1
|
Zhang Y, Liang J, Shi J, Yuan W, Li X, Ding C. Applications of endophytic fungi in plant disease control. Arch Microbiol 2025; 207:117. [PMID: 40205240 DOI: 10.1007/s00203-025-04303-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 03/03/2025] [Accepted: 03/09/2025] [Indexed: 04/11/2025]
Abstract
Diseases caused by pathogenic microorganisms (bacteria, fungi, and viruses) have resulted in the quality and yield of crops, which has seriously affected the development of the agricultural economy. The prolonged use of chemical fungicides for prevention and control can lead to environmental pollution, hindering the sustainable development of safe and eco-friendly agriculture while also promoting the resistance of pathogenic microorganisms. Nevertheless, non-pathogenic endophytic fungi that form symbiotic relationships with plants still exhibit significant antagonistic effects on pathogenic microorganisms, even in small concentrations. These fungi pose no threat to human health and are highly beneficial to the ecological environment, making them an ideal alternative to chemical fungicides. They are increasingly being recognized and have been subjected to comprehensive research. Based on this, this article summarizes the types of endophytic fungi with biocontrol effects in recent years. It focuses on elucidating the mechanisms of their biocontrol from physiological and molecular perspectives. In addition, the application and development challenges of biocontrol agents (BCAs) derived from these fungi are also discussed, including difficulties in elucidating their mechanisms of action during research and development, challenges in strain selection and improvement, difficulties in controlling environmental adaptability, and stringent storage conditions. The aim is to develop more effective endophytic fungi as emerging biocontrol resources for agricultural production.
Collapse
Affiliation(s)
- Yang Zhang
- College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Jingru Liang
- College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Jiajie Shi
- College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Wenhui Yuan
- College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Xintao Li
- College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Changhong Ding
- College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, China.
| |
Collapse
|
2
|
Chen S, Wang T, Chen J, Sui M, Wang L, Zhao X, Sun J, Lu Y. 3D bioprinting technology innovation in female reproductive system. Mater Today Bio 2025; 31:101551. [PMID: 40026632 PMCID: PMC11870202 DOI: 10.1016/j.mtbio.2025.101551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Revised: 01/15/2025] [Accepted: 02/03/2025] [Indexed: 03/05/2025] Open
Abstract
Several diseases affect the female reproductive system, and both disease factors and treatments impact its integrity and function. Consequently, understanding the mechanisms of disease occurrence and exploring treatment methods are key research focuses in obstetrics and gynecology. However, constructing accurate disease models requires a microenvironment closely resembling the human body, and current animal models and 2D in vitro cell models fall short in this regard. Thus, innovative in vitro female reproductive system models are urgently needed. Additionally, female reproductive system diseases often cause tissue loss, yet effective tissue repair and regeneration have long been a bottleneck in the medical field. 3D bioprinting offers a solution by enabling the construction of implants with tissue repair and regeneration capabilities, promoting cell adhesion, extension, and proliferation. This helps maintain the long-term efficacy of bioactive implants and achieves both structural and functional repair of the reproductive system. By combining live cells with biomaterials, 3D bioprinting can create in vitro 3D biomimetic cellular models, facilitating in-depth studies of cell-cell and cell-extracellular microenvironment interactions, which enhances our understanding of reproductive system diseases and supports disease-specific drug screening. This article reviews 3D bioprinting methods and materials applicable to the female reproductive system, discussing their advantages and limitations to aid in selecting optimal 3D bioprinting strategies. We also summarize and critically evaluate recent advancements in 3D bioprinting applications for tissue regeneration and in vitro disease models and address the prospects and challenges for translating 3D bioprinting technology into clinical applications within the female reproductive system.
Collapse
Affiliation(s)
- Siyao Chen
- Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun, 130041, PR China
| | | | - Jiaqi Chen
- Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun, 130041, PR China
| | - Mingxing Sui
- Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun, 130041, PR China
| | - Luyao Wang
- Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun, 130041, PR China
| | - Xueyu Zhao
- Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun, 130041, PR China
| | - Jianqiao Sun
- Reproductive Clinical Science, Macon & Joan Brock Virginia Health Sciences, Old Dominion University, Norfolk, VA, 23507, USA
| | - Yingli Lu
- Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun, 130041, PR China
| |
Collapse
|
3
|
El-Tanani M, Satyam SM, Rabbani SA, El-Tanani Y, Aljabali AAA, Al Faouri I, Rehman A. Revolutionizing Drug Delivery: The Impact of Advanced Materials Science and Technology on Precision Medicine. Pharmaceutics 2025; 17:375. [PMID: 40143038 PMCID: PMC11944361 DOI: 10.3390/pharmaceutics17030375] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 03/09/2025] [Accepted: 03/12/2025] [Indexed: 03/28/2025] Open
Abstract
Recent progress in material science has led to the development of new drug delivery systems that go beyond the conventional approaches and offer greater accuracy and convenience in the application of therapeutic agents. This review discusses the evolutionary role of nanocarriers, hydrogels, and bioresponsive polymers that offer enhanced drug release, target accuracy, and bioavailability. Oncology, chronic disease management, and vaccine delivery are some of the applications explored in this paper to show how these materials improve the therapeutic results, counteract multidrug resistance, and allow for sustained and localized treatments. The review also discusses the translational barriers of bringing advanced materials into the clinical setting, which include issues of biocompatibility, scalability, and regulatory approval. Methods to overcome these challenges include surface modifications to reduce immunogenicity, scalable production methods such as microfluidics, and the harmonization of regulatory systems. In addition, the convergence of artificial intelligence (AI) and machine learning (ML) is opening new frontiers in material science and personalized medicine. These technologies allow for predictive modeling and real-time adjustments to optimize drug delivery to the needs of individual patients. The use of advanced materials can also be applied to rare and underserved diseases; thus, new strategies in gene therapy, orphan drugs development, and global vaccine distribution may offer new hopes for millions of patients.
