1
|
Cao E, Cao Y, Sun M. Surface Plasmonic Core-Shell Nanostructures in Surface Enhanced Raman Scattering and Photocatalysis. Anal Chem 2024; 96:11623-11638. [PMID: 38490972 DOI: 10.1021/acs.analchem.3c04761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2024]
Abstract
Core-shell nanostructures are a typical material design. Usually, it consists of a core wrapped in a shell. It has attracted much attention due to its tunable structure and composition, high surface area, and high programmability. The properties and resonance frequency of their surface plasmons can be adjusted by regulating the shape, size, and composition of metal core-shell nanostructures. This interaction makes core-shell nanostructures an excellent platform for plasmon-enhanced optical effects. This Perspective explores the categories of core-shell nanostructures, their exchanges with excitons in two-dimensional materials, their spectrum-enhanced aspects, and prospects for future applications of core-shell nanostructures.
Collapse
Affiliation(s)
- En Cao
- School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, P. R. China
- Research Institute for Electronic Science, Hokkaido University, Sapporo 001-0021, Japan
| | - Yi Cao
- School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, P. R. China
| | - Mengtao Sun
- School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, P. R. China
| |
Collapse
|
2
|
Kamp M, Sacanna S, Dullens RPA. Spearheading a new era in complex colloid synthesis with TPM and other silanes. Nat Rev Chem 2024; 8:433-453. [PMID: 38740891 DOI: 10.1038/s41570-024-00603-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/03/2024] [Indexed: 05/16/2024]
Abstract
Colloid science has recently grown substantially owing to the innovative use of silane coupling agents (SCAs), especially 3-trimethoxysilylpropyl methacrylate (TPM). SCAs were previously used mainly as modifying agents, but their ability to form droplets and condense onto pre-existing structures has enabled their use as a versatile and powerful tool to create novel anisotropic colloids with increasing complexity. In this Review, we highlight the advances in complex colloid synthesis facilitated by the use of TPM and show how this has driven remarkable new applications. The focus is on TPM as the current state-of-the-art in colloid science, but we also discuss other silanes and their potential to make an impact. We outline the remarkable properties of TPM colloids and their synthesis strategies, and discuss areas of soft matter science that have benefited from TPM and other SCAs.
Collapse
Affiliation(s)
- Marlous Kamp
- Van 't Hoff Laboratory for Physical & Colloid Chemistry, Department of Chemistry, Debye Institute for Nanomaterials Science, Utrecht University, Utrecht, The Netherlands.
| | - Stefano Sacanna
- Department of Chemistry, New York University, New York, NY, USA
| | - Roel P A Dullens
- Institute for Molecules and Materials, Radboud University, Nijmegen, The Netherlands.
| |
Collapse
|
3
|
Zhen G, Mu Y, Yuan P, Li Y, Li X. One-Step Synthesis of Self-Stratification Core-Shell Latex for Antimicrobial Coating. Molecules 2023; 28:molecules28062795. [PMID: 36985769 PMCID: PMC10052133 DOI: 10.3390/molecules28062795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/12/2023] [Accepted: 03/17/2023] [Indexed: 03/30/2023] Open
Abstract
Herein, we describe a one-step method for synthesizing cationic acrylate-based core-shell latex (CACS latex), which is used to prepare architectural coatings with excellent antimicrobial properties. Firstly, a polymerizable water-soluble quaternary ammonium salt (QAS-BN) was synthesized using 2-(Dimethylamine) ethyl methacrylate (DMAEMA) and benzyl bromide by the Hoffman alkylation reaction. Then QAS-BN, butyl acrylate (BA), methyl methacrylate (MMA), and vinyltriethoxysilane (VTES) as reactants and 2,2'-azobis(2-methylpropionamidine) dihydrochloride (AIBA) as a water-soluble initiator were used to synthesize the CACS latex. The effect of the QAS-BN dosage on the properties of the emulsion and latex film was systematically investigated. The TGA results showed that using QAS-BN reduced the latex film's initial degradation temperature but improved its thermal stability. In the transmission electron microscopy (TEM) photographs, the self-stratification of latex particles with a high dosage of QAS-BN was observed, forming a core-shell structure of latex particles. The DSC, TGA, XPS, SEM, and performance tests confirmed the core-shell structure of the latex particles. The relationship between the formation of the core-shell structure and the content of QAS-BN was proved. The formation of the core-shell structure was due to the preferential reaction of water-soluble monomers in the aqueous phase, which led to the aggregation of hydrophilic groups, resulting in the formation of soft-core and hard-shell latex particles. However, the water resistance of the films formed by CACS latex was greatly reduced. We introduced a p-chloromethyl styrene and n-hexane diamine (p-CMS/EDA) crosslinking system, effectively improving the water resistance in this study. Finally, the antimicrobial coating was prepared with a CACS emulsion of 7 wt.% QAS-BN and 2 wt.% p-CMS/EDA. The antibacterial activity rates of this antimicrobial coating against E. coli and S. aureus were 99.99%. The antiviral activity rates against H3N2, HCoV-229E, and EV71 were 99.4%, 99.2%, and 97.9%, respectively. This study provides a novel idea for the morphological design of latex particles. A new architectural coating with broad-spectrum antimicrobial properties was obtained, which has important public health and safety applications.
