1
|
Li S, Li Y, Wu Y, Tian L, Zhang H, Zhang T, Liu J, Du Z. Assembly mechanism of egg white protein-carboxymethyl cellulose based on surface patch binding effect: Interfacial complexation regulates high internal phase emulsion stability. Food Chem 2025; 467:142277. [PMID: 39637661 DOI: 10.1016/j.foodchem.2024.142277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 11/07/2024] [Accepted: 11/26/2024] [Indexed: 12/07/2024]
Abstract
Surface patch binding (SPB)-based protein-polysaccharide assembly complexes are a feasible and eco-friendly way to generate emulsifiers, and their unique interfacial complexation, formed post-emulsification, makes emulsion stability control effortless. We explored the assembly of egg white protein (EWP) with carboxymethyl cellulose (CMC) at varying degrees of substitution (DS). The results demonstrated that EWP, functioning as polyampholytes, assembled with CMC through SPB, driven by hydrophobic and electrostatic interactions. The higher DS improved the surface hydrophobicity of assembly complexes, facilitating their adsorption and rearrangement at the oil-water interface, which led to superior interfacial complexation. These interfacial complexes developed stronger steric hindrances that curbed droplet aggregation, boosted droplet friction, and minimized relative displacement, thus providing high internal phase emulsion (HIPE) multi-scenario stability. This study offers an effective strategy for achieving customized material properties through targeted modulation of interfacial complexation.
Collapse
Affiliation(s)
- Shanglin Li
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Yajuan Li
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Yulun Wu
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Longjiang Tian
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Hui Zhang
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Ting Zhang
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Jingbo Liu
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Zhiyang Du
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, College of Food Science and Engineering, Jilin University, Changchun 130062, China.
| |
Collapse
|
2
|
Liu S, Li J, Zhang Y, Zhang X, Ding Y, Zhang W, Rao J, Zhang Y. Progress in the Preparation and Applications of Microcapsules for Protective Coatings Against Corrosion. Int J Mol Sci 2025; 26:1473. [PMID: 40003938 DOI: 10.3390/ijms26041473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 01/31/2025] [Accepted: 02/03/2025] [Indexed: 02/27/2025] Open
Abstract
The annual economic loss caused by corrosion accounts for about 2%~4% of GDP, which exceeds the sum of losses caused by fires, floods, droughts, typhoons, and other disasters. Coating is one of the most effective methods to delay metal corrosion. With the development of technology and the intersection of disciplines, functional microcapsules have been applied to anticorrosive coatings, but microcapsules are still being updated. To understand the application progress of microcapsules in anticorrosive coatings, the future development trend of microcapsules is analyzed. The preparation methods, physical and chemical properties, functional characteristics, and development trends of organic, inorganic, and organic-inorganic hybrid microcapsules are described, respectively, from the perspective of material and molecular characteristics. Simultaneously, the influence of microcapsules of different materials on the properties of organic coatings is proved by examples. In addition, the research status and future development trends of microcapsule composite coating are introduced in detail. Finally, the great advantages of organic-inorganic hybrid microcapsules modified by functional materials based on natural inorganic materials in improving the utilization efficiency of loaded active substances and prolonging the life of coatings are foreseen.
Collapse
Affiliation(s)
- Shupei Liu
- College of Materials Science and Engineering, Chongqing University, Chongqing 400044, China
| | - Jiajun Li
- College of Materials Science and Engineering, Chongqing University, Chongqing 400044, China
| | - Yanchi Zhang
- College of Materials Science and Engineering, Chongqing University, Chongqing 400044, China
| | - Xinfang Zhang
- College of Materials Science and Engineering, Chongqing University, Chongqing 400044, China
| | - Yao Ding
- College of Materials Science and Engineering, Chongqing University, Chongqing 400044, China
| | - Wenrui Zhang
- College of Materials Science and Engineering, Chongqing University, Chongqing 400044, China
| | - Jinsong Rao
- College of Materials Science and Engineering, Chongqing University, Chongqing 400044, China
| | - Yuxin Zhang
- College of Materials Science and Engineering, Chongqing University, Chongqing 400044, China
| |
Collapse
|
3
|
Wang L, Ma W, Zhang S, He M, Song P, Wang H, Song X, Li B. Preparation of Colored Polymer Microspheres. Molecules 2025; 30:375. [PMID: 39860244 PMCID: PMC11767438 DOI: 10.3390/molecules30020375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 01/09/2025] [Accepted: 01/14/2025] [Indexed: 01/27/2025] Open
Abstract
Colored polymer microspheres have attracted significant attention in both academia and industry due to their unique optical properties and extensive application potential. However, achieving a uniform distribution of dyes within these microspheres remains a challenge, particularly when heavy concentrations of dye are used, as this can lead to aggregation or delamination, adversely affecting their application. Additionally, many dyes are prone to degradation or fading when exposed to light, heat, or chemicals, which compromises the long-term color stability of the microspheres. Consequently, the preparation of colored polymer microspheres with high stability continues to be a significant challenge. This review offers a comprehensive overview of the preparation techniques for colored polymer microspheres and their dyeing mechanisms, introducing the fundamental concepts of these microspheres and their applications in various fields, such as biomedicine, optical devices, and electronic display technologies. It further presents a detailed discussion of the different preparation methods, including physical adsorption, chemical bonding, and copolymerization. The advantages, limitations, and potential improvements of each method are explored, along with an analysis of the interactions between dyes and the polymer matrix, and how these interactions influence the properties of the microspheres, including their color uniformity, stability, and durability. Finally, the review discusses future perspectives on the development of colored polymer microspheres, highlighting the advancement of novel materials, innovations in preparation technology, and the exploration of potential new application areas.
