvant by improving spreadability (20-30%), retention and penetration (20-40%). In in vitro testing, it efficiently controlled aphids with 90.5% mortalities and 68.7-71.2% under field-conditions without producing phytotoxicity. Wild tomato-derived phytochemicals can be a safe and efficient alternative to chemical pesticides when combined wisely with vegetable oils.
Collapse
Affiliation(s)
- Nusrat Iqbal
- Institute of Pesticide Formulation Technology (IPFT), Sec-20, Udhyog Vihar, Gurugram 122016, India
| | - Dipak Kumar Hazra
- All India Network Project on Pesticide Residues, Department of Agricultural Chemicals, Bidhan Chandra Krishi Viswavidyalaya, Mohanpur, Nadia, West Bengal 741252, India
| | - Aloke Purkait
- Department of Soil Science and Agricultural Chemistry, Palli-Siksha Bhavana (Institute of Agriculture), Visva - Bharati, Sriniketan, Birbhum, West Bengal 731236, India
| | - Amrish Agrawal
- Institute of Pesticide Formulation Technology (IPFT), Sec-20, Udhyog Vihar, Gurugram 122016, India
| | - Mahesh Kumar Saini
- National Institute of Plant Health Management, Himayat Sagar Rd, Hyderabad, Telangana 500030, India
| | - Jitendra Kumar
- Institute of Pesticide Formulation Technology (IPFT), Sec-20, Udhyog Vihar, Gurugram 122016, India
| |
Collapse
|
39
|
Xu Q, Bu F, Sun C, Huang X, Luo H. Rheological studies of cellulose nanocrystal/dimethyl sulfoxide organogels. Carbohydr Polym 2023; 312:120830. [PMID: 37059557 DOI: 10.1016/j.carbpol.2023.120830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 03/11/2023] [Accepted: 03/14/2023] [Indexed: 03/31/2023]
Abstract
Cellulose nanocrystals (CNCs)/H2O gels have received significant interest in various applications for the past decades. And yet CNCs organogels, which are important to their wider application, are less explored. In this work, CNCs/Dimethyl sulfoxide (DMSO) organogels are carefully investigated by rheological methods. It is found that metal ions also can facilitate the organogel formation as in hydrogel. Charge screening and coordination effects play vital roles in the organogel formation and their mechanical strength. CNCs/DMSO gels with different cations display similar mechanical strength, while CNCs/H2O gels show increasing mechanical strength with the increasing valence of cations. It seems that the coordination between cations and DMSO alleviate the influence of valence on gel mechanical strength. Due to weak, fast and reversible electrostatic interactions among CNCs particles, both CNCs/DMSO and CNCs/H2O gels show instant thixotropic behavior, which may find some interesting applications in the field of drug delivery. The morphological changes observed in polarized optical microscope appear to be consistent with rheological results.
Collapse
Affiliation(s)
- Qingmeng Xu
- School of Materials Science and Engineering, Shanghai University, Shanghai 200444, China; Institute for the Conservation of Cultural Heritage, Shanghai University, Shanghai 200444, China
| | - Fanxing Bu
- Institute for the Conservation of Cultural Heritage, Shanghai University, Shanghai 200444, China
| | - Chen Sun
- School of Materials Science and Engineering, Shanghai University, Shanghai 200444, China; Institute for the Conservation of Cultural Heritage, Shanghai University, Shanghai 200444, China
| | - Xiao Huang
- Institute for the Conservation of Cultural Heritage, Shanghai University, Shanghai 200444, China.
| | - Hongjie Luo
- School of Materials Science and Engineering, Shanghai University, Shanghai 200444, China.