Collapse
Affiliation(s)
- Guanzhou Zhen
- Beijing Engineering Research Center of Synthesis and Application of Waterborne Polymer, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yuanchun Mu
- Beijing Engineering Research Center of Synthesis and Application of Waterborne Polymer, Beijing University of Chemical Technology, Beijing 100029, China
- State Key Laboratory of Organic-Inorganic Composite, Beijing University of Chemical Technology, Beijing 100029, China
| | - Peichen Yuan
- Beijing Engineering Research Center of Synthesis and Application of Waterborne Polymer, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yankun Li
- Beijing Engineering Research Center of Synthesis and Application of Waterborne Polymer, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xiaoyu Li
- Beijing Engineering Research Center of Synthesis and Application of Waterborne Polymer, Beijing University of Chemical Technology, Beijing 100029, China
- State Key Laboratory of Organic-Inorganic Composite, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
4
|
Direct continuous synthesis of macroRAFT-grafted Fe3O4 nanoclusters for the preparation of magnetic nanocomposites. POWDER TECHNOL 2023. [DOI: 10.1016/j.powtec.2023.118364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
|
5
|
Gurgel D, Vieira YA, Henriques RO, Machado R, Oechsler BF, Junior AF, de Oliveira D. A Comprehensive Review on Core‐Shell Polymeric Particles for Enzyme Immobilization. ChemistrySelect 2022. [DOI: 10.1002/slct.202202285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Danyelle Gurgel
- Department of Chemical Engineering and Food Engineering Federal University of Santa Catarina, EQA/UFSC - P.O. Box 476, Zip Code 88040-900 Florianopolis SC Brazil
| | - Yago Araujo Vieira
- Department of Chemical Engineering and Food Engineering Federal University of Santa Catarina, EQA/UFSC - P.O. Box 476, Zip Code 88040-900 Florianopolis SC Brazil
| | - Rosana Oliveira Henriques
- Department of Chemical Engineering and Food Engineering Federal University of Santa Catarina, EQA/UFSC - P.O. Box 476, Zip Code 88040-900 Florianopolis SC Brazil
| | - Ricardo Machado
- Department of Chemical Engineering and Food Engineering Federal University of Santa Catarina, EQA/UFSC - P.O. Box 476, Zip Code 88040-900 Florianopolis SC Brazil
| | - Bruno Francisco Oechsler
- Department of Chemical Engineering and Food Engineering Federal University of Santa Catarina, EQA/UFSC - P.O. Box 476, Zip Code 88040-900 Florianopolis SC Brazil
| | - Agenor Furigo Junior
- Department of Chemical Engineering and Food Engineering Federal University of Santa Catarina, EQA/UFSC - P.O. Box 476, Zip Code 88040-900 Florianopolis SC Brazil
| | - Débora de Oliveira
- Department of Chemical Engineering and Food Engineering Federal University of Santa Catarina, EQA/UFSC - P.O. Box 476, Zip Code 88040-900 Florianopolis SC Brazil
| |
Collapse
|
6
|
Ardabevskaia SN, Chamkina ES, Krasnova IY, Milenin SA, Sukhova EA, Boldyrev KL, Bakirov AV, Serenko OA, Shifrina ZB, Muzafarov AM. Controllable Synthesis of Hybrid Dendrimers Composed of a Carbosilane Core and an Aromatic Shell: Does Size Matter? Int J Mol Sci 2022; 23:ijms232415461. [PMID: 36555101 PMCID: PMC9779566 DOI: 10.3390/ijms232415461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 11/29/2022] [Accepted: 12/04/2022] [Indexed: 12/12/2022] Open
Abstract
The controllable synthesis of novel hybrid dendrimers composed of flexible and rigid components was accomplished via effective Cu-catalyzed azide-alkyne cycloaddition ("click") reaction between azide-functionalized carbosilane cores of two generations and monoethynyl-substituted hexaphenylbenzene dendron. A comprehensive analysis of the thermal and phase behavior of dendrimers allows us to detect a similar performance of dendrimers of both generations which, in our opinion, can be due to the similar ratio of rigid and flexible blocks in the dendrimers regardless the generation of carbosilane cores. The propensity to crystallization and ordering after the annealing procedure was confirmed by DSC and SWAXS. We found that hybrid dendrimers have a tendency to order depending on their constituents of different structures. This is in contrast to homogeneous dendrimers whose propensity to order is determined by the dendrimer molecule as a whole.
Collapse
Affiliation(s)
- Sofia N. Ardabevskaia
- N.S. Enikolopov Institute of Synthetic Polymeric Materials, Russian Academy of Sciences, 70 Profsouznaya St., 117393 Moscow, Russia
- Research Laboratory of New Silicone Materials and Technologies, Tula State Lev Tolstoy Pedagogical University, 125 Lenin Ave., Building 4, 300026 Tula, Russia
| | - Elena S. Chamkina
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Vavilov St., 119991 Moscow, Russia
| | - Irina Yu. Krasnova
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Vavilov St., 119991 Moscow, Russia
| | - Sergey A. Milenin
- N.S. Enikolopov Institute of Synthetic Polymeric Materials, Russian Academy of Sciences, 70 Profsouznaya St., 117393 Moscow, Russia
- Research Laboratory of New Silicone Materials and Technologies, Tula State Lev Tolstoy Pedagogical University, 125 Lenin Ave., Building 4, 300026 Tula, Russia
| | - Ekaterina A. Sukhova
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Vavilov St., 119991 Moscow, Russia
| | - Konstantin L. Boldyrev
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Vavilov St., 119991 Moscow, Russia
| | - Artem V. Bakirov
- N.S. Enikolopov Institute of Synthetic Polymeric Materials, Russian Academy of Sciences, 70 Profsouznaya St., 117393 Moscow, Russia
- National Research Center “Kurchatov Institute”, Akademika Kurchatova pl., 1, 123182 Moscow, Russia
| | - Olga A. Serenko
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Vavilov St., 119991 Moscow, Russia
| | - Zinaida B. Shifrina
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Vavilov St., 119991 Moscow, Russia
- Correspondence:
| | - Aziz M. Muzafarov
- N.S. Enikolopov Institute of Synthetic Polymeric Materials, Russian Academy of Sciences, 70 Profsouznaya St., 117393 Moscow, Russia
| |
Collapse
|
7
|
Wu C, Hou D, Yin B, Li S, Wang X. Investigation of Composite Protective Coatings Coregulated by Core-Shell Structures and Graphene Oxide Interfaces. ACS APPLIED MATERIALS & INTERFACES 2022; 14:40297-40312. [PMID: 36002909 DOI: 10.1021/acsami.2c08981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The construction of multiple microstructures is a significant measure in improving the protective performance of composite polymer coatings. In this paper, a novel polystyrene acrylate-highly hydrophobic polysiloxane composite emulsion was fabricated by innovatively integrating the core-shell emulsion method and Pickering emulsion method through the interfacial stabilization and molecular polymerization regulation of graphene oxide, achieving a significant improvement in the compatibility of the thermoplastic core with a thermoset shell. The bonding degree between the polystyrene acrylate (PSA) component and the siloxane component is significantly improved in the synthesized composite emulsions, achieving the dual protection of the cementitious substrate with surface shielding and internal crystalline hydrophobicity. The capillary water absorption of the concrete treated with Pickering emulsions is reduced by over 98.3% with high hydrophobicity and low permeability. Meanwhile, the absolute ζ-potential and impedance of composite membranes reach over 45 mV and 109 ohms, respectively, giving the cementitious substrate excellent resistance to ionic attack and acid/alkaline corrosion. In addition, the composite membranes have excellent resistance to tensile cracking and physical erosion, maintaining a favorable adhesion level and plastic deformation under acid/alkaline attack and thermal aging, respectively.