Collapse
Affiliation(s)
- Mohamed El-Tanani
- RAK College of Pharmacy, Ras Al Khaimah Medical and Health Sciences University, Ras Al Khaimah P.O. Box 11172, United Arab Emirates
| | - Shakta Mani Satyam
- Department of Pharmacology, RAK College of Medical Sciences, Ras Al Khaimah Medical and Health Sciences University, Ras Al Khaimah P.O. Box 11172, United Arab Emirates
| | - Syed Arman Rabbani
- RAK College of Pharmacy, Ras Al Khaimah Medical and Health Sciences University, Ras Al Khaimah P.O. Box 11172, United Arab Emirates
| | | | - Alaa A. A. Aljabali
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Yarmouk University, Irbid 21163, Jordan;
| | - Ibrahim Al Faouri
- RAK College of Nursing, Ras Al Khaimah Medical and Health Sciences University, Ras Al Khaimah P.O. Box 11172, United Arab Emirates
| | - Abdul Rehman
- Department of Pathology, RAK College of Medical Sciences, Ras Al Khaimah Medical and Health Sciences University, Ras Al Khaimah P.O. Box 11172, United Arab Emirates;
| |
Collapse
|
4
|
Ghahremani-Nasab M, Babaie S, Bazdar S, Paiva-Santos AC, Del Bakhshayesh MR, Akbari-Gharalari N, Fathi-Karkan S, Ghasemi D, Del Bakhshayesh AR. Infertility treatment using polysaccharides-based hydrogels: new strategies in tissue engineering and regenerative medicine. J Nanobiotechnology 2025; 23:162. [PMID: 40033394 PMCID: PMC11877900 DOI: 10.1186/s12951-025-03267-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 02/23/2025] [Indexed: 03/05/2025] Open
Abstract
Infertility is a primary health issue affecting about 15% of couples of reproductive ages worldwide, leading to physical, mental, and social challenges. Advances in nanobiotechnology and regenerative medicine are opening new therapeutic horizons for infertility by developing polysaccharide-based nanostructured biomaterials. This review explores the role of tissue engineering and regenerative medicine in infertility treatment, explicitly focusing on the promising potential of polysaccharide-based hydrogels. In this context, using these biomaterials offers unique advantages, including biodegradability, biocompatibility, and the ability to mimic the natural endometrial microenvironment, making them highly effective for applications in endometrial regeneration, ovarian tissue engineering, spermatogenesis support, and controlled drug delivery. This review discusses the various properties and uses of polysaccharide-based hydrogels, like alginate, hyaluronic acid, and chitosan, in helping to restore reproductive function. While these materials hold great promise, some notable challenges to their clinical use include issues like rapid degradation, mechanical instability, and potential immune reactions. Future research should focus on developing hybrid hydrogels, investigating advanced fabrication techniques, and testing these materials in clinical settings. By combining findings from recent studies, this review aims to provide a solid foundation for researchers and clinicians looking to discover new and effective strategies for treating infertility, ultimately connecting research efforts with practical applications in healthcare.