| |
Collapse
|
40
|
Zhong M, Ma L, Liu X, Liu Y, Wei S, Gao Y, Wang Z, Chu S, Dong S, Yang Y, Gao S, Li S. Exploring the influence of ultrasound on the antibacterial emulsification stability of lysozyme-oregano essential oil. ULTRASONICS SONOCHEMISTRY 2023; 94:106348. [PMID: 36871524 PMCID: PMC9988396 DOI: 10.1016/j.ultsonch.2023.106348] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/06/2023] [Accepted: 02/24/2023] [Indexed: 06/18/2023]
Abstract
A lysozyme-oregano essential oil (Lys-OEO) antibacterial emulsion was developed via ultrasonic treatment. Based on the general emulsion materials of ovalbumin (OVA) and inulin (IN), the addition of Lys and OEO successfully inhibited the growth of E. coli and S. aureus, two representatives of which were Gram-negative and Gram-positive bacteria respectively. The emulsion system in this study was designed to compensate for the limitation that Lys could only act on Gram-positive bacteria, and the stability of the emulsion was improved using ultrasonic treatment. The optimal amounts among OVA, Lys and OEO were found to be the mass ratio of 1:1 (Lys to OVA) and 20% (w/w) OEO. The ultrasonic treatment at the power of 200, 400, 600, and 800 W and time length of 10 min improved the stability of emulsion, in which the surface tension was below 6.04 mN/m and the Turbiscan stability index (TSI) did not exceed 10. The multiple light scattering showed that sonicated emulsions were less prone to delamination; salt stability and pH stability of emulsions were improved, CLSM image showed emulsion as oil-in-water type. In the meantime, the particles of the emulsions were found to become smaller and more uniform with ultrasonic treatment. The best dispersion and stability of the emulsion were both achieved at 600 W with a zeta potential of 7.7 mV, the smallest particle size and the most uniform particle distribution.
Collapse
Affiliation(s)
- Mengzhen Zhong
- Engineering Research Center of Bio-process, Ministry of Education, Key Laboratory for Agricultural Products Processing of Anhui Province, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China
| | - Lulu Ma
- Engineering Research Center of Bio-process, Ministry of Education, Key Laboratory for Agricultural Products Processing of Anhui Province, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China
| | - Xin Liu
- Engineering Research Center of Bio-process, Ministry of Education, Key Laboratory for Agricultural Products Processing of Anhui Province, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China
| | - Ying Liu
- Engineering Research Center of Bio-process, Ministry of Education, Key Laboratory for Agricultural Products Processing of Anhui Province, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China
| | - Shuaishuai Wei
- Engineering Research Center of Bio-process, Ministry of Education, Key Laboratory for Agricultural Products Processing of Anhui Province, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China
| | - Ying Gao
- Engineering Research Center of Bio-process, Ministry of Education, Key Laboratory for Agricultural Products Processing of Anhui Province, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China
| | - Zhan Wang
- Key Laboratory of Fermentation Engineering, Ministry of Education, School of Food and Biological Engineering, Hubei University of Technology, Wuhan 430068, China
| | - Shang Chu
- Key Laboratory of Fermentation Engineering, Ministry of Education, School of Food and Biological Engineering, Hubei University of Technology, Wuhan 430068, China
| | - Shijian Dong
- Anhui Rongda Food Co., Ltd., Xuancheng 242000, China
| | - Yuping Yang
- Wuhan Institute for Drug and Medical Device Control, Wuhan 430075, China
| | - Sihai Gao
- Department of Cardiothoracic and Vascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Shugang Li
- Engineering Research Center of Bio-process, Ministry of Education, Key Laboratory for Agricultural Products Processing of Anhui Province, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China.
| |
Collapse
|
41
|
Kang Y, Xu J, Meng L, Su Y, Fang H, Liu J, Cheng YY, Jiang D, Nie Y, Song K. 3D bioprinting of dECM/Gel/QCS/nHAp hybrid scaffolds laden with mesenchymal stem cell-derived exosomes to improve angiogenesis and osteogenesis. Biofabrication 2023; 15. [PMID: 36756934 DOI: 10.1088/1758-5090/acb6b8] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 01/27/2023] [Indexed: 02/10/2023]
Abstract
Craniofacial bone regeneration is a coupled process of angiogenesis and osteogenesis, which, associated with infection, still remains a challenge in bone defects after trauma or tumor resection. 3D tissue engineering scaffolds with multifunctional-therapeutic properties can offer many advantages for the angiogenesis and osteogenesis of infected bone defects. Hence, in the present study, a microchannel networks-enriched 3D hybrid scaffold composed of decellularized extracellular matrix (dECM), gelatin (Gel), quaterinized chitosan (QCS) and nano-hydroxyapatite (nHAp) (dGQH) was fabricated by an extrusion 3D bioprinting technology. And enlightened by the characteristics of natural bone microstructure and the demands of vascularized bone regeneration, the exosomes (Exos) isolated from human adipose derived stem cells as angiogenic and osteogenic factors were then co-loaded into the desired dGQH20hybrid scaffold based on an electrostatic interaction. The results of the hybrid scaffolds performance characterization showed that these hybrid scaffolds exhibited an interconnected pore structure and appropriate degradability (>61% after 8 weeks of treatment), and the dGQH20hybrid scaffold displayed the highest porosity (83.93 ± 7.38%) and mechanical properties (tensile modulus: 62.68 ± 10.29 MPa, compressive modulus: 16.22 ± 3.61 MPa) among the dGQH hybrid scaffolds. Moreover, the dGQH20hybrid scaffold presented good antibacterial activities (against 94.90 ± 2.44% ofEscherichia coliand 95.41 ± 2.65% ofStaphylococcus aureus, respectively) as well as excellent hemocompatibility and biocompatibility. Furthermore, the results of applying the Exos to the dGQH20hybrid scaffold showed that the Exo promoted the cell attachment and proliferation on the scaffold, and also showed a significant increase in osteogenesis and vascularity regeneration in the dGQH@Exo scaffoldsin vitroandin vivo. Overall, this novel dECM/Gel/QCS/nHAp hybrid scaffold laden with Exo has a considerable potential application in reservation of craniofacial bone defects.