Collapse
Affiliation(s)
- Cong Wu
- School of Civil Engineering, Qingdao University of Technology, Qingdao 266033, China
| | - Dongshuai Hou
- School of Civil Engineering, Qingdao University of Technology, Qingdao 266033, China
| | - Bing Yin
- School of Civil Engineering, Qingdao University of Technology, Qingdao 266033, China
| | - Shaochun Li
- School of Civil Engineering, Qingdao University of Technology, Qingdao 266033, China
| | - Xinpeng Wang
- School of Civil Engineering, Qingdao University of Technology, Qingdao 266033, China
| |
Collapse
|
8
|
Shevchenko NN, Shabsel’s BM, Iurasova DI, Skurkis YO. Synthesis and Properties of Polymer Photonic Crystals Based on Core–Shell Particles. POLYMER SCIENCE SERIES C 2022. [DOI: 10.1134/s1811238222700084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
9
|
Toyofuji A, Hano N, Yamaguchi Y, Wakiya T, Ihara H, Takafuji M. Preparation of Hybrid Microspheres with Homogeneously Dispersed Nanosilica using In-situ Sol-Gel Reaction inside Polystyrene Matrix. CHEM LETT 2022. [DOI: 10.1246/cl.220121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Ayumi Toyofuji
- Department of Applied Chemistry and Biochemistry, Kumamoto University, 2-39-1 Kurokami, Kumamoto 860-8555, Japan
| | - Nanami Hano
- Department of Applied Chemistry and Biochemistry, Kumamoto University, 2-39-1 Kurokami, Kumamoto 860-8555, Japan
| | - Yuya Yamaguchi
- Department of Applied Chemistry and Biochemistry, Kumamoto University, 2-39-1 Kurokami, Kumamoto 860-8555, Japan
| | - Takeshi Wakiya
- Sekisui Chemical Co. Ltd., 2-1 Hyakuyama, Shimamoto-cho, Mishima-gun, Osaka 618-0021, Japan
| | - Hirotaka Ihara
- Department of Applied Chemistry and Biochemistry, Kumamoto University, 2-39-1 Kurokami, Kumamoto 860-8555, Japan
- Okinawa College, National Institute of Technology, 905, Henoko, Okinawa 905-2192, Japan
| | - Makoto Takafuji
- Department of Applied Chemistry and Biochemistry, Kumamoto University, 2-39-1 Kurokami, Kumamoto 860-8555, Japan
| |
Collapse
|
10
|
Tian Y, Huang X, Cheng Y, Niu Y, Ma J, Zhao Y, Kou X, Ke Q. Applications of adhesives in textiles: A review. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111089] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
11
|
Ladeira B, Custodio C, Mano J. Core-Shell Microcapsules: Biofabrication and Potential Applications in Tissue Engineering and Regenerative Medicine. Biomater Sci 2022; 10:2122-2153. [DOI: 10.1039/d1bm01974k] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The construction of biomaterial scaffolds that accurately recreate the architecture of living tissues in vitro is a major challenge in the field of tissue engineering and regenerative medicine. Core-shell microcapsules...
Collapse
|
12
|
Wichaita W, Promlok D, Sudjaipraparat N, Sripraphot S, Suteewong T, Tangboriboonrat P. A concise review on design and control of structured natural rubber latex particles as engineering nanocomposites. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2021.110740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
13
|
|
14
|
Power AJ, Remediakis IN, Harmandaris V. Interface and Interphase in Polymer Nanocomposites with Bare and Core-Shell Gold Nanoparticles. Polymers (Basel) 2021; 13:541. [PMID: 33673125 PMCID: PMC7918087 DOI: 10.3390/polym13040541] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 02/07/2021] [Accepted: 02/08/2021] [Indexed: 11/16/2022] Open
Abstract
Metal nanoparticles are used to modify/enhance the properties of a polymer matrix for a broad range of applications in bio-nanotechnology. Here, we study the properties of polymer/gold nanoparticle (NP) nanocomposites through atomistic molecular dynamics, MD, simulations. We probe the structural, conformational and dynamical properties of polymer chains at the vicinity of a gold (Au) NP and a functionalized (core/shell) Au NP, and compare them against the behavior of bulk polyethylene (PE). The bare Au NPs were constructed via a systematic methodology starting from ab-initio calculations and an atomistic Wulff construction algorithm resulting in the crystal shape with the minimum surface energy. For the functionalized NPs the interactions between gold atoms and chemically adsorbed functional groups change their shape. As a model polymer matrix we consider polyethylene of different molecular lengths, from the oligomer to unentangled Rouse like systems. The PE/Au interaction is parametrized via DFT calculations. By computing the different properties the concept of the interface, and the interphase as well, in polymer nanocomposites with metal NPs are critically examined. Results concerning polymer density profiles, bond order parameter, segmental and terminal dynamics show clearly that the size of the interface/interphase, depends on the actual property under study. In addition, the anchored polymeric chains change the behavior/properties, and especially the chain density profile and the dynamics, of the polymer chain at the vicinity of the Au NP.