Collapse
Affiliation(s)
- Lei Wang
- College of New Energy and Materials, China University of Petroleum, Beijing 102249, China
| | - Weiting Ma
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China
| | - Shuheng Zhang
- College of New Energy and Materials, China University of Petroleum, Beijing 102249, China
| | - Mengke He
- College of New Energy and Materials, China University of Petroleum, Beijing 102249, China
| | - Ping Song
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China
| | - Hongying Wang
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China
| | - Xianxiao Song
- College of New Energy and Materials, China University of Petroleum, Beijing 102249, China
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China
| | - Botian Li
- College of New Energy and Materials, China University of Petroleum, Beijing 102249, China
| |
Collapse
|
4
|
Fan R, Wu J, Duan S, Jin L, Zhang H, Zhang C, Zheng A. Droplet-based microfluidics for drug delivery applications. Int J Pharm 2024; 663:124551. [PMID: 39106935 DOI: 10.1016/j.ijpharm.2024.124551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/23/2024] [Accepted: 08/02/2024] [Indexed: 08/09/2024]
Abstract
The microfluidic method primainly utilizes two incompatible liquids as continuous phase and dispersed phase respectively. It controls the formation of droplets by managing the microchannel structure and the flow rate ratio of the two phases. Droplet-based microfluidics is a rapidly expanding interdisciplinary research field encompassing physics, biochemistry, and Microsystems engineering. Droplet microfluidics offer a diverse and practical toolset that enables chemical and biological experiments to be conducted at high speeds and with greater efficiency compared to traditional instruments. The applications of droplet-based microfluidics are vast, including areas such as drug delivery, owing to its compatibility with numerous chemical and biological reagents and its ability to carry out various operations. This technology has been extensively researched due to its promising features. In this review, we delve into the materials used in droplet generation-based microfluidic devices, manufacturing techniques, methods for droplet generation in channels, and, finally, we summarize the applications of droplet generation-based microfluidics in drug delivery vectors, encompassing nanoparticles, microspheres, microcapsules, and hydrogel particles. We also discuss the challenges and future prospects of this technology across a wide array of applications.
Collapse
Affiliation(s)
- Ranran Fan
- College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China
| | - Jie Wu
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Kidney Diseases, Beijing, 100853, China
| | - Shuwei Duan
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Kidney Diseases, Beijing, 100853, China
| | - Lili Jin
- College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China; Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Yanbian University College of Pharmacy, Yanji, Jilin Province 133002, China
| | - Hui Zhang
- Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China.
| | - Changhao Zhang
- College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China; Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Yanbian University College of Pharmacy, Yanji, Jilin Province 133002, China.
| | - Aiping Zheng
- Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China.
| |
Collapse
|
5
|
Xue R, Wu H, Li S, Pu N, Wei D, Zhao N, Cui Y, Li H, Song Z, Tao Y. Biodegradable microspheres come into sight: A promising biomaterial for delivering drug to the posterior segment of the eyeball. Mater Today Bio 2024; 27:101126. [PMID: 38994470 PMCID: PMC11237977 DOI: 10.1016/j.mtbio.2024.101126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/23/2024] [Accepted: 06/12/2024] [Indexed: 07/13/2024] Open
Abstract
Posterior segment disease acts as a major cause of irreversible visual impairments. Successful treatment of posterior segment disease requires the efficient delivery of therapeutic substances to the targeted lesion. However, the complex ocular architecture makes the bioavailability of topically applied drugs extremely low. Invasive delivery approaches like intravitreal injection may cause adverse complications. To enhance the efficiency, several biomedical engineering systems have been developed to increase the penetration efficiency and improve the bioavailability of drugs at the posterior segments. Advantageously, biodegradable microspheres are found to deliver the therapeutic agents in a controlled fashion. The microspheres prepared from novel biomaterials can realize the prolonged release at the posterior segment with minimum side effects. Moreover, it will be degraded automatically into products that are non-toxic to the human body without the necessity of secondary operation to remove the residual polymer matrix. Additionally, biodegradable microspheres have decent thermoplasticity, adjustable hydrophilicity, controlled crystallinity, and high tensile strength, which make them suitable for intraocular delivery. In this review, we introduce the latest advancements in microsphere production technology and elaborate on the biomaterials that are used to prepare microspheres. We discuss systematically the pharmacological characteristics of biodegradable microspheres and compare their potential advantages and limitations in the treatment of posterior segment diseases. These findings would enrich our knowledge of biodegradable microspheres and cast light into the discovery of effective biomaterials for ocular drug delivery.
Collapse
Affiliation(s)
- Rongyue Xue
- Department of Ophthalmology, Henan Eye Institute, Henan Eye Hospital, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, 450003, China
- College of Medicine, Zhengzhou university, Zhengzhou, China
| | - Hao Wu
- Department of Ophthalmology, Henan Eye Institute, Henan Eye Hospital, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, 450003, China
- College of Medicine, Zhengzhou university, Zhengzhou, China
| | - Siyu Li
- College of Medicine, Zhengzhou university, Zhengzhou, China
| | - Ning Pu
- College of Medicine, Zhengzhou university, Zhengzhou, China
| | - Dong Wei
- Department of Ophthalmology, Henan Eye Institute, Henan Eye Hospital, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, 450003, China
- College of Medicine, Zhengzhou university, Zhengzhou, China
| | - Na Zhao
- Department of Ophthalmology, Henan Eye Institute, Henan Eye Hospital, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, 450003, China
- College of Medicine, Zhengzhou university, Zhengzhou, China
| | - Yongheng Cui
- Department of Ophthalmology, Henan Eye Institute, Henan Eye Hospital, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, 450003, China
- College of Medicine, Zhengzhou university, Zhengzhou, China
| | - Haoyan Li
- Department of Ophthalmology, Henan Eye Institute, Henan Eye Hospital, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, 450003, China
- College of Medicine, Zhengzhou university, Zhengzhou, China
| | - Zongming Song
- Department of Ophthalmology, Henan Eye Institute, Henan Eye Hospital, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, 450003, China
| | - Ye Tao
- Department of Ophthalmology, Henan Eye Institute, Henan Eye Hospital, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, 450003, China
| |
Collapse
|
6
|
Chen Z, Luo G, Ren J, Wang Q, Zhao X, Wei L, Wang Y, Liu Y, Deng Y, Li S. Recent Advances in and Application of Fluorescent Microspheres for Multiple Nucleic Acid Detection. BIOSENSORS 2024; 14:265. [PMID: 38920569 PMCID: PMC11201543 DOI: 10.3390/bios14060265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 05/17/2024] [Accepted: 05/21/2024] [Indexed: 06/27/2024]
Abstract
Traditional single nucleic acid assays can only detect one target while multiple nucleic acid assays can detect multiple targets simultaneously, providing comprehensive and accurate information. Fluorescent microspheres in multiplexed nucleic acid detection offer high sensitivity, specificity, multiplexing, flexibility, and scalability advantages, enabling precise, real-time results and supporting clinical diagnosis and research. However, multiplexed assays face challenges like complexity, costs, and sample handling issues. The review explores the recent advancements and applications of fluorescent microspheres in multiple nucleic acid detection. It discusses the versatility of fluorescent microspheres in various fields, such as disease diagnosis, drug screening, and personalized medicine. The review highlights the possibility of adjusting the performance of fluorescent microspheres by modifying concentrations and carrier forms, allowing for tailored applications. It emphasizes the potential of fluorescent microsphere technology in revolutionizing nucleic acid detection and advancing health, disease treatment, and medical research.