Collapse
Affiliation(s)
- Maryam Ghahremani-Nasab
- Department of Tissue Engineering, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
- Stem Cells and Regenerative Medicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Soraya Babaie
- Physical Medicine and Rehabilitation Research Center, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sara Bazdar
- Department of Tissue Engineering, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ana Cláudia Paiva-Santos
- Department of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Coimbra, Portugal
- Department of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, LAQV, REQUIMTE, University of Coimbra, Coimbra, Portugal
| | | | - Naeimeh Akbari-Gharalari
- Neurophysiology Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia,, Iran
| | - Sonia Fathi-Karkan
- Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, 94531-55166, Iran
- Department of Advanced Sciences and Technologies in Medicine, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, 9414974877, Iran
| | - Diba Ghasemi
- Stem Cells and Regenerative Medicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Azizeh Rahmani Del Bakhshayesh
- Department of Tissue Engineering, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
- Kidney Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
5
|
Guo Q, Wang T, Qian C, Wang X. Redox Oxygen Species-Responsive Nanotheranostics with Dual-Channel Fluorescent Turn-On for Early Diagnosis and Targeted Therapy of Alzheimer's Disease. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2403980. [PMID: 39428844 DOI: 10.1002/smll.202403980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 09/24/2024] [Indexed: 10/22/2024]
Abstract
Current diagnosis and treatment strategies mainly focus on the pathologies of the mid-to-late stage of AD (Alzheimer's disease), with clinical outcomes that are far from ideal. Herein, we developed the ROS (reactive oxygen species)-responsive brain neuronal targeting nanotheranostic platforms that possess the dual-channel fluorescent "turn-on" properties and release drugs in AD neurons in response to ROS, thereby simultaneously facilitating the diagnosis and therapy of early AD. Through the modification of acetylcholine receptor targeting RVG29 peptide, the nanotheranostics penetrated BBB and accumulated into diseased neurons in an intact form, consequently maximizing the diagnostic and therapeutic performance. The anti-oxidative drug baicalein conjugated onto the surface of nanotheranostics via ROS-cleavable boronate ester linkage rapidly released for ROS scavenging, while the encapsulated fluorophores turned on their fluorescence for AD diagnosis upon microenvironment stimuli. This nanotheranostic strategy exhibited highly sensitivity with a ROS detection limit of up to 100 µm and accurately early detection of ROS in 3×Tg AD mice at 6 months of age in vivo. In addition, it could also rescue memory defects, scavenge oxidative stress, attenuate neuroinflammation and enhance neuroprotective effect in 3×Tg AD mice. This work opens up a promising and smart strategy for early diagnosis and therapy in neurodegenerative disease.
Collapse
Affiliation(s)
- Qian Guo
- Shanghai 411 Hospital, China RongTong Medical Healthcare Group Co.Ltd. / 411 Hospital, Shanghai University, Shanghai, 200081, China
- Laboratory of Drug Delivery, School of Medicine, Shanghai University, 99 Shangda Road, Shanghai, 200444, China
| | - Tianying Wang
- School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Christopher Qian
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, NT, Shatin, Hong Kong
| | - Xinyu Wang
- Laboratory of Drug Delivery, School of Medicine, Shanghai University, 99 Shangda Road, Shanghai, 200444, China
| |
Collapse
|
6
|
Pal P, Sharma M, Gupta SK, Potdar MB, Belgamwar AV. miRNA-124 loaded extracellular vesicles encapsulated within hydrogel matrices for combating chemotherapy-induced neurodegeneration. Biochem Biophys Res Commun 2024; 734:150778. [PMID: 39368371 DOI: 10.1016/j.bbrc.2024.150778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 09/17/2024] [Accepted: 09/30/2024] [Indexed: 10/07/2024]
Abstract
Chemotherapy-induced neurodegeneration represents a significant challenge in cancer survivorship, manifesting in cognitive impairments that severely affect patients' quality of life. Emerging neuroregenerative therapies offer promise in mitigating these adverse effects, with miRNA-124 playing a pivotal role due to its critical functions in neural differentiation, neurogenesis, and neuroprotection. This review article delves into the innovative approach of using miRNA-124-loaded extracellular vesicles (EVs) encapsulated within hydrogel matrices as a targeted strategy for combating chemotherapy-induced neurodegeneration. We explore the biological underpinnings of miR-124 in neuroregeneration, detailing its mechanisms of action and therapeutic potential. The article further examines the roles and advantages of EVs as natural delivery systems for miRNAs and the application of hydrogel matrices in creating a sustained release environment conducive to neural tissue regeneration. By integrating these advanced materials and biological agents, we highlight a synergistic therapeutic strategy that leverages the bioactive properties of miR-124, the targeting capabilities of EVs, and the supportive framework of hydrogels. Preclinical studies and potential pathways to clinical translation are discussed, alongside the challenges, ethical considerations, and future directions in the field. This comprehensive review underscores the transformative potential of miR-124-loaded EVs in hydrogel matrices, offering insights into their development as a novel and integrative approach for addressing the complexities of chemotherapy-induced neurodegeneration.
Collapse
Affiliation(s)
- Pankaj Pal
- IIMT College of Pharmacy, IIMT Group of Colleges, Greater Noida, Uttar Pradesh, India.
| | - Monika Sharma
- Department of Pharmacy, Banasthali Vidyapith, Rajasthan, India
| | - Sukesh Kumar Gupta
- Department of Ophthalmology, Visual and Anatomical Sciences (OVAS), School of Medicine, Wayne State University, USA; KIET School of Pharmacy, KIET Group of Institutions, Ghaziabad, Uttar Pradesh, India
| | - Mrugendra B Potdar
- Department of Pharmaceutics, Shri Vile Parle Kelvani Mandal's Institute of Pharmacy, Dhule, Maharashtra, India
| | - Aarti V Belgamwar
- Department of Pharmaceutics, Shri Vile Parle Kelvani Mandal's Institute of Pharmacy, Dhule, Maharashtra, India
| |
Collapse
|
7
|
Gao M, Wang Y, Zhuang H, Zhu Y, Chen N, Teng T. Insights into the Preparation of and Evaluation of the Bactericidal Effects of Phage-Based Hydrogels. Int J Mol Sci 2024; 25:9472. [PMID: 39273419 PMCID: PMC11394800 DOI: 10.3390/ijms25179472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/16/2024] [Accepted: 08/23/2024] [Indexed: 09/15/2024] Open
Abstract
The rise of antibiotic-resistant strains demands new alternatives in antibacterial treatment. Bacteriophages, with their precise host specificity and ability to target and eliminate bacteria safely, present a valuable option. Meanwhile, hydrogels, known for their excellent biodegradability and biocompatibility, serve as ideal carriers for bacteriophages. The combination of bacteriophages and hydrogels ensures heightened phage activity, concentration, controlled release, and strong antibacterial properties, making it a promising avenue for antibacterial treatment. This article provides a comprehensive review of different crosslinking methods for phage hydrogels, focusing on their application in treating infections caused by various drug-resistant bacteria and highlighting their effective antibacterial properties and controlled release capabilities.