Collapse
Affiliation(s)
- Albert J. Power
- Department of Mathematics and Applied Mathematics, University of Crete, GR-71409 Heraklion, Crete, Greece
- Institute of Applied and Computational Mathematics (IACM), Foundation for Research and Technology Hellas (FORTH), GR-71110 Heraklion, Crete, Greece
| | - Ioannis N. Remediakis
- Department of Materials Science and Technology, University of Crete, GR-71003 Heraklion, Crete, Greece;
- Institute of Electronic Structure and Laser, (IESL), Foundation for Research and Technology Hellas (FORTH), GR-71110 Heraklion, Crete, Greece
| | - Vagelis Harmandaris
- Department of Mathematics and Applied Mathematics, University of Crete, GR-71409 Heraklion, Crete, Greece
- Institute of Applied and Computational Mathematics (IACM), Foundation for Research and Technology Hellas (FORTH), GR-71110 Heraklion, Crete, Greece
- Computation-Based Science and Technology Research Center, The Cyprus Institute, Nicosia 2121, Cyprus
| |
Collapse
|
15
|
Zhao Y, Zhang Y, Cheng Y, Tian F, Jiang H, Dong X, Meng C. Fabrication and electrochemical properties of manganese dioxide coated on cobalt silicate nanobelts core-shell composites for hybrid supercapacitors. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.124951] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
16
|
Gong Y, Shao T, Chen X, Cao S, Chen L. Silicone acrylate dispersion based on semi-continuous seed emulsion polymerization using polymerizable emulsifiers. CHEMICAL PAPERS 2020. [DOI: 10.1007/s11696-020-01127-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
17
|
Wang T, Xu J, Zhu C, Ren W. Comparative Study on the Effects of Various Modified Admixtures on the Mechanical Properties of Styrene-Acrylic Emulsion-Based Cement Composite Materials. MATERIALS 2019; 13:ma13010008. [PMID: 31861364 PMCID: PMC6981463 DOI: 10.3390/ma13010008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 12/10/2019] [Accepted: 12/11/2019] [Indexed: 11/29/2022]
Abstract
This study carried out tensile tests at definite elongation, tensile and shear tests on 4 admixture-modified styrene-acrylic emulsion-based cement composites (SECCs), and measured the strength, deformation, and energy consumption indexes of test specimens, so as to investigate the influences of coalescing agent, plasticizer, silane coupling agent, and nanometer aluminium oxide on the bond, tensile, and shear mechanical properties of the test specimens. Additionally, the Field Emission Scanning Electron Microscope (FE-SEM) test and Mercury Intrusion Porosimetry (MIP) test were conducted on the composite material specimens, to analyze the microscopic mechanism of different admixtures in modifying the mechanical properties of the SECC. The results suggested that the addition of coalescing agent, plasticizer, silane coupling agent, and nanometer aluminium oxide improved the bond, tensile and shear properties of the SECC specimens to various degrees. Of them, the coalescing agent promoted the mutual cross-linking of organic polymers with inorganic products, and optimized the transition interface to enhance the comprehensive mechanical properties of the test specimens; by contrast, nanometer aluminium oxide developed secondary hydration reaction with the inorganic products, and refined the pore structure to modify the mechanical properties of test specimens. Therefore, both of them achieved significant modification effects. Typically, the optimal bond properties of FFAMC, PLMC, SCAMC, and NAMC test specimens were achieved at the coalescing agent, plasticizer, silane coupling agent, and nanometer aluminium oxide addition amounts of 4%, 1.5%, 3%, and 1%, respectively. Besides, the improving effects of different admixtures on the tensile property of SECC specimens followed the order of coalescing agent > nanometer aluminium oxide > plasticizer > silane coupling agent, with the optimal addition amounts of 4%, 1.5%, 1%, and 2%, respectively. In addition, the improving effects of different admixtures on the shear performance of SECC specimens followed the order of coalescing agent > nanometer aluminium oxide > silane coupling agent > plasticizer, with the optimal addition amounts of 4%, 1.5%, 1%, and 1%, respectively.
Collapse
Affiliation(s)
- Tengjiao Wang
- School of Aeronautical Engineering, Air Force Engineering University, Xi’an 710038, China
- Correspondence:
| | - Jinyu Xu
- School of Aeronautical Engineering, Air Force Engineering University, Xi’an 710038, China
- College of Mechanics and Civil Architecture, Northwest Polytechnic University, Xi’an 710072, China
| | - Congjin Zhu
- School of Aeronautical Engineering, Air Force Engineering University, Xi’an 710038, China
| | - Weibo Ren
- School of Aeronautical Engineering, Air Force Engineering University, Xi’an 710038, China
| |
Collapse
|
18
|
Studies on Synthesis and Characterization of Aqueous Hybrid Silicone-Acrylic and Acrylic-Silicone Dispersions and Coatings. Part I. COATINGS 2019. [DOI: 10.3390/coatings9010025] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The objective of the study was to investigate the effect of the method of synthesis on properties of aqueous hybrid silicone-acrylic (SIL-ACR) and acrylic-silicone (ACR-SIL) dispersions. SIL-ACR dispersions were obtained by emulsion polymerization of mixtures of acrylic and styrene monomers (butyl acrylate, styrene, acrylic acid and methacrylamide) of two different compositions in aqueous dispersions of silicone resins synthesized from mixtures of silicone monomers (octamethylcyclotetrasiloxane, vinyltriethoxysilane and methyltriethoxysilane) of two different compositions. ACR-SIL dispersions were obtained by emulsion polymerization of mixtures of the same silicone monomers in aqueous dispersions of acrylic/styrene copolymers synthesized from the same mixtures of acrylic and styrene monomers, so the compositions of ACR and SIL parts in corresponding ACR-SIL and SIL-ACR hybrid dispersions were the same. Examination of the properties of hybrid dispersions (particle size, particle structure, minimum film forming temperature, Tg of dispersion solids) as well as of corresponding coatings (contact angle, water resistance, water vapour permeability, impact resistance, elasticity) and films (tensile strength, elongation at break, % swell in toluene), revealed that they depended on the method of dispersion synthesis that led to different dispersion particle structures and on composition of ACR and SIL part. Generally, coatings produced from hybrid dispersions showed much better properties than coatings made from starting acrylic/styrene copolymer dispersions.