Collapse
Affiliation(s)
- Zhu Chen
- MOE Key Lab of Rare Pediatric Diseases & Hengyang Medical School, University of South China, Hengyang 421001, China; (G.L.); (J.R.); (Q.W.); (X.Z.); (L.W.); (Y.L.); (Y.D.)
- Institute for Future Sciences, University of South China, Changsha 410008, China
| | - Gaoming Luo
- MOE Key Lab of Rare Pediatric Diseases & Hengyang Medical School, University of South China, Hengyang 421001, China; (G.L.); (J.R.); (Q.W.); (X.Z.); (L.W.); (Y.L.); (Y.D.)
- Institute for Future Sciences, University of South China, Changsha 410008, China
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Hunan Engineering Research Center for Early Diagnosis and Treatment of Liver Cancer, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Jie Ren
- MOE Key Lab of Rare Pediatric Diseases & Hengyang Medical School, University of South China, Hengyang 421001, China; (G.L.); (J.R.); (Q.W.); (X.Z.); (L.W.); (Y.L.); (Y.D.)
- Institute for Future Sciences, University of South China, Changsha 410008, China
| | - Qixuan Wang
- MOE Key Lab of Rare Pediatric Diseases & Hengyang Medical School, University of South China, Hengyang 421001, China; (G.L.); (J.R.); (Q.W.); (X.Z.); (L.W.); (Y.L.); (Y.D.)
- Institute for Future Sciences, University of South China, Changsha 410008, China
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Hunan Engineering Research Center for Early Diagnosis and Treatment of Liver Cancer, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Xinping Zhao
- MOE Key Lab of Rare Pediatric Diseases & Hengyang Medical School, University of South China, Hengyang 421001, China; (G.L.); (J.R.); (Q.W.); (X.Z.); (L.W.); (Y.L.); (Y.D.)
- Institute for Future Sciences, University of South China, Changsha 410008, China
- Institute of Cytology and Genetics, School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Linyu Wei
- MOE Key Lab of Rare Pediatric Diseases & Hengyang Medical School, University of South China, Hengyang 421001, China; (G.L.); (J.R.); (Q.W.); (X.Z.); (L.W.); (Y.L.); (Y.D.)
- Institute for Future Sciences, University of South China, Changsha 410008, China
- Institute of Cytology and Genetics, School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Yue Wang
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou 412007, China;
| | - Yuan Liu
- MOE Key Lab of Rare Pediatric Diseases & Hengyang Medical School, University of South China, Hengyang 421001, China; (G.L.); (J.R.); (Q.W.); (X.Z.); (L.W.); (Y.L.); (Y.D.)
- Institute for Future Sciences, University of South China, Changsha 410008, China
| | - Yan Deng
- MOE Key Lab of Rare Pediatric Diseases & Hengyang Medical School, University of South China, Hengyang 421001, China; (G.L.); (J.R.); (Q.W.); (X.Z.); (L.W.); (Y.L.); (Y.D.)
- Institute for Future Sciences, University of South China, Changsha 410008, China
| | - Song Li
- MOE Key Lab of Rare Pediatric Diseases & Hengyang Medical School, University of South China, Hengyang 421001, China; (G.L.); (J.R.); (Q.W.); (X.Z.); (L.W.); (Y.L.); (Y.D.)
- Institute for Future Sciences, University of South China, Changsha 410008, China
| |
Collapse
|
7
|
A Single Injection with Sustained-Release Microspheres and a Prime-Boost Injection of Bovine Serum Albumin Elicit the Same IgG Antibody Response in Mice. Pharmaceutics 2023; 15:pharmaceutics15020676. [PMID: 36839998 PMCID: PMC9960585 DOI: 10.3390/pharmaceutics15020676] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/06/2023] [Accepted: 02/10/2023] [Indexed: 02/19/2023] Open
Abstract
Although vaccination is still considered to be the cornerstone of public health care, the increase in vaccination coverage has stagnated for many diseases. Most of these vaccines require two or three doses to be administered across several months or years. Single-injection vaccine formulations are an effective method to overcome the logistical barrier to immunization that is posed by these multiple-injection schedules. Here, we developed subcutaneously (s.c.) injectable microspheres with a sustained release of the model antigen bovine serum albumin (BSA). The microspheres were composed of blends of two novel biodegradable multi-block copolymers consisting of amorphous, hydrophilic poly(ε-caprolactone)-poly(ethylene glycol)-poly(ε-caprolactone) (PCL-PEG-PCL) blocks and semi-crystalline poly(dioxanone) (PDO) blocks of different block sizes. In vitro studies demonstrated that the release of BSA could be tailored over a period of approximately four to nine weeks by changing the blend ratio of both polymers. Moreover, it was found that BSA remained structurally intact during release. Microspheres exhibiting sustained release of BSA for six weeks were selected for the in vivo study in mice. The induced BSA-specific IgG antibody titers increased up to four weeks after administration and were of the same magnitude as found in mice that received a priming and a booster dose of BSA in phosphate-buffered saline (PBS). Determination of the BSA concentration in plasma showed that in vivo release probably took place up to at least four weeks, although plasma concentrations peaked already one week after administration. The sustained-release microspheres might be a viable alternative to the conventional prime-boost immunization schedule, but a clinically relevant antigen should be incorporated to assess the full potential of these microspheres in practice.