Collapse
Affiliation(s)
- Mengyuan Gao
- School of Basic Medical Sciences, Henan University, Kaifeng 475004, China
| | - Yuhan Wang
- School of Basic Medical Sciences, Henan University, Kaifeng 475004, China
| | - Hanyue Zhuang
- School of Basic Medical Sciences, Henan University, Kaifeng 475004, China
| | - Yanxia Zhu
- School of Basic Medical Sciences, Henan University, Kaifeng 475004, China
| | - Na Chen
- School of Basic Medical Sciences, Henan University, Kaifeng 475004, China
| | - Tieshan Teng
- School of Basic Medical Sciences, Henan University, Kaifeng 475004, China
| |
Collapse
|
8
|
Yang LY, Li CQ, Zhang YL, Ma MW, Cheng W, Zhang GJ. Emerging Drug Delivery Vectors: Engineering of Plant-Derived Nanovesicles and Their Applications in Biomedicine. Int J Nanomedicine 2024; 19:2591-2610. [PMID: 38505167 PMCID: PMC10949304 DOI: 10.2147/ijn.s454794] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 02/28/2024] [Indexed: 03/21/2024] Open
Abstract
Extracellular vesicles can transmit intercellular information and transport biomolecules to recipient cells during various pathophysiological processes in the organism. Animal cell exosomes have been identified as potential nanodrugs delivery vehicles, yet they have some shortcomings such as high immunogenicity, high cytotoxicity, and complicated preparation procedures. In addition to exosomes, plant-derived extracellular vesicles (PDVs), which carry a variety of active substances, are another promising nano-transport vehicles emerging in recent years due to their stable physicochemical properties, wide source, and low cost. This work briefly introduces the collection and characterization of PDVs, then focuses on the application of PDVs as natural or engineered drug carriers in biomedicine, and finally discusses the development and challenges of PDVs in future applications.
Collapse
Affiliation(s)
- Lu-Yao Yang
- School of Laboratory Medicine, Hubei University of Chinese Medicine, Wuhan, 430065, People’s Republic of China
| | - Chao-Qing Li
- School of Laboratory Medicine, Hubei University of Chinese Medicine, Wuhan, 430065, People’s Republic of China
- Hubei Shizhen Laboratory, Wuhan, 430065, People’s Republic of China
| | - Yu-Lin Zhang
- School of Laboratory Medicine, Hubei University of Chinese Medicine, Wuhan, 430065, People’s Republic of China
- Hubei Shizhen Laboratory, Wuhan, 430065, People’s Republic of China
| | - Meng-Wen Ma
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, People’s Republic of China
| | - Wan Cheng
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, People’s Republic of China
| | - Guo-Jun Zhang
- School of Laboratory Medicine, Hubei University of Chinese Medicine, Wuhan, 430065, People’s Republic of China
- Hubei Shizhen Laboratory, Wuhan, 430065, People’s Republic of China
| |
Collapse
|
9
|
Volkova T, Simonova O, Perlovich G. Cyclodextrin's Effect on Permeability and Partition of Nortriptyline Hydrochloride. Pharmaceuticals (Basel) 2023; 16:1022. [PMID: 37513934 PMCID: PMC10386514 DOI: 10.3390/ph16071022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/11/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023] Open
Abstract
Cyclodextrin-based delivery systems have been intensively used to improve the bioavailability of drugs through the modification of their pharmaceutically relevant properties, such as solubility, distribution and membrane permeation. The present work aimed to disclose the influence of HP-β-CD and SBE-β-CD on the distribution and permeability of nortriptyline hydrochloride (NTT•HCl), a tricyclic antidepressant drug. To this end, the distribution coefficients in the 1-octanol/buffer and n-hexane/buffer model systems and the coefficients of permeability through the cellulose membrane and lipophilic PermeaPad barrier were determined at several cyclodextrin concentrations. The results demonstrated a dramatic decrease in both the distribution and the permeability coefficients as the cyclodextrin concentration rose, with the decrease being more pronounced in SBE-β-CD due to the charge-charge attraction and electrostatic interactions between NTT and SBE-β-CD. It is these interactions that were shown to be responsible for the greater value of the constant of NTT's association with SBE-β-CD than that with HP-β-CD. The findings of this study revealed similar trends in the 1-octanol/buffer 6.8 pH distribution and permeability through the PermeaPad barrier in the presence of CDs. These results were attributed to the determinative role of the distribution coefficient (serving as a descriptor) in permeation through the PermeaPad barrier modeling the lipophilic nature of biological barriers.