Collapse
|
19
|
Sun J, Zhang X, Bai L, Li Z, Jia Z, Gu J. Effect of Shell Growth on the Morphology of Polyvinyl Acetate/Polystyrene Inverted Core-Shell Latex Fabricated by Acrylonitrile Grafting. MATERIALS 2018; 11:ma11122482. [PMID: 30563282 PMCID: PMC6317000 DOI: 10.3390/ma11122482] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 11/11/2018] [Accepted: 12/04/2018] [Indexed: 11/16/2022]
Abstract
A novel strategy for fabricating inverted core-shell structured latex particles was implemented to investigate the morphology and properties of polyvinyl acetate (PVAc)-based latex. In this study, active grafting points were synthesized onto the surface of PVAc latex cores via grafting acrylonitrile (AN) to obtain a controllable coating growth of the shell monomer, styrene (St). The effect of shell growth on the morphological evolvement was explored by tuning the time of shell monomer polymerization. Unique particle morphologies, transferring from "hawthorn" type, over "peeled pomegranate" type, to final "strawberry-like" type, were observed and verified by electron microscopy. The morphological structure of latex particles exerted a significant effect on the particle size, phase structure, and mechanical properties of the obtained emulsions. The water-resistance of PVAc-based latex was also evaluated by the water absorption of latex films. More importantly, the experimental results provided a reasonable support for the controlled growth of St monomer, that is, the self-nucleation of dispersive St monomer can be transformed to in-situ coating growth on the PVAc core surface depending on the AN-active grafting points. This fabricating approach provides a reference for dynamical design and control of the latex particle morphology.
Collapse
Affiliation(s)
- Jiaxing Sun
- College of Materials Science and Engineering, Northeast Forestry University, Key Laboratory of Bio-based Material Science and Technology, Ministry of Education, Harbin 150040, China.
| | - Xiao Zhang
- College of Materials Science and Engineering, Northeast Forestry University, Key Laboratory of Bio-based Material Science and Technology, Ministry of Education, Harbin 150040, China.
| | - Long Bai
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, P.O. Box 163000, FIN-00076 Aalto, 02150 Espoo, Finland.
| | - Zhiguo Li
- College of Materials Science and Engineering, Northeast Forestry University, Key Laboratory of Bio-based Material Science and Technology, Ministry of Education, Harbin 150040, China.
| | - Zhao Jia
- College of Materials Science and Engineering, Northeast Forestry University, Key Laboratory of Bio-based Material Science and Technology, Ministry of Education, Harbin 150040, China.
| | - Jiyou Gu
- College of Materials Science and Engineering, Northeast Forestry University, Key Laboratory of Bio-based Material Science and Technology, Ministry of Education, Harbin 150040, China.
| |
Collapse
|
20
|
Zhao K, Mason TG. Assembly of colloidal particles in solution. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2018; 81:126601. [PMID: 29978830 DOI: 10.1088/1361-6633/aad1a7] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Advances in both top-down and bottom-up syntheses of a wide variety of complex colloidal building blocks and also in methods of controlling their assembly in solution have led to new and interesting forms of highly controlled soft matter. In particular, top-down lithographic methods of producing monodisperse colloids now provide precise human-designed control over their sub-particle features, opening up a wide range of new possibilities for assembly structures that had been previously limited by the range of shapes available through bottom-up methods. Moreover, an increasing level of control over anisotropic interactions between these colloidal building blocks, which can be tailored through local geometries of sub-particle features as well as site-specific surface modifications, is giving rise to new demonstrations of massively parallel off-chip self-assembly of specific target structures with low defect rates. In particular, new experimental realizations of hierarchical self-assembly and control over the chiral purity of resulting assembly structures have been achieved. Increasingly, shape-dependent, shape-complementary, and roughness-controlled depletion attractions between non-spherical colloids are being used in novel ways to create assemblies that go far beyond early examples, such as fractal clusters formed by diffusion-limited and reaction-limited aggregation of spheres. As self-assembly methods have progressed, a wide variety of advanced directed assembly methods have also been developed; approaches based on microfluidic control and applying structured electromagnetic fields are particularly promising.
Collapse
Affiliation(s)
- Kun Zhao
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People's Republic of China
| | | |
Collapse
|
21
|
Tiwari I, Mahanwar PA. Polyacrylate/silica hybrid materials: A step towards multifunctional properties. J DISPER SCI TECHNOL 2018. [DOI: 10.1080/01932691.2018.1489276] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Ingita Tiwari
- Department of Polymer and Surface Engineering, Institute of Chemical Technology , Mumbai , India
| | - P. A. Mahanwar
- Department of Polymer and Surface Engineering, Institute of Chemical Technology , Mumbai , India
| |
Collapse
|
22
|
Zhang Y, Zheng J, Jing X, Meng C. A strategy for the synthesis of VN@C and VC@C core–shell composites with hierarchically porous structures and large specific surface areas for high performance symmetric supercapacitors. Dalton Trans 2018; 47:8052-8062. [DOI: 10.1039/c8dt01194j] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
A novel strategy for the fabrication of VN@C and VC@C was developed by the thermal treatment with H2V3O8@C under N2 and Ar atmospheres. VN@C SSC device exhibited better electrochemical performance than VC@C SSC device.