Collapse
|
8
|
Gurave PM, Dubey S, Nandan B, Srivastava RK. Pickering Emulsion-Templated Nanocomposite Membranes for Excellent Demulsification and Oil-Water Separation. ACS APPLIED MATERIALS & INTERFACES 2022; 14:54233-54244. [PMID: 36404643 DOI: 10.1021/acsami.2c16483] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
A worldwide steady increase in oily wastewater, due to oil spillage and various industrial discharges, requires immediate efforts toward development of an effective strategy and materials to preserve the natural water bodies. Designing a superwettable fibrous membrane of robust structure and anti-fouling property for efficient separation of oil-water mixtures and emulsions is therefore highly demanding. The electrospun fibrous membrane, which possesses porosity and flexibility and properties including superwettability and tunable functionality, can be considered as apposite materials for this cause. In this approach, we combined two strategies, viz., Pickering emulsion and near gel resin (nGR) emulsion electrospinning together to produce a fibrous nanocomposite membrane for efficient oil-water separation and demulsification. nGR Pickering emulsions were stabilized using hydrophilic SiO2 nanoparticles and successfully optimized for fabricating the crosslinked core sheath-structured fibrous membrane. The prepared membrane provided twofold functionality due to the core sheath structure of the fibers. The crosslinked polystyrene core offered high oil adsorption capacity, whereas SiO2-functionalized crosslinked polyvinyl alcohol sheath provided a rough, superhydrophilic surface with underwater oleophobic behavior to the membrane. The optimized SiO2-Pickering emulsion-templated nanocomposite membrane demonstrated excellent underwater anti-oil adhesion behavior (UWOCA ∼148°) with efficient oil-water separation capacity of more than 99% and separation flux up to 3346 ± 91 L m-2 h-1. The membrane was evaluated against various oil-water emulsions and found to have a superior separation efficiency. Moreover, excellent anti-oil adhesion property provided the intact membrane, where consistent separation performance was achieved up to 10 separation cycles without any loss. The membrane was used for separation of hot oil-water emulsions and showed no structural disintegration or loss in separation performance when exposed to elevated temperatures. The developed nanocomposite membranes could efficiently be used for separation and demulsification, and their applications can be explored in various other fields including selective sorption, catalysis, and storage in future.
Collapse
Affiliation(s)
- Pramod M Gurave
- Department of Textile and Fibre Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi110016, India
| | - Shubhang Dubey
- Department of Textile and Fibre Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi110016, India
| | - Bhanu Nandan
- Department of Textile and Fibre Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi110016, India
| | - Rajiv K Srivastava
- Department of Textile and Fibre Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi110016, India
| |
Collapse
|
9
|
Aqueous two-phase emulsions toward biologically relevant applications. TRENDS IN CHEMISTRY 2022. [DOI: 10.1016/j.trechm.2022.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
10
|
Yandrapalli N, Antonietti M. Dewetting-Assisted Interface Templating: Complex Emulsions to Multicavity Particles. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2203265. [PMID: 35961950 PMCID: PMC9561762 DOI: 10.1002/advs.202203265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 07/20/2022] [Indexed: 06/15/2023]
Abstract
Interfacial tension-driven formation of intricate microparticle geometries from complex emulsions is presented in this work. Emulsion-templating is a reliable platform for the generation of a diverse set of microparticles. Here, water-in-styrene-in-water complex emulsions undergo reproducible metamorphosis, i.e., from liquid state emulsions to solid structured microparticles are employed. In contrast to the traditional usage of glass-based microfluidics, polydimethylsiloxane (PDMS) swelling behavior is employed to generate complex emulsions with multiple inner cores. In the presence of block copolymer surfactant, these emulsions undergo gravity-driven dewetting of styrene, to transform into membranous structures with compartments. Further polymerization of styrene skeletal remains resulted in microparticles with interesting geometries and intact membranes. Mechanical and confocal microscopic studies prove the absence of polystyrene within these membranes. Using osmotic pressure, membrane rupture and release of encapsulated gold nanoparticles from such polymerized emulsions leading up to applications in cargo delivery and membrane transport are promoted. Even after membrane rupture, the structured microparticles have shown interesting light-scattering behavior for applications in structural coloring and biosensing. Thereby, proving PDMS-based swelling as a potential methodology for reproducible production of complex emulsions with a potential to be transformed into membranous emulsions or solid microparticles with intricate structures and multiple applications.
Collapse
Affiliation(s)
- Naresh Yandrapalli
- Max Planck Institute of Colloids and InterfacesDepartment of Colloid ChemistryAm Mühlenberg 114476PotsdamGermany
| | - Markus Antonietti
- Max Planck Institute of Colloids and InterfacesDepartment of Colloid ChemistryAm Mühlenberg 114476PotsdamGermany
| |
Collapse
|
11
|
Trombino S, Poerio T, Curcio F, Piacentini E, Cassano R. Production of α-Tocopherol–Chitosan Nanoparticles by Membrane Emulsification. Molecules 2022; 27:molecules27072319. [PMID: 35408718 PMCID: PMC9000759 DOI: 10.3390/molecules27072319] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 03/31/2022] [Accepted: 04/01/2022] [Indexed: 02/06/2023] Open
Abstract
α-tocopherol (α-T) has the highest biological activity with respect to the other components of vitamin E; however, conventional formulations of tocopherol often fail to provide satisfactory bioavailability due to its hydrophobic characteristics. In this work, α-tocopherol-loaded nanoparticles based on chitosan were produced by membrane emulsification (ME). A new derivative was obtained by the cross-linking reaction between α-T and chitosan (CH) to preserve its biological activity. ME was selected as a method for nanoparticle production because it is recognized as an innovative and sustainable technology for its uniform-particle production with tuned sizes and high encapsulation efficiency (EE%), and its ability to preserve the functional properties of bioactive ingredients operating in mild conditions. The reaction intermediates and the final product were characterized by 1HNMR, Fourier-transform infrared spectroscopy (FTIR) and differential scanning calorimetry (DSC), while the morphological and dimensional properties of the nanoparticles were analyzed using electronic scanning microscopy (SEM) and dynamic light scattering (DLS). The results demonstrated that ME has high potential for the development of α-tocopherol-loaded nanoparticles with a high degree of uniformity (PDI lower than 0.2), an EE of almost 100% and good mechanical strength, resulting in good candidates for the production of functional nanostructured materials for drug delivery. In addition, the chemical bonding between chitosan and α-tocopherol allowed the preservation of the antioxidant properties of the bioactive molecule, as demonstrated by an enhanced antioxidant property and evaluated through in vitro tests, with respect to the starting materials.
Collapse
Affiliation(s)
- Sonia Trombino
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy; (S.T.); (F.C.)
| | - Teresa Poerio
- Institute on Membrane Technology (ITM–CNR), Via Pietro BUCCI, c/o University of Calabria, Cubo 17C, 87036 Rende, Italy;
| | - Federica Curcio
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy; (S.T.); (F.C.)
| | - Emma Piacentini
- Institute on Membrane Technology (ITM–CNR), Via Pietro BUCCI, c/o University of Calabria, Cubo 17C, 87036 Rende, Italy;
- Correspondence: (E.P.); (R.C.)
| | - Roberta Cassano
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy; (S.T.); (F.C.)