Collapse
Affiliation(s)
- Tatyana Volkova
- G.A. Krestov Institute of Solution Chemistry RAS, 153045 Ivanovo, Russia; (O.S.); (G.P.)
| | | | | |
Collapse
|
10
|
Hashemi P, Mahmoodi S, Ghasemian A. An updated review on oral protein-based antigen vaccines efficiency and delivery approaches: a special attention to infectious diseases. Arch Microbiol 2023; 205:289. [PMID: 37468763 DOI: 10.1007/s00203-023-03629-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 07/04/2023] [Accepted: 07/09/2023] [Indexed: 07/21/2023]
Abstract
Various infectious agents affect human health via the oral entrance. The majority of pathogens lack approved vaccines. Oral vaccination is a convenient, safe and cost-effective approach with the potential of provoking mucosal and systemic immunity and maintaining individual satisfaction. However, vaccines should overcome the intricate environment of the gastrointestinal tract (GIT). Oral protein-based antigen vaccines (OPAVs) are easier to administer than injectable vaccines and do not require trained healthcare professionals. Additionally, the risk of needle-related injuries, pain, and discomfort is eliminated. However, OPAVs stability at environmental and GIT conditions should be considered to enhance their stability and facilitate their transport and storage. These vaccines elicit the local immunity, protecting GIT, genital tract and respiratory epithelial surfaces, where numerous pathogens penetrate the body. OPAVs can also be manipulated (such as using specific incorporated ligand and receptors) to elicit targeted immune response. However, low bioavailability of OPAVs necessitates development of proper protein carriers and formulations to enhance their stability and efficacy. There are several strategies to improve their efficacy or protective effects, such as incorporation of adjuvants, enzyme inhibitors, mucoadhesive or penetrating devices and permeation enhancers. Hence, efficient delivery of OPAVs into GIT require proper delivery systems mainly including smart target systems, probiotics, muco-adhesive carriers, lipid- and plant-based delivery systems and nano- and microparticles.
Collapse
Affiliation(s)
- Parisa Hashemi
- Department of Medical Biotechnology, School of Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | - Shirin Mahmoodi
- Department of Medical Biotechnology, School of Medicine, Fasa University of Medical Sciences, Fasa, Iran.
| | - Abdolmajid Ghasemian
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran.
| |
Collapse
|
11
|
Shi P, Xia B, Qin Y, Zhou Y. Removal of multiple lipids from human plasma using a hydroxyl-functionalized covalent organic framework aerogel as a new sorbent. Mikrochim Acta 2023; 190:222. [PMID: 37184589 DOI: 10.1007/s00604-023-05770-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 03/29/2023] [Indexed: 05/16/2023]
Abstract
A hydroxyl-functionalized covalent organic framework aerogel COFTHB-TAPB-aerogel was designed and prepared as an adsorbent for the removal of multiple lipids from human plasma. The applications of 1,3,5-tris(4'-hydroxy-5'-formylphenyl)benzene (THB) and 1,3,5-tris(4-aminophenyl)benzene (TAPB) as monomers, DMSO/mesitylene (v/v, 4/1) as reaction solvent, and n-propylamine as reaction regulator endow COFTHB-TAPB-aerogel with good adsorption performance for multiple lipids. The morphology, phase purity, specific surface area, pore size, surface charge, and stability of COFTHB-TAPB-aerogel were characterized. Adsorption thermodynamics and adsorption kinetics studies showed that COFTHB-TAPB-aerogel had high equilibrium adsorption capacities (> 15913 mg g-1) and fast adsorption equilibrium (≤ 10 s) for the four model lipids tested. COFTHB-TAPB-aerogel had good reusability with the removal of the model lipids being still more than 91% after 10 use cycles. The sample pretreatment conditions and adsorbent amounts used in lipids removal experiments were optimized. Under the optimized conditions, the method of ultra-high performance liquid chromatography-high-resolution mass spectrometry (UHPLC-HRMS) using COFTHB-TAPB-aerogel as solid-phase extraction sorbent was validated with negligible matrix effects (0.4-3.0%) and good accuracy (86.7-110%) and was applied to determine 20 amino acids in human plasma samples from healthy individuals and gastric adenocarcinoma (GA) patients. The established method has been proved to have good application potential for the removal of multiple lipids in human plasma to reduce the matrix effects and improve the accuracy of clinical LC-MS analysis.