Collapse
Affiliation(s)
- Yifu Zhang
- School of Chemistry
- Faculty of Chemical
- Environmental and Biological Science and Technology
- Dalian University of Technology
- Dalian 116024
| | - Jiqi Zheng
- School of Chemistry
- Faculty of Chemical
- Environmental and Biological Science and Technology
- Dalian University of Technology
- Dalian 116024
| | - Xuyang Jing
- School of Chemistry
- Faculty of Chemical
- Environmental and Biological Science and Technology
- Dalian University of Technology
- Dalian 116024
| | - Changgong Meng
- School of Chemistry
- Faculty of Chemical
- Environmental and Biological Science and Technology
- Dalian University of Technology
- Dalian 116024
| |
Collapse
|
23
|
Shen J, Sun JW, Hu Y, Kan CY. Polysiloxane/polyacrylate composite latexes with balanced mechanical property and breathability: Effect of core/shell mass ratio. J Appl Polym Sci 2017. [DOI: 10.1002/app.45258] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Jie Shen
- Department of Chemical Engineering; Key Laboratory of Advanced Materials of Ministry of Education, Tsinghua University; Beijing 100084 China
| | - Jian-wu Sun
- Department of Chemical Engineering; Key Laboratory of Advanced Materials of Ministry of Education, Tsinghua University; Beijing 100084 China
| | - Yang Hu
- Department of Chemical Engineering; Key Laboratory of Advanced Materials of Ministry of Education, Tsinghua University; Beijing 100084 China
| | - Cheng-you Kan
- Department of Chemical Engineering; Key Laboratory of Advanced Materials of Ministry of Education, Tsinghua University; Beijing 100084 China
| |
Collapse
|
24
|
Li H, Luo Y, Gao X. Core-shell nano-latex blending method to prepare multi-shape memory polymers. SOFT MATTER 2017; 13:5324-5331. [PMID: 28695221 DOI: 10.1039/c7sm00899f] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Multi-shape memory polymers were prepared by blending a series of styrene (St)-block-(styrene-random-meth acrylate (MA))-block-styrene triblock copolymer nano-latexes. These latexes synthesized using a reversible addition-fragmentation chain transfer (RAFT) emulsion polymerization method have a core-shell structure. The cores are formed by the middle poly(St-random-MA) blocks. They act as transition phases with variable transition temperatures via adjusting the St/MA ratio. When the latexes are blended with an identical PSt shell but different poly(St-random-MA) cores, the shells play a role in preventing the aggregation of these poly(St-random-MA) cores forming a crosslinked network after hot-press treatment. Therefore a polymer with well-distributed multiple nanophases is achieved, which shows a quadruple-shape memory behavior. Furthermore, the shape memory and recovery performance at a certain temperature can be improved on purpose by increasing the mass ratio of the corresponding transition phases, which can be realized via simply varying the blending ratio of different latexes. An optimized multi-shape memory polymer with the shape memory and recovery ratio higher than 80% at all the transition temperatures is achieved.
Collapse
Affiliation(s)
- Hongze Li
- The State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, 38 Zheda Road, Hangzhou, China.
| | | | | |
Collapse
|
25
|
Research Advances of Microencapsulation and Its Prospects in the Petroleum Industry. MATERIALS 2017; 10:ma10040369. [PMID: 28772728 PMCID: PMC5506935 DOI: 10.3390/ma10040369] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2017] [Revised: 03/13/2017] [Accepted: 03/16/2017] [Indexed: 01/20/2023]
Abstract
Additives in the petroleum industry have helped form an efficient system in the past few decades. Nowadays, the development of oil and gas has been facing more adverse conditions, and smart response microcapsules with the abilities of self-healing, and delayed and targeted release are introduced to eliminate obstacles for further exploration in the petroleum industry. However, limited information is available, only that of field measurement data, and not mechanism theory and structural innovation data. Thus we propose that the basic type, preparation, as well as mechanism of microcapsules partly depend on other mature fields. In this review, we explore the latest advancements in evaluating microcapsules, such as X-ray computed tomography (XCT), simulation, and modeling. Finally, some novel microencapsulated additives with unparalleled advantages, such as flexibility, efficiency, and energy-conservation are described.
Collapse
|
26
|
Bai L, Huan S, Zhang X, Jia Z, Gu J, Li Z. Rational design and synthesis of transition layer-mediated structured latex particles with poly(vinyl acetate) cores and poly(styrene) shells. Colloid Polym Sci 2017. [DOI: 10.1007/s00396-016-4008-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
27
|
Qiao Z, Qiu T, Liu W, Zhang L, Tu J, Guo L, Li X. A “green” method for preparing ABCBA penta-block elastomers by using RAFT emulsion polymerization. Polym Chem 2017. [DOI: 10.1039/c7py00464h] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
A clean method for preparing ABCBA penta-block terpolymers was developed in a surfactant and organic solvent free emulsion system via one-pot RAFT polymerization.
Collapse
Affiliation(s)
- Zhi Qiao
- State Key Laboratory of Organic−Inorganic Composites
- Key Laboratory of Carbon Fiber and Functional Polymers
- Ministry of Education
- Beijing Engineering Research Centre of Synthesis and Application of Waterborne Polymer
- Beijing University of Chemical Technology
| | - Teng Qiu
- State Key Laboratory of Organic−Inorganic Composites
- Key Laboratory of Carbon Fiber and Functional Polymers
- Ministry of Education
- Beijing Engineering Research Centre of Synthesis and Application of Waterborne Polymer
- Beijing University of Chemical Technology
| | - Weiwei Liu
- State Key Laboratory of Organic−Inorganic Composites
- Key Laboratory of Carbon Fiber and Functional Polymers
- Ministry of Education
- Beijing Engineering Research Centre of Synthesis and Application of Waterborne Polymer
- Beijing University of Chemical Technology
| | - Liangdong Zhang
- State Key Laboratory of Organic−Inorganic Composites
- Key Laboratory of Carbon Fiber and Functional Polymers
- Ministry of Education
- Beijing Engineering Research Centre of Synthesis and Application of Waterborne Polymer
- Beijing University of Chemical Technology
| | - Jinqiang Tu
- State Key Laboratory of Organic−Inorganic Composites
- Key Laboratory of Carbon Fiber and Functional Polymers
- Ministry of Education
- Beijing Engineering Research Centre of Synthesis and Application of Waterborne Polymer
- Beijing University of Chemical Technology
| | - Longhai Guo
- State Key Laboratory of Organic−Inorganic Composites
- Key Laboratory of Carbon Fiber and Functional Polymers
- Ministry of Education
- Beijing Engineering Research Centre of Synthesis and Application of Waterborne Polymer
- Beijing University of Chemical Technology
| | - Xiaoyu Li
- State Key Laboratory of Organic−Inorganic Composites
- Key Laboratory of Carbon Fiber and Functional Polymers
- Ministry of Education
- Beijing Engineering Research Centre of Synthesis and Application of Waterborne Polymer
- Beijing University of Chemical Technology
| |
Collapse
|
28
|
Organic-Inorganic Hydrophobic Nanocomposite Film with a Core-Shell Structure. MATERIALS 2016; 9:ma9121021. [PMID: 28774141 PMCID: PMC5456958 DOI: 10.3390/ma9121021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Revised: 12/01/2016] [Accepted: 12/05/2016] [Indexed: 02/01/2023]
Abstract
A method to prepare novel organic-inorganic hydrophobic nanocomposite films was proposed by a site-specific polymerization process. The inorganic part, the core of the nanocomposite, is a ternary SiO2–Al2O3–TiO2 nanoparticles, which is grafted with methacryloxy propyl trimethoxyl silane (KH570), and wrapped by fluoride and siloxane polymers. The synthesized samples are characterized by transmission electron microscopy (TEM), Fourier transform infrared (FTIR) spectrscopy, X-ray diffractometry (XRD), contact angle meter (CA), and scanning electron microscope (SEM). The results indicate that the novel organic-inorganic hydrophobic nanocomposite with a core-shell structure was synthesized successfully. XRD analysis reveals the nanocomposite film has an amorphous structure, and FTIR analysis indicates the nanoparticles react with a silane coupling agent (methacryloxy propyl trimethoxyl silane KH570). Interestingly, the morphology of the nanoparticle film is influenced by the composition of the core. Further, comparing with the film synthesized by silica nanoparticles, the film formed from SiO2–Al2O3–TiO2 nanoparticles has higher hydrophobic performance, i.e., the contact angle is greater than 101.7°. In addition, the TEM analysis reveals that the crystal structure of the particles can be changed at high temperatures.