- Correspondence: (E.P.); (R.C.)
| |
Collapse
|
12
|
|
13
|
Sherstneva AA, Demina TS, Monteiro APF, Akopova TA, Grandfils C, Ilangala AB. Biodegradable Microparticles for Regenerative Medicine: A State of the Art and Trends to Clinical Application. Polymers (Basel) 2022; 14:1314. [PMID: 35406187 PMCID: PMC9003224 DOI: 10.3390/polym14071314] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/14/2022] [Accepted: 03/22/2022] [Indexed: 12/22/2022] Open
Abstract
Tissue engineering and cell therapy are very attractive in terms of potential applications but remain quite challenging regarding the clinical aspects. Amongst the different strategies proposed to facilitate their implementation in clinical practices, biodegradable microparticles have shown promising outcomes with several advantages and potentialities. This critical review aims to establish a survey of the most relevant materials and processing techniques to prepare these micro vehicles. Special attention will be paid to their main potential applications, considering the regulatory constraints and the relative easiness to implement their production at an industrial level to better evaluate their application in clinical practices.
Collapse
Affiliation(s)
- Anastasia A. Sherstneva
- Enikolopov Institute of Synthetic Polymeric Materials, Russian Academy of Sciences, 70 Profsouznaya Str., 117393 Moscow, Russia; (A.A.S.); (T.A.A.)
| | - Tatiana S. Demina
- Enikolopov Institute of Synthetic Polymeric Materials, Russian Academy of Sciences, 70 Profsouznaya Str., 117393 Moscow, Russia; (A.A.S.); (T.A.A.)
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University, 8-2 Trubetskaya Str., 119991 Moscow, Russia
| | - Ana P. F. Monteiro
- Interfaculty Research Centre on Biomaterials (CEIB), Chemistry Institute, University of Liège, B6C, 11 Allée du 6 Août, B-4000 Liege, Belgium; (A.P.F.M.); (C.G.); (A.B.I.)
| | - Tatiana A. Akopova
- Enikolopov Institute of Synthetic Polymeric Materials, Russian Academy of Sciences, 70 Profsouznaya Str., 117393 Moscow, Russia; (A.A.S.); (T.A.A.)
| | - Christian Grandfils
- Interfaculty Research Centre on Biomaterials (CEIB), Chemistry Institute, University of Liège, B6C, 11 Allée du 6 Août, B-4000 Liege, Belgium; (A.P.F.M.); (C.G.); (A.B.I.)
| | - Ange B. Ilangala
- Interfaculty Research Centre on Biomaterials (CEIB), Chemistry Institute, University of Liège, B6C, 11 Allée du 6 Août, B-4000 Liege, Belgium; (A.P.F.M.); (C.G.); (A.B.I.)
| |
Collapse
|
14
|
Jia G, Van Valkenburgh J, Chen AZ, Chen Q, Li J, Zuo C, Chen K. Recent advances and applications of microspheres and nanoparticles in transarterial chemoembolization for hepatocellular carcinoma. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2022; 14:e1749. [PMID: 34405552 PMCID: PMC8850537 DOI: 10.1002/wnan.1749] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 07/22/2021] [Accepted: 07/28/2021] [Indexed: 12/15/2022]
Abstract
Transarterial chemoembolization (TACE) is a recommended treatment for patients suffering from intermediate and advanced hepatocellular carcinoma (HCC). As compared to the conventional TACE, drug-eluting bead TACE demonstrates several advantages in terms of survival, treatment response, and adverse effects. The selection of embolic agents is critical to the success of TACE. Many studies have been performed on the modification of the structure, size, homogeneity, biocompatibility, and biodegradability of embolic agents. Continuing efforts are focused on efficient loading of versatile chemotherapeutics, controlled sizes for sufficient occlusion, real-time detection intra- and post-procedure, and multimodality imaging-guided precise treatment. Here, we summarize recent advances and applications of microspheres and nanoparticles in TACE for HCC. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease.
Collapse
Affiliation(s)
- Guorong Jia
- Department of Radiology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
- Department of Nuclear Medicine, Changhai Hospital of Shanghai, Shanghai, China
| | - Juno Van Valkenburgh
- Department of Radiology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Austin Z. Chen
- Department of Radiology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Quan Chen
- Department of Radiology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Jindian Li
- Department of Radiology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Changjing Zuo
- Department of Nuclear Medicine, Changhai Hospital of Shanghai, Shanghai, China
| | - Kai Chen
- Department of Radiology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| |
Collapse
|
15
|
Wang H, Nakajima M, Neves MA, Uemura K, Todoriki S, Kobayashi I. Formulation characteristics of monodisperse structured lipid microparticles using microchannel emulsification. PARTICULATE SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1080/02726351.2021.1929612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Hanxiao Wang
- Food Research Institute, NARO, Tsukuba, Japan
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | - Mitsutoshi Nakajima
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | - Marcos A. Neves
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | | | - Setsuko Todoriki
- Food Research Institute, NARO, Tsukuba, Japan
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | | |
Collapse
|
16
|
Kalidason A, Kuroiwa T. Synthesis of chitosan–magnetite gel microparticles with improved stability and magnetic properties: A study on their adsorption, recoverability, and reusability in the removal of monovalent and multivalent azo dyes. REACT FUNCT POLYM 2022. [DOI: 10.1016/j.reactfunctpolym.2022.105220] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
17
|
Zhang X, Qu Q, Zhou A, Wang Y, Zhang J, Xiong R, Lenders V, Manshian BB, Hua D, Soenen SJ, Huang C. Core-shell microparticles: From rational engineering to diverse applications. Adv Colloid Interface Sci 2022; 299:102568. [PMID: 34896747 DOI: 10.1016/j.cis.2021.102568] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/16/2021] [Accepted: 11/20/2021] [Indexed: 12/24/2022]
Abstract
Core-shell microparticles, composed of solid, liquid, or gas bubbles surrounded by a protective shell, are gaining considerable attention as intelligent and versatile carriers that show great potential in biomedical fields. In this review, an overview is given of recent developments in design and applications of biodegradable core-shell systems. Several emerging methodologies including self-assembly, gas-shearing, and coaxial electrospray are discussed and microfluidics technology is emphasized in detail. Furthermore, the characteristics of core-shell microparticles in artificial cells, drug release and cell culture applications are discussed and the superiority of these advanced multi-core microparticles for the generation of artificial cells is highlighted. Finally, the respective developing orientations and limitations inherent to these systems are addressed. It is hoped that this review can inspire researchers to propel the development of this field with new ideas.