Collapse
Affiliation(s)
- Peiyu Shi
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Chengdu Institute of Food Inspection, Chengdu, 611135, China
| | - Bing Xia
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
| | - Yongping Qin
- Clinical Pharmacology Lab, Clinical Trial Center, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Yan Zhou
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China.
| |
Collapse
|
12
|
Gan S, Wu Y, Zhang X, Zheng Z, Zhang M, Long L, Liao J, Chen W. Recent Advances in Hydrogel-Based Phototherapy for Tumor Treatment. Gels 2023; 9:gels9040286. [PMID: 37102898 PMCID: PMC10137920 DOI: 10.3390/gels9040286] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 03/24/2023] [Accepted: 03/24/2023] [Indexed: 04/05/2023] Open
Abstract
Phototherapeutic agent-based phototherapies activated by light have proven to be safe modalities for the treatment of various malignant tumor indications. The two main modalities of phototherapies include photothermal therapy, which causes localized thermal damage to target lesions, and photodynamic therapy, which causes localized chemical damage by generated reactive oxygen species (ROS). Conventional phototherapies suffer a major shortcoming in their clinical application due to their phototoxicity, which primarily arises from the uncontrolled distribution of phototherapeutic agents in vivo. For successful antitumor phototherapy, it is essential to ensure the generation of heat or ROS specifically occurs at the tumor site. To minimize the reverse side effects of phototherapy while improving its therapeutic performance, extensive research has focused on developing hydrogel-based phototherapy for tumor treatment. The utilization of hydrogels as drug carriers allows for the sustained delivery of phototherapeutic agents to tumor sites, thereby limiting their adverse effects. Herein, we summarize the recent advancements in the design of hydrogels for antitumor phototherapy, offer a comprehensive overview of the latest advances in hydrogel-based phototherapy and its combination with other therapeutic modalities for tumor treatment, and discuss the current clinical status of hydrogel-based antitumor phototherapy.
Collapse
Affiliation(s)
- Shuaiqi Gan
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, Med-X Center for Materials, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Department of Oral Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Yongzhi Wu
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, Med-X Center for Materials, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Xu Zhang
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, Med-X Center for Materials, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Zheng Zheng
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, Med-X Center for Materials, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Department of Oral Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Min Zhang
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, Med-X Center for Materials, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Department of Oral Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Li Long
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, Med-X Center for Materials, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Department of Oral Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Jinfeng Liao
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, Med-X Center for Materials, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Wenchuan Chen
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, Med-X Center for Materials, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Department of Oral Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Jinjiang Out-Patient Section, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| |
Collapse
|
13
|
Advancing Medicine with Lipid-Based Nanosystems-The Successful Case of Liposomes. Biomedicines 2023; 11:biomedicines11020435. [PMID: 36830971 PMCID: PMC9953160 DOI: 10.3390/biomedicines11020435] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 01/25/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
Nanomedicine, a promising area of medicine, employs nanosized tools for the diagnosis, prevention, and treatment of disease. Particularly, liposomes, lipid-based nanovesicles, are currently one of the most successful nanosystems, with extensive applications in the clinic and an increasing pipeline of products in preclinical and clinical development. These versatile nanotechnological tools are biocompatible and biodegradable, and can load a variety of molecules and, ultimately, improve the therapeutic performance of drugs while minimizing undesired side effects. In this review, we provide a brief description on liposomes' composition and classification and mainly focus on their clinical use in various areas, including disease management (e.g., cancer, fungal and bacterial infections, ocular pathologies), analgesia, vaccination, diagnostics, and immunosuppression in organ transplantation. Herein are described examples of current liposomal products already in the clinic, as well as the most recent clinical trials involving liposomes as effective and safe nanomedicine tools.
Collapse
|
14
|
Jain N, Pandey M, Sharma P, Gupta G, Gorain B, Dua K. Recent developments in plant-derived edible nanoparticles as therapeutic nanomedicines. J Food Biochem 2022; 46:e14479. [PMID: 36268842 DOI: 10.1111/jfbc.14479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 09/23/2022] [Accepted: 09/26/2022] [Indexed: 01/14/2023]
Abstract
The use of nanotechnology in the treatment of numerous disorders has proven effective. The predicted development of plant-derived edible nanoparticles (PDNPs) as potential therapeutic agents for treating illness or in the delivery of drugs is inevitable. PDNPs generated from plants resemble mammal-extracted exosomes structurally. In contrast to their excellent biocompatibility with healthy cells, PDNPs are skewed toward malignancies by selectively targeting those cells via unique endocytic pathways. They can be generated in large quantities, are nontoxic, and have tissue-specific targeting abilities. Thus, with fewer off-target effects, using these PDNPs could broaden the breadth of pharmacological therapy. In this discussion, we emphasize the properties and biological activities of PDNPs isolated from fruits and vegetables and discuss the promising implications of these particles as nanomedicines. PRACTICAL APPLICATIONS: PDNPs have reportedly been employed for therapeutic applications for several ailments and are believed to have characteristics in common with exosomes generated from mammals. The advantages of PDNPs over mammalian-derived exosomes are numerous. Firstly, they may be produced on a commercial scale using a variety of efficient renewable sources. Secondly, the PDNPs' natural components developed in plant cells promise improved cytocompatibility, tolerability, low cytotoxicity, or other adverse effects. We evaluated some current studies on the applications and potential of PDNPs in this article. PDNPs could create new opportunities for drug discovery because of recent advancements in medicine and drug delivery system nanotechnology. Unfortunately, the precise mechanisms behind PDNP's functions and interaction in pathogenic processes have not yet been completely elucidated; as a result, the potential consequences of their clinical use are uncertain. Overall, PDNPs show a wide range of therapeutic possibilities that may be advantageous to patients and might eventually make up the next generation of pharmaceuticals.