Collapse
|
29
|
An efficient strategy for preparation of polymeric Janus particles with controllable morphologies and emulsifiabilities. Colloids Surf A Physicochem Eng Asp 2016. [DOI: 10.1016/j.colsurfa.2016.05.025] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
30
|
Zhang SW, Ren L, Lv HX, Zhu FP, Zhang MY, Yao K. Synthesis of narrowly distributed polystyrene-encapsulated silica nanoparticles via emulsion polymerization. J DISPER SCI TECHNOL 2016. [DOI: 10.1080/01932691.2016.1173561] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- S. W. Zhang
- School of Chemical Engineering, Changchun University of Technology, Changchun, China
| | - L. Ren
- School of Chemical Engineering, Changchun University of Technology, Changchun, China
| | - H. X. Lv
- School of Chemical Engineering, Changchun University of Technology, Changchun, China
| | - F. P. Zhu
- School of Chemical Engineering, Changchun University of Technology, Changchun, China
| | - M. Y. Zhang
- School of Chemical Engineering, Changchun University of Technology, Changchun, China
| | - K. Yao
- School of Biotechnology, Royal Institute of Technology, AlbaNova University Centre, Stockholm, Sweden
| |
Collapse
|
31
|
Mao J, Zhang Z. One-step reactivity-driven synthesis of core–shell structured electrically conducting particles for biomedical applications. J Mater Chem B 2016; 4:5429-5436. [DOI: 10.1039/c6tb00642f] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A simple one-pot and one-step emulsion polymerization of conductive and functional core–shell particles is reported, based on the difference in reactivity between pyrrole and its derivative.
Collapse
Affiliation(s)
- Jifu Mao
- Département de chirurgie
- Faculté de médecine
- Université Laval
- Québec (QC)
- Canada
| | - Ze Zhang
- Département de chirurgie
- Faculté de médecine
- Université Laval
- Québec (QC)
- Canada
| |
Collapse
|
32
|
Pan Y, Zhang Z, Li Y, Cai P, Tong Z, Hou X, Xiao H. Preparation and adsorption behaviour of cationic nanoparticles for sugarcane fibre modification. RSC Adv 2016. [DOI: 10.1039/c6ra02752k] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Cationic nanoparticles with a core–shell structure and high zeta potential were prepared by two-step semi-batch emulsion polymerization and pre-emulsification technology using the cationic emulsifier hexadecyl trimethyl ammonium chloride (CTAC).
Collapse
Affiliation(s)
- Yuanfeng Pan
- Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology
- School of Chemistry and Chemical Engineering
- Guangxi University
- Nanning 530004
- China
| | - Zhengdong Zhang
- Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology
- School of Chemistry and Chemical Engineering
- Guangxi University
- Nanning 530004
- China
| | - Yang Li
- Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology
- School of Chemistry and Chemical Engineering
- Guangxi University
- Nanning 530004
- China
| | - Pingxiong Cai
- Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology
- School of Chemistry and Chemical Engineering
- Guangxi University
- Nanning 530004
- China
| | - Zhangfa Tong
- Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology
- School of Chemistry and Chemical Engineering
- Guangxi University
- Nanning 530004
- China
| | - Xiaobang Hou
- School of Environmental Sci & Eng
- North China Electric Power University
- Baoding 071003
- China
| | - Huining Xiao
- Department of Chemical Engineering
- University of New Brunswick
- Fredericton
- E3B 5A3 Canada
| |
Collapse
|
33
|
Li P, Zhou Z, Ma W, Hao T. Core-shell emulsion polymerization of styrene and butyl acrylate in the presence of polymerizable emulsifier. J Appl Polym Sci 2015. [DOI: 10.1002/app.43091] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Ping Li
- School of Materials Science and Engineering; Jiangsu University; Zhenjiang 212013 China
| | - Zhiping Zhou
- School of Materials Science and Engineering; Jiangsu University; Zhenjiang 212013 China
| | - Weiwei Ma
- School of Materials Science and Engineering; Jiangsu University; Zhenjiang 212013 China
| | - Tongfan Hao
- School of Materials Science and Engineering; Jiangsu University; Zhenjiang 212013 China
| |
Collapse
|
34
|
A facile method for fabricating room-temperature-film-formable casein-based hollow nanospheres. Colloids Surf A Physicochem Eng Asp 2015. [DOI: 10.1016/j.colsurfa.2015.08.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
35
|
Lukowiak MC, Thota BN, Haag R. Dendritic core–shell systems as soft drug delivery nanocarriers. Biotechnol Adv 2015; 33:1327-41. [DOI: 10.1016/j.biotechadv.2015.03.014] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Revised: 03/19/2015] [Accepted: 03/22/2015] [Indexed: 12/29/2022]
|
36
|
Li K, Zeng X, Li H, Lai X. Role of acrylic acid in the synthesis of core-shell fluorine-containing polyacrylate latex with spherical and plum blossom-like morphology. J Appl Polym Sci 2015. [DOI: 10.1002/app.42527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Kunquan Li
- College of Materials Science and Engineering; South China University of Technology; Guangzhou 510640 People's Republic of China
| | - Xingrong Zeng
- College of Materials Science and Engineering; South China University of Technology; Guangzhou 510640 People's Republic of China
| | - Hongqiang Li
- College of Materials Science and Engineering; South China University of Technology; Guangzhou 510640 People's Republic of China
| | - Xuejun Lai
- College of Materials Science and Engineering; South China University of Technology; Guangzhou 510640 People's Republic of China
| |
Collapse
|
37
|
Silicone-containing aqueous polymer dispersions with hybrid particle structure. Adv Colloid Interface Sci 2015; 223:1-39. [PMID: 26094081 DOI: 10.1016/j.cis.2015.04.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Revised: 04/08/2015] [Accepted: 04/08/2015] [Indexed: 01/20/2023]
Abstract