Collapse
|
18
|
Nauman N, Boyer C, Zetterlund PB. Miniemulsion polymerization via membrane emulsification: Exploring system feasibility for different monomers. Colloid Polym Sci 2021. [DOI: 10.1007/s00396-021-04918-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
19
|
Practical quality attributes of polymeric microparticles with current understanding and future perspectives. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102608] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
20
|
Droplet breakup mechanisms in premix membrane emulsification and related microfluidic channels. Adv Colloid Interface Sci 2021; 290:102393. [PMID: 33770649 DOI: 10.1016/j.cis.2021.102393] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 02/22/2021] [Accepted: 02/25/2021] [Indexed: 12/13/2022]
Abstract
Premix membrane emulsification (PME) is a pressure driven process of droplet breakup, caused by their motion through membrane pores. The process is widely used for high-throughput production of sized-controlled emulsion droplets and microparticles using low energy inputs. The resultant droplet size depends on numerous process, membrane, and formulation factors such as flow velocity in pores, number of extrusions, initial droplet size, internal membrane geometry, wettability of pore walls, and physical properties of emulsion. This paper provides a comprehensive review of different mechanisms of droplet deformation and breakup in membranes with versatile pore morphologies including sintered glass and ceramic filters, SPG and polymeric membranes with sponge-like structures, micro-engineered metallic membranes with ordered straight-through pore arrays, and dynamic membranes composed of unconsolidated particles. Fundamental aspects of droplet motion and breakup in idealized pore networks have also been covered including droplet disruption in T-junctions, channel constrictions, and obstructed channels. The breakup mechanisms due to shear interactions with pore walls and localized shear (direct breaking) or due to interfacial tension effects and Rayleigh-Plateau instability (indirect breaking) are systematically discussed based on recent experimental and numerical studies. Non-dimensional droplet size correlations based on capillary, Weber, and Ohnesorge numbers are also presented.
Collapse
|
21
|
Tian Q, Zhou W, Cai Q, Ma G, Lian G. Concepts, processing, and recent developments in encapsulating essential oils. Chin J Chem Eng 2021. [DOI: 10.1016/j.cjche.2020.12.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
22
|
Zhang X, Qin L, Su J, Sun Y, Zhang L, Li J, Beck-Broichsitter M, Muenster U, Chen L, Mao S. Engineering large porous microparticles with tailored porosity and sustained drug release behavior for inhalation. Eur J Pharm Biopharm 2020; 155:139-146. [PMID: 32853695 DOI: 10.1016/j.ejpb.2020.08.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 08/19/2020] [Accepted: 08/20/2020] [Indexed: 01/03/2023]
Abstract
Sustained drug delivery is considered as an effective strategy to improve the treatment of local lung diseases. In this context, inhalation administration of large porous microparticles (LPPs) represents promising prospects. However, one major challenge with said delivery technology is to control the drug release pattern (especially to decrease the burst release) while maintaining a low mass density/high porosity, which is of high significance for the aerodynamic behavior of LPP systems. Here, we show how to engineer drug-loaded, biodegradable LPPs with varying microstructure by means of a premix membrane emulsification-solvent evaporation (PME-SE) method using poly(vinyl pyrrolidone) (PVP) as the pore former. The influence of PVP concentration on the physicochemical properties, in-vitro drug release behavior and in-vitro aerodynamic performance of the drug-loaded microparticles was tested. We demonstrated that the PME-SE technique led to LPPs with favorable pore distribution characteristics (i.e., low external but high internal porosity) as a function of the PVP concentration. In general, more PVP conditioned a larger discrepancy of the internal vs. external porosity. When the external porosity of the LPP formulation (15% of PVP during the manufacturing process) was less than 3%, the burst release of the embedded drug was significantly reduced compared to LPPs prepared by a "conventional" emulsification solvent evaporation method. All the formulations prepared by the PME-SE method had aerodynamic properties suitable for inhalation. This is the first report indicating that the microstructure of LPPs can be tailored using the PME-SE technology with PVP as a suitable pore former. Doing so, we designed LPP formulations having full control over the drug release kinetics and aerodynamic behavior.
Collapse
Affiliation(s)
- Xiaofei Zhang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Lu Qin
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Jian Su
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Ying Sun
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Lan Zhang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Jiaqi Li
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | | | - Uwe Muenster
- Chemical & Pharmaceutical Development, Bayer AG, D-42117 Wuppertal, Germany
| | - Linc Chen
- Chemical and Pharmaceutical Development, Bayer AG, Beijing 100020, China
| | - Shirui Mao
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China.