Collapse
Affiliation(s)
- Neha Jain
- Department of Pharmaceutics, Amity Institute of Pharmacy, Amity University, Noida, India
| | - Manisha Pandey
- Department of Pharmaceutical Sciences, Central University of Haryana, Mahendergarh, 123031, India
| | - Palak Sharma
- Department of Pharmaceutics, Amity Institute of Pharmacy, Amity University, Noida, India
| | - Gaurav Gupta
- School of Pharmacy, Suresh Gyan Vihar University, Jaipur, India.,Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India.,Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Bapi Gorain
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, India
| | - Kamal Dua
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, New South Wales, 2007, Australia.,Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, New South Wales, Australia
| |
Collapse
|
15
|
Developments on the Smart Hydrogel-Based Drug Delivery System for Oral Tumor Therapy. Gels 2022; 8:gels8110741. [PMID: 36421563 PMCID: PMC9689473 DOI: 10.3390/gels8110741] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/11/2022] [Accepted: 11/11/2022] [Indexed: 11/17/2022] Open
Abstract
At present, an oral tumor is usually treated by surgery combined with preoperative or postoperative radiotherapies and chemotherapies. However, traditional chemotherapies frequently result in substantial toxic side effects, including bone marrow suppression, malfunction of the liver and kidneys, and neurotoxicity. As a new local drug delivery system, the smart drug delivery system based on hydrogel can control drug release in time and space, and effectively alleviate or avoid these problems. Environmentally responsive hydrogels for smart drug delivery could be triggered by temperature, photoelectricity, enzyme, and pH. An overview of the most recent research on smart hydrogels and their controlled-release drug delivery systems for the treatment of oral cancer is given in this review. It is anticipated that the local drug release method and environment-responsive benefits of smart hydrogels will offer a novel technique for the low-toxicity and highly effective treatment of oral malignancy.
Collapse
|
16
|
Sarfraz M, Qamar S, Rehman MU, Tahir MA, Ijaz M, Ahsan A, Asim MH, Nazir I. Nano-Formulation Based Intravesical Drug Delivery Systems: An Overview of Versatile Approaches to Improve Urinary Bladder Diseases. Pharmaceutics 2022; 14:pharmaceutics14091909. [PMID: 36145657 PMCID: PMC9501312 DOI: 10.3390/pharmaceutics14091909] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/25/2022] [Accepted: 08/30/2022] [Indexed: 12/02/2022] Open
Abstract
Intravesical drug delivery is a direct drug delivery approach for the treatment of various bladder diseases. The human urinary bladder has distinctive anatomy, making it an effective barrier against any toxic agent seeking entry into the bloodstream. This screening function of the bladder derives from the structure of the urothelium, which acts as a semi-permeable barrier. However, various diseases related to the urinary bladder, such as hyperactive bladder syndrome, interstitial cystitis, cancer, urinary obstructions, or urinary tract infections, can alter the bladder’s natural function. Consequently, the intravesical route of drug delivery can effectively treat such diseases as it offers site-specific drug action with minimum side effects. Intravesical drug delivery is the direct instillation of medicinal drugs into the urinary bladder via a urethral catheter. However, there are some limitations to this method of drug delivery, including the risk of washout of the therapeutic agents with frequent urination. Moreover, due to the limited permeability of the urinary bladder walls, the therapeutic agents are diluted before the process of permeation, and consequently, their efficiency is compromised. Therefore, various types of nanomaterial-based delivery systems are being employed in intravesical drug delivery to enhance the drug penetration and retention at the targeted site. This review article covers the various nanomaterials used for intravesical drug delivery and future aspects of these nanomaterials for intravesical drug delivery.
Collapse
Affiliation(s)
- Muhammad Sarfraz
- College of Pharmacy, Al-Ain University, Al-Ain 64141, United Arab Emirates
| | - Shaista Qamar
- Institute of Pharmaceutical Sciences, University of Veterinary and Animal Sciences, Lahore 54000, Pakistan
| | - Masood Ur Rehman
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad 45320, Pakistan
| | - Muhammad Azam Tahir
- Department of Pharmacy, Khalid Mahmood Institute of Medical Sciences, Sialkot 51310, Pakistan
| | - Muhammad Ijaz
- Department of Pharmacy, COMSATS University Islamabad, Lahore Campus, Lahore 54000, Pakistan
- Correspondence: (M.I.); or (I.N.); Tel.: +92-306-3700456 (M.I.); +92-0992-383591 (I.N.)
| | - Anam Ahsan
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong 030801, China
| | | | - Imran Nazir
- Department of Pharmacy, COMSATS University Islamabad, Lahore Campus, Lahore 54000, Pakistan
- Department of Pharmacy, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22060, Pakistan
- Correspondence: (M.I.); or (I.N.); Tel.: +92-306-3700456 (M.I.); +92-0992-383591 (I.N.)