In this paper the synthesis, characterization and application of silicone-containing aqueous polymer dispersions (APD) with hybrid particle structure are reviewed based on available literature data. Advantages of synthesis of dispersions with hybrid particle structure over blending of individual dispersions are pointed out. Three main processes leading to silicone-containing hybrid APD are identified and described in detail: (1) emulsion polymerization of organic unsaturated monomers in aqueous dispersions of silicone polymers or copolymers, (2) emulsion copolymerization of unsaturated organic monomers with alkoxysilanes or polysiloxanes with unsaturated functionality and (3) emulsion polymerization of alkoxysilanes (in particular with unsaturated functionality) and/or cyclic siloxanes in organic polymer dispersions. The effect of various factors on the properties of such hybrid APD and films as well as on hybrid particles composition and morphology is presented. It is shown that core-shell morphology where silicones constitute either the core or the shell is predominant in hybrid particles. Main applications of silicone-containing hybrid APD and related hybrid particles are reviewed including (1) coatings which show specific surface properties such as enhanced water repellency or antisoiling or antigraffiti properties due to migration of silicone to the surface, and (2) impact modifiers for thermoplastics and thermosets. Other processes in which silicone-containing particles with hybrid structure can be obtained (miniemulsion polymerization, polymerization in non-aqueous media, hybridization of organic polymer and polysiloxane, emulsion polymerization of silicone monomers in silicone polymer dispersions and physical methods) are also discussed. Prospects for further developments in the area of silicone-containing hybrid APD and related hybrid particles are presented.
Collapse
|
38
|
Fallah Talooki E, Ghorbani M, Ashgar Ghoreyshi A. Synthesis and Characterization of Polymer-Based Magnetic Nanocomposite with Uniformly Distributed Hematite Nanoparticles on the Surface of Polystyrene Aromatic Compound. Polycycl Aromat Compd 2015. [DOI: 10.1080/10406638.2015.1011287] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
| | - Mohsen Ghorbani
- Department of Chemical Engineering Babol University of Technology, Babol, Iran
| | | |
Collapse
|
39
|
Biocompatible long-sustained release oil-core polyelectrolyte nanocarriers: From controlling physical state and stability to biological impact. Adv Colloid Interface Sci 2015; 222:678-91. [PMID: 25453660 DOI: 10.1016/j.cis.2014.10.005] [Citation(s) in RCA: 105] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Revised: 10/15/2014] [Accepted: 10/15/2014] [Indexed: 11/20/2022]
Abstract
It has been generally expected that the most applicable drug delivery system (DDS) should be biodegradable, biocompatible and with incidental adverse effects. Among many micellar aggregates and their mediated polymeric systems, polyelectrolyte oil-core nanocarriers have been found to successfully encapsulate hydrophobic drugs in order to target cells and avoid drug degradation and toxicity as well as to improve drug efficacy, its stability, and better intracellular penetration. This paper reviews recent developments in the formation of polyelectrolyte oil-core nanocarriers by subsequent multilayer adsorption at micellar structures, their imaging, physical state and stability, drug encapsulation and applications, in vitro release profiles and in vitro biological evaluation (cellular uptake and internalization, biocompatibility). We summarize the recent results concerning polyelectrolyte/surfactant interactions at interfaces, fundamental to understand the mechanisms of formation of stable polyelectrolyte layered structures on liquid cores. The fabrication of emulsion droplets stabilized by synergetic surfactant/polyelectrolyte complexes, properties, and potential applications of each type of polyelectrolyte oil-core nanocarriers, including stealth nanocapsules with pegylated shell, are discussed and evaluated.
Collapse
|
40
|
Fan X, Liu Y, Jia X, Wang S, Li C, Zhang B, Zhang H, Zhang Q. Regulating the size and molecular weight of polymeric particles by 1,1-diphenylethene controlled soap-free emulsion polymerization. RSC Adv 2015. [DOI: 10.1039/c5ra17156c] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Nanoparticles with various sizes and molecular weights were produced via altering the amount of the monomer and DPE in the SFEP.
Collapse
Affiliation(s)
- Xinlong Fan
- Department of Applied Chemistry
- School of Science
- Northwestern Polytechnical University
- Xi’an 710072
- China
| | - Yin Liu
- Department of Applied Chemistry
- School of Science
- Northwestern Polytechnical University
- Xi’an 710072
- China
| | - Xiangkun Jia
- Department of Applied Chemistry
- School of Science
- Northwestern Polytechnical University
- Xi’an 710072
- China
| | - Shenqiang Wang
- Department of Applied Chemistry
- School of Science
- Northwestern Polytechnical University
- Xi’an 710072
- China
| | - Chunmei Li
- Department of Applied Chemistry
- School of Science
- Northwestern Polytechnical University
- Xi’an 710072
- China
| | - Baoliang Zhang
- Department of Applied Chemistry
- School of Science
- Northwestern Polytechnical University
- Xi’an 710072
- China
| | - Hepeng Zhang
- Department of Applied Chemistry
- School of Science
- Northwestern Polytechnical University
- Xi’an 710072
- China
| | - Qiuyu Zhang
- Department of Applied Chemistry
- School of Science
- Northwestern Polytechnical University
- Xi’an 710072
- China
| |
Collapse
|
41
|
Bai L, Gu J, Huan S, Li Z. Aqueous poly(vinyl acetate)-based core/shell emulsion: synthesis, morphology, properties and application. RSC Adv 2014. [DOI: 10.1039/c4ra03695f] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
|