| |
Collapse
|
23
|
Medina-Llamas M, Taylor CM, Ji J, Wenk J, Mattia D. Continuous Production of Metal Oxide Nanoparticles via Membrane Emulsification–Precipitation. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c00603] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Maria Medina-Llamas
- Department of Chemical Engineering, University of Bath, Bath BA27AY, U.K
- Centre for Advanced Separations Engineering, University of Bath, Bath BA27AY, U.K
| | - Caitlin M. Taylor
- Department of Chemical Engineering, University of Bath, Bath BA27AY, U.K
- Centre for Sustainable Chemical Technologies, University of Bath, Bath BA27AY, U.K
| | - Jing Ji
- Department of Chemical Engineering, University of Bath, Bath BA27AY, U.K
- Centre for Advanced Separations Engineering, University of Bath, Bath BA27AY, U.K
| | - Jannis Wenk
- Department of Chemical Engineering, University of Bath, Bath BA27AY, U.K
- Water Innovation and Research Centre, University of Bath, Bath BA27AY, U.K
| | - Davide Mattia
- Department of Chemical Engineering, University of Bath, Bath BA27AY, U.K
- Centre for Advanced Separations Engineering, University of Bath, Bath BA27AY, U.K
| |
Collapse
|
24
|
|
25
|
Vladisavljević GT. Preparation of microemulsions and nanoemulsions by membrane emulsification. Colloids Surf A Physicochem Eng Asp 2019. [DOI: 10.1016/j.colsurfa.2019.123709] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
26
|
Piacentini E, Mazzei R, Bazzarelli F, Ranieri G, Poerio T, Giorno L. Oleuropein Aglycone Production and Formulation by Integrated Membrane Process. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.9b03210] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- E. Piacentini
- Institute on Membrane Technology, National Research Council, ITM-CNR, via P. Bucci, 17/C, I-87036 Rende (Cosenza), Italy
| | - R. Mazzei
- Institute on Membrane Technology, National Research Council, ITM-CNR, via P. Bucci, 17/C, I-87036 Rende (Cosenza), Italy
| | - F. Bazzarelli
- Institute on Membrane Technology, National Research Council, ITM-CNR, via P. Bucci, 17/C, I-87036 Rende (Cosenza), Italy
| | - G. Ranieri
- Institute on Membrane Technology, National Research Council, ITM-CNR, via P. Bucci, 17/C, I-87036 Rende (Cosenza), Italy
| | - T. Poerio
- Institute on Membrane Technology, National Research Council, ITM-CNR, via P. Bucci, 17/C, I-87036 Rende (Cosenza), Italy
| | - L. Giorno
- Institute on Membrane Technology, National Research Council, ITM-CNR, via P. Bucci, 17/C, I-87036 Rende (Cosenza), Italy
| |
Collapse
|
27
|
Scheiner K, Maas-Bakker RF, Nguyen TT, Duarte AM, Hendriks G, Sequeira L, Duffy GP, Steendam R, Hennink WE, Kok RJ. Sustained Release of Vascular Endothelial Growth Factor from Poly(ε-caprolactone-PEG-ε-caprolactone)- b-Poly(l-lactide) Multiblock Copolymer Microspheres. ACS OMEGA 2019; 4:11481-11492. [PMID: 31460253 PMCID: PMC6681988 DOI: 10.1021/acsomega.9b01272] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 06/18/2019] [Indexed: 05/14/2023]
Abstract
Vascular endothelial growth factor (VEGF) is the major regulating factor for the formation of new blood vessels, also known as angiogenesis. VEGF is often incorporated in synthetic scaffolds to promote vascularization and to enhance the survival of cells that have been seeded in these devices. Such applications require sustained local delivery of VEGF of around 4 weeks for stable blood vessel formation. Most delivery systems for VEGF only provide short-term release for a couple of days, followed by a release phase with very low VEGF release. We now have developed VEGF-loaded polymeric microspheres that provide sustained release of bioactive VEGF for 4 weeks. Blends of two swellable poly(ε-caprolactone)-poly(ethylene glycol)-poly(ε-caprolactone)-b-poly(l-lactide) ([PCL-PEG-PCL]-b-[PLLA])-based multiblock copolymers with different PEG content and PEG molecular weight were used to prepare the microspheres. Loading of the microspheres was established by a solvent evaporation-based membrane emulsification method. The resulting VEGF-loaded microspheres had average sizes of 40-50 μm and a narrow size distribution. Optimized formulations of a 50:50 blend of the two multiblock copolymers had an average VEGF loading of 0.79 ± 0.09%, representing a high average VEGF loading efficiency of 78 ± 16%. These microspheres released VEGF continuously over 4 weeks in phosphate-buffered saline pH 7.4 at 37 °C. This release profile was preserved after repeated and long-term storage at -20 °C for up to 9 months, thereby demonstrating excellent storage stability. VEGF release was governed by diffusion through the water-filled polymer matrix, depending on PEG molecular weight and PEG content of the polymers. The bioactivity of the released VEGF was retained within the experimental error in the 4-week release window, as demonstrated using a human umbilical vein endothelial cells proliferation assay. Thus, the microspheres prepared in this study are suitable for embedment in polymeric scaffolds with the aim of promoting their functional vascularization.
Collapse
Affiliation(s)
- Karina
C. Scheiner
- Department
of Pharmaceutics, Utrecht Institute of Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - Roel F. Maas-Bakker
- Department
of Pharmaceutics, Utrecht Institute of Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - Thanh T. Nguyen
- InnoCore
Pharmaceuticals B.V., L.J. Zielstraweg 1, 9713 GX Groningen, The Netherlands
| | - Ana M. Duarte
- InnoCore
Pharmaceuticals B.V., L.J. Zielstraweg 1, 9713 GX Groningen, The Netherlands
| | - Gert Hendriks
- InnoCore
Pharmaceuticals B.V., L.J. Zielstraweg 1, 9713 GX Groningen, The Netherlands
| | - Lídia Sequeira
- InnoCore
Pharmaceuticals B.V., L.J. Zielstraweg 1, 9713 GX Groningen, The Netherlands
| | - Garry P. Duffy
- Discipline
of Anatomy, School of Medicine, National
University of Ireland Galway, University Road, H91 TK33 Galway, Ireland
| | - Rob Steendam
- InnoCore
Pharmaceuticals B.V., L.J. Zielstraweg 1, 9713 GX Groningen, The Netherlands
| | - Wim E. Hennink
- Department
of Pharmaceutics, Utrecht Institute of Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - Robbert J. Kok
- Department
of Pharmaceutics, Utrecht Institute of Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
- E-mail: . Phone: +31 620275995. Fax: +31 30 251789
| |
Collapse
|
28
|
Schoubben A, Ricci M, Giovagnoli S. Meeting the unmet: from traditional to cutting-edge techniques for poly lactide and poly lactide-co-glycolide microparticle manufacturing. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2019. [DOI: 10.1007/s40005-019-00446-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
29
|
Feng Y, Lee Y. Microfluidic assembly of food-grade delivery systems: Toward functional delivery structure design. Trends Food Sci Technol 2019. [DOI: 10.1016/j.tifs.2019.02.054] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
30
|
Xiao JX, Wang LH, Xu TC, Huang GQ. Complex coacervation of carboxymethyl konjac glucomannan and chitosan and coacervate characterization. Int J Biol Macromol 2019; 123:436-445. [DOI: 10.1016/j.ijbiomac.2018.11.086] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 10/25/2018] [Accepted: 11/12/2018] [Indexed: 12/14/2022]