Collapse
Affiliation(s)
- Yue Kang
- Department of Breast Surgery, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital and Institute, Shenyang 110042, People's Republic of China.,State Key Laboratory of Fine Chemicals, Dalian R&D Center for Stem Cell and Tissue Engineering, Dalian University of Technology, Dalian 116024, People's Republic of China
| | - Jie Xu
- State Key Laboratory of Fine Chemicals, Dalian R&D Center for Stem Cell and Tissue Engineering, Dalian University of Technology, Dalian 116024, People's Republic of China.,Zhengzhou Institute of Emerging Industrial Technology, Zhengzhou 450000, People's Republic of China
| | - Ling'ao Meng
- Department of Breast Surgery, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital and Institute, Shenyang 110042, People's Republic of China
| | - Ya Su
- State Key Laboratory of Fine Chemicals, Dalian R&D Center for Stem Cell and Tissue Engineering, Dalian University of Technology, Dalian 116024, People's Republic of China
| | - Huan Fang
- State Key Laboratory of Fine Chemicals, Dalian R&D Center for Stem Cell and Tissue Engineering, Dalian University of Technology, Dalian 116024, People's Republic of China.,Zhengzhou Institute of Emerging Industrial Technology, Zhengzhou 450000, People's Republic of China
| | - Jiaqi Liu
- State Key Laboratory of Fine Chemicals, Dalian R&D Center for Stem Cell and Tissue Engineering, Dalian University of Technology, Dalian 116024, People's Republic of China
| | - Yuen Yee Cheng
- Institute for Biomedical Materials and Devices, Faculty of Science, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Daqing Jiang
- Department of Breast Surgery, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital and Institute, Shenyang 110042, People's Republic of China
| | - Yi Nie
- Zhengzhou Institute of Emerging Industrial Technology, Zhengzhou 450000, People's Republic of China.,Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | - Kedong Song
- State Key Laboratory of Fine Chemicals, Dalian R&D Center for Stem Cell and Tissue Engineering, Dalian University of Technology, Dalian 116024, People's Republic of China
| |
Collapse
|
42
|
Scaling relations in rheology of proteins present in meat analogs. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2022.108195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
43
|
McPhee H, Soni V, Saber S, Zargartalebi M, Riordon J, Holmes M, Toews M, Sinton D. Rheological Behavior of Phase Change Slurries for Thermal Energy Applications. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:129-141. [PMID: 36574262 DOI: 10.1021/acs.langmuir.2c02279] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Phase change materials that leverage the latent heat of solid-liquid transition have many applications in thermal energy transport and storage. When employed as particles within a carrier fluid, the resulting phase change slurries (PCSs) could outperform present-day single-phase working fluids─provided that viscous losses can be minimized. This work investigates the rheological behavior of encapsulated and nonencapsulated phase change slurries (PCSs) for applicability in flowing thermal energy systems. The physical and thermal properties of the PCS candidates, along with their rheological behavior, are investigated below and above their phase transition points at shear rates of 1-300 s-1, temperatures of 20-80 °C, and concentrations of 15-37.5 wt %. The effect of shell robustness and melting on local shear thickening and global shear thinning is discussed, followed by an analysis of the required pumping power. A hysteresis analysis is performed to test the transient response of the PCS under a range of shear rates. We assess the complex viscoelastic behavior by employing oscillatory flow tests and by delineating the flow indices─flow consistency index (K) and flow behavior index (n). We identify a viscosity limit of 0.1 Pa·s for optimal thermal performance in high-flow applications such as renewable geothermal energy.