| |
Collapse
|
17
|
Ranamalla SR, Porfire AS, Tomuță I, Banciu M. An Overview of the Supramolecular Systems for Gene and Drug Delivery in Tissue Regeneration. Pharmaceutics 2022; 14:pharmaceutics14081733. [PMID: 36015356 PMCID: PMC9412871 DOI: 10.3390/pharmaceutics14081733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/31/2022] [Accepted: 08/03/2022] [Indexed: 12/03/2022] Open
Abstract
Tissue regeneration is a prominent area of research, developing biomaterials aimed to be tunable, mechanistic scaffolds that mimic the physiological environment of the tissue. These biomaterials are projected to effectively possess similar chemical and biological properties, while at the same time are required to be safely and quickly degradable in the body once the desired restoration is achieved. Supramolecular systems composed of reversible, non-covalently connected, self-assembly units that respond to biological stimuli and signal cells have efficiently been developed as preferred biomaterials. Their biocompatibility and the ability to engineer the functionality have led to promising results in regenerative therapy. This review was intended to illuminate those who wish to envisage the niche translational research in regenerative therapy by summarizing the various explored types, chemistry, mechanisms, stimuli receptivity, and other advancements of supramolecular systems.
Collapse
Affiliation(s)
- Saketh Reddy Ranamalla
- Department of Pharmaceutical Technology and Bio Pharmacy, Faculty of Pharmacy, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400010 Cluj-Napoca, Romania
- Doctoral School in Integrative Biology, Faculty of Biology and Geology, “Babeș-Bolyai” University, 400015 Cluj-Napoca, Romania
| | - Alina Silvia Porfire
- Department of Pharmaceutical Technology and Bio Pharmacy, Faculty of Pharmacy, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400010 Cluj-Napoca, Romania
- Correspondence:
| | - Ioan Tomuță
- Department of Pharmaceutical Technology and Bio Pharmacy, Faculty of Pharmacy, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400010 Cluj-Napoca, Romania
| | - Manuela Banciu
- Department of Molecular Biology and Biotechnology, Center of Systems Biology, Biodiversity and Bioresources, Faculty of Biology and Geology, “Babeș-Bolyai” University, 400015 Cluj-Napoca, Romania
| |
Collapse
|
18
|
Applications and Mechanisms of Stimuli-Responsive Hydrogels in Traumatic Brain Injury. Gels 2022; 8:gels8080482. [PMID: 36005083 PMCID: PMC9407546 DOI: 10.3390/gels8080482] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 07/26/2022] [Accepted: 07/28/2022] [Indexed: 02/01/2023] Open
Abstract
Traumatic brain injury (TBI) is a global neurotrauma with high morbidity and mortality that seriously threatens the life quality of patients and causes heavy burdens to families, healthcare institutions, and society. Neuroinflammation and oxidative stress can further aggravate neuronal cell death, hinder functional recovery, and lead to secondary brain injury. In addition, the blood–brain barrier prevents drugs from entering the brain tissue, which is not conducive to the recovery of TBI. Due to their high water content, biodegradability, and similarity to the natural extracellular matrix (ECM), hydrogels are widely used for the delivery and release of various therapeutic agents (drugs, natural extracts, and cells, etc.) that exhibit beneficial therapeutic efficacy in tissue repair, such as TBI. Stimuli-responsive hydrogels can undergo reversible or irreversible changes in properties, structures, and functions in response to internal/external stimuli or physiological/pathological environmental stimuli, and further improve the therapeutic effects on diseases. In this paper, we reviewed the common types of stimuli-responsive hydrogels and their applications in TBI, and further analyzed the therapeutic effects of hydrogels in TBI, such as pro-neurogenesis, anti-inflammatory, anti-apoptosis, anti-oxidation, and pro-angiogenesis. Our study may provide strategies for the treatment of TBI by using stimuli-responsive hydrogels.
Collapse
|
19
|
Temperature Sensing with Thin Films of Flame-Formed Carbon Nanoparticles. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12157714] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
A porous nanostructured film of flame-formed carbon nanoparticles has been produced with a one-step procedure. The morphological and structural characteristics of the film have been characterized by atomic force microscopy and Raman spectroscopy. The electrical resistance as a function of the temperature has been investigated in the range from ambient temperature to 120 °C. A nonmetallic behavior has been observed, with a monotonic decrease of the film resistance as temperature increases. Electrical conduction is explained in terms of charge carriers tunneling and percolation between the carbon grains and is not perfectly described by an Arrhenius behavior. A negative temperature coefficient of resistance (TCR) of the order of −100 × 10−4 K−1 has been measured. The high absolute TCR value, together with the ease of material microfabrication processing and biocompatibility of the carbon material make this film ideal for temperature sensing in many environments. A functional relationship between resistance and temperature, which is necessary for practical applications, has been finally derived. A very good agreement between experimental data and fit is obtained with a fifth order polynomial.
Collapse
|
20
|
Zairov RR, Dovzhenko AP, Podyachev SN, Sudakova