|
31
|
Alliod O, Messager L, Fessi H, Dupin D, Charcosset C. Influence of viscosity for oil-in-water and water-in-oil nanoemulsions production by SPG premix membrane emulsification. Chem Eng Res Des 2019. [DOI: 10.1016/j.cherd.2018.11.027] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
32
|
Preparation of oil-in-water nanoemulsions at large-scale using premix membrane emulsification and Shirasu Porous Glass (SPG) membranes. Colloids Surf A Physicochem Eng Asp 2018. [DOI: 10.1016/j.colsurfa.2018.04.045] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
33
|
Alroaithi M, Jahanzad F, Sajjadi S. Suppressing Coalescence and Improving Uniformity of Polymer Beads in Suspension Polymerization Using a Two-Stage Stirring Protocol. Ind Eng Chem Res 2018. [DOI: 10.1021/acs.iecr.8b01599] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Mohammad Alroaithi
- Faculty of Natural and Mathematical Science, King’s College London, Strand, London WC2R 2LS, U.K
| | - Fatemeh Jahanzad
- Division of Chemical and Petroleum Engineering, London South Bank University, London SE1 0AA, U.K
| | - Shahriar Sajjadi
- Faculty of Natural and Mathematical Science, King’s College London, Strand, London WC2R 2LS, U.K
| |
Collapse
|
34
|
Chen F, Zhang Z, Deng Z, Zhang R, Fan G, Ma D, McClements DJ. Controlled-release of antacids from biopolymer microgels under simulated gastric conditions: Impact of bead dimensions, pore size, and alginate/pectin ratio. Food Res Int 2018; 106:745-751. [DOI: 10.1016/j.foodres.2018.01.038] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 01/15/2018] [Accepted: 01/17/2018] [Indexed: 12/13/2022]
|
35
|
Demulsification to control solute release from Pickering crystal-stabilized water-in-oil emulsions. J Colloid Interface Sci 2018; 509:360-368. [DOI: 10.1016/j.jcis.2017.08.091] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 08/26/2017] [Accepted: 08/28/2017] [Indexed: 01/23/2023]
|
36
|
Production of copper loaded lipid microparticles by PGSS ® (particles from gas satured solutions) process. J Supercrit Fluids 2018. [DOI: 10.1016/j.supflu.2017.09.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
37
|
Silva PS, Morelli S, Dragosavac MM, Starov VM, Holdich RG. Water in oil emulsions from hydrophobized metal membranes and characterization of dynamic interfacial tension in membrane emulsification. Colloids Surf A Physicochem Eng Asp 2017. [DOI: 10.1016/j.colsurfa.2017.06.051] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
38
|
Nabavi SA, Vladisavljević GT, Wicaksono A, Georgiadou S, Manović V. Production of molecularly imprinted polymer particles with amide-decorated cavities for CO 2 capture using membrane emulsification/suspension polymerisation. Colloids Surf A Physicochem Eng Asp 2017. [DOI: 10.1016/j.colsurfa.2016.05.033] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
39
|
Demina PA, Grigoriev DO, Kuz’micheva GM, Bukreeva TV. Preparation of pickering-emulsion-based capsules with shells composed of titanium dioxide nanoparticles and polyelectrolyte layers. COLLOID JOURNAL 2017. [DOI: 10.1134/s1061933x1702003x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
40
|
Preparation of Drug-Loaded PLGA-PEG Nanoparticles by Membrane-Assisted Nanoprecipitation. Pharm Res 2017; 34:1296-1308. [PMID: 28342057 DOI: 10.1007/s11095-017-2146-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 03/16/2017] [Indexed: 12/25/2022]
Abstract
PURPOSE The aim of this work is to develop a scalable continuous system suitable for the formulation of polymeric nanoparticles using membrane-assisted nanoprecipitation. One of the hurdles to overcome in the use of nanostructured materials as drug delivery vectors is their availability at industrial scale. Innovation in process technology is required to translate laboratory production into mass production while preserving their desired nanoscale characteristics. METHODS Membrane-assisted nanoprecipitation has been used for the production of Poly[(D,L lactide-co-glycolide)-co-poly ethylene glycol] diblock) (PLGA-PEG) nanoparticles using a pulsed back-and-forward flow arrangement. Tubular Shirasu porous glass membranes (SPG) with pore diameters of 1 and 0.2 μm were used to control the mixing process during the nanoprecipitation reaction. RESULTS The size of the resulting PLGA-PEG nanoparticles could be readily tuned in the range from 250 to 400 nm with high homogeneity (PDI lower than 0.2) by controlling the dispersed phase volume/continuous phase volume ratio. Dexamethasone was successfully encapsulated in a continuous process, achieving an encapsulation efficiency and drug loading efficiency of 50% and 5%, respectively. The dexamethasone was released from the nanoparticles following Fickian kinetics. CONCLUSIONS The method allowed to produce polymeric nanoparticles for drug delivery with a high productivity, reproducibility and easy scalability.
Collapse
|
41
|
Piacentini E, Yan M, Giorno L. Development of enzyme-loaded PVA microspheres by membrane emulsification. J Memb Sci 2017. [DOI: 10.1016/j.memsci.2016.11.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
42
|
Zhu P, Wang L. Passive and active droplet generation with microfluidics: a review. LAB ON A CHIP 2016; 17:34-75. [PMID: 27841886 DOI: 10.1039/c6lc01018k] [Citation(s) in RCA: 545] [Impact Index Per Article: 60.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Precise and effective control of droplet generation is critical for applications of droplet microfluidics ranging from materials synthesis to lab-on-a-chip systems. Methods for droplet generation can be either passive or active, where the former generates droplets without external actuation, and the latter makes use of additional energy input in promoting interfacial instabilities for droplet generation. A unified physical understanding of both passive and active droplet generation is beneficial for effectively developing new techniques meeting various demands arising from applications. Our review of passive approaches focuses on the characteristics and mechanisms of breakup modes of droplet generation occurring in microfluidic cross-flow, co-flow, flow-focusing, and step emulsification configurations. The review of active approaches covers the state-of-the-art techniques employing either external forces from electrical, magnetic and centrifugal fields or methods of modifying intrinsic properties of flows or fluids such as velocity, viscosity, interfacial tension, channel wettability, and fluid density, with a focus on their implementations and actuation mechanisms. Also included in this review is the contrast among different approaches of either passive or active nature.
Collapse
Affiliation(s)
- Pingan Zhu
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong, China. and HKU-Zhejiang Institute of Research and Innovation (HKU-ZIRI), 311300, Hangzhou, Zhejiang, China
| | - Liqiu Wang
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong, China. and HKU-Zhejiang Institute of Research and Innovation (HKU-ZIRI), 311300, Hangzhou, Zhejiang, China
| |
Collapse
|