Collapse
Affiliation(s)
- Hannah McPhee
- Department of Mechanical and Industrial Engineering, University of Toronto, 5 King's College Road, Toronto, Ontario M5S 3G8, Canada
| | - Vikram Soni
- Department of Mechanical and Industrial Engineering, University of Toronto, 5 King's College Road, Toronto, Ontario M5S 3G8, Canada
| | - Sepehr Saber
- Department of Mechanical and Industrial Engineering, University of Toronto, 5 King's College Road, Toronto, Ontario M5S 3G8, Canada
| | - Mohammad Zargartalebi
- Department of Mechanical and Industrial Engineering, University of Toronto, 5 King's College Road, Toronto, Ontario M5S 3G8, Canada
| | - Jason Riordon
- Department of Mechanical and Industrial Engineering, University of Toronto, 5 King's College Road, Toronto, Ontario M5S 3G8, Canada
| | - Michael Holmes
- Eavor Technologies Inc., Calgary, Alberta T2P 3H9, Canada
| | - Matthew Toews
- Eavor Technologies Inc., Calgary, Alberta T2P 3H9, Canada
| | - David Sinton
- Department of Mechanical and Industrial Engineering, University of Toronto, 5 King's College Road, Toronto, Ontario M5S 3G8, Canada
| |
Collapse
|
44
|
Sepulveda AF, Kumpgdee-Vollrath M, Franco MK, Yokaichiya F, de Araujo DR. Supramolecular structure organization and rheological properties modulate the performance of hyaluronic acid-loaded thermosensitive hydrogels as drug-delivery systems. J Colloid Interface Sci 2023; 630:328-340. [DOI: 10.1016/j.jcis.2022.10.064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 09/15/2022] [Accepted: 10/14/2022] [Indexed: 11/05/2022]
|
45
|
Aussanasuwannakul A, Pondicherry K, Saengprakai J. Rheological and tribological characterization of herbal sweet sauce with different stabilizing systems. CYTA - JOURNAL OF FOOD 2022. [DOI: 10.1080/19476337.2022.2107706] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Aunchalee Aussanasuwannakul
- Department of Food Chemistry and Physics, Institute of Food Research and Product Development, Kasetsart University, Bangkok, Thailand
| | | | - Janpen Saengprakai
- Department of Nutrition and Health, Institute of Food Research and Product Development, Kasetsart University, Bangkok, Thailand
| |
Collapse
|
46
|
Study of Thixotropic Characteristics of a Kerosene Gel Propellant by Bayesian Optimization. Gels 2022; 9:gels9010015. [PMID: 36661782 PMCID: PMC9857846 DOI: 10.3390/gels9010015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/19/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022] Open
Abstract
The rheological behavior of gel propellants is crucial for their practical applications, especially in the rocket engine and ramjet fields. The thixotropic characteristics of gel propellants are an important component of their rheological properties and have a notable impact on their flow and injection process. However, most gel propellants contain rich, dynamic cross-linked network structures, which impart complex non-Newtonian fluid properties, and it is difficult to establish a unified mathematical model. In view of this, this study addresses the thixotropy of a prepared RP-3 kerosene gel and determines the mathematical model and model parameters describing its thixotropy. Experiments show that the kerosene gel exhibits shear-thinning properties as well as thixotropy. To describe the microstructural changes in the gel, three thixotropic constitutive models are introduced to analyze the rheological data, and the constitutive equation parameters are optimized. The three models are all structural dynamic models, which can be used to describe microstructural changes within the material. In addition, the fitting of the constitutive equation is a multiparameter optimization problem, and an appropriate optimization method must be used for parameter fitting. Therefore, the Bayesian optimization method combined with Gaussian process regression and the upper confidence bound (UCB) acquisition function is used in the multiparameter fitting of the constitutive models. Both experiments and numerical results show that the thixotropic model, which introduces a pre-factor with shear strain and assumes that the breakdown of the gel structure is related to energy dissipation rather than the shear rate, has a better fitting effect and prediction ability with regard to the gel. Combined with transient experiments at different shear rates, the model parameters of the constitutive law can be determined quickly by applying the Bayesian optimization method.
Collapse
|
47
|
Das M, Petekidis G. Shear induced tuning and memory effects in colloidal gels of rods and spheres. J Chem Phys 2022; 157:234902. [PMID: 36550059 DOI: 10.1063/5.0129709] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Shear history plays an important role in determining the linear and nonlinear rheological response of colloidal gels and can be used for tuning their structure and flow properties. Increasing the colloidal particle aspect ratio lowers the critical volume fraction for gelation due to an increase in the particle excluded volume. Using a combination of rheology and confocal microscopy, we investigate the effect of steady and oscillatory preshear history on the structure and rheology of colloidal gels formed by silica spheres and rods of length L and diameter D (L/D = 10) dispersed in 11 M CsCl solution. We use a non-dimensional Mason number, Mn (=Fvisc./Fattr.), to compare the effect of steady and oscillatory preshear on gel viscoelasticity. We show that after preshearing at intermediate Mn, attractive sphere gel exhibits strengthening, whereas attractive rod gel exhibits weakening. Rheo-imaging of gels of attractive rods shows that at intermediate Mn, oscillatory preshear induces large compact rod clusters in the gel microstructure, compared to steady preshear. Our study highlights the impact of particle shape on gel structuring under flow and viscoelasticity after shear cessation.
Collapse
Affiliation(s)
- Mohan Das
- IESL-FORTH, GR-71110 Heraklion, Greece
| | | |
Collapse
|
48
|
Moakes RJA, Grover LM, Robinson TE. Can We Structure Biomaterials to Spray Well Whilst Maintaining Functionality? BIOENGINEERING (BASEL, SWITZERLAND) 2022; 10:bioengineering10010003. [PMID: 36671575 PMCID: PMC9855191 DOI: 10.3390/bioengineering10010003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/14/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022]
Abstract
Structured fluid biomaterials, including gels, creams, emulsions and particle suspensions, are used extensively across many industries, including great interest within the medical field as controlled release vehicles to improve the therapeutic benefit of delivered drugs and cells. Colloidal forces within these materials create multiscale cohesive interactions, giving rise to intricate microstructures and physical properties, exemplified by increasingly complex mathematical descriptions. Yield stresses and viscoelasticity, typically arising through the material microstructure, vastly improve site-specific retention, and protect valuable therapeutics during application. One powerful application route is spraying, a convenient delivery method capable of applying a thin layer of material over geometrically uneven surfaces and hard-to-reach anatomical locations. The process of spraying is inherently disruptive, breaking a bulk fluid in successive steps into smaller elements, applying multiple forces over several length scales. Historically, spray research has focused on simple, inviscid solutions and dispersions, far from the complex microstructures and highly viscoelastic properties of concentrated colloidal biomaterials. The cohesive forces in colloidal biomaterials appear to conflict with the disruptive forces that occur during spraying. This review explores the physical bass and mathematical models of both the multifarious material properties engineered into structured fluid biomaterials and the disruptive forces imparted during the spray process, in order to elucidate the challenges and identify opportunities for rational design of sprayable, structured fluid biomaterials.
Collapse
|
49
|
Geisel S, Secchi E, Vermant J. Experimental challenges in determining the rheological properties of bacterial biofilms. Interface Focus 2022; 12:20220032. [PMID: 36330324 PMCID: PMC9560794 DOI: 10.1098/rsfs.2022.0032] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 08/03/2022] [Indexed: 08/01/2023] Open
Abstract
Bacterial biofilms are communities living in a matrix consisting of self-produced, hydrated extracellular polymeric substances. Most microorganisms adopt the biofilm lifestyle since it protects by conferring resistance to antibiotics and physico-chemical stress factors. Consequently, mechanical removal is often necessary but rendered difficult by the biofilm's complex, viscoelastic response, and adhesive properties. Overall, the mechanical behaviour of biofilms also plays a role in the spreading, dispersal and subsequent colonization of new surfaces. Therefore, the characterization of the mechanical properties of biofilms plays a crucial role in controlling and combating biofilms in industrial and medical environments. We performed in situ shear rheological measurements of Bacillus subtilis biofilms grown between the plates of a rotational rheometer under well-controlled conditions relevant to many biofilm habitats. We investigated how the mechanical history preceding rheological measurements influenced biofilm mechanics and compared these results to the techniques commonly used in the literature. We also compare our results to measurements using interfacial rheology on bacterial pellicles formed at the air-water interface. This work aims to help understand how different growth and measurement conditions contribute to the large variability of mechanical properties reported in the literature and provide a new tool for the rigorous characterization of matrix components and biofilms.
Collapse
Affiliation(s)
- Steffen Geisel
- Laboratory for Soft Materials, Department of Materials, ETH Zurich, Zurich, Switzerland
| | - Eleonora Secchi
- Department of Civil, Environmental and Geomatic Engineering, ETH Zurich, Zurich, Switzerland
| | - Jan Vermant
- Laboratory for Soft Materials, Department of Materials, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
50
|
Thickening effects of Ca2+ on apple high-methoxyl pectin: Dependences on Ca2+ concentration and the degree of esterification. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.108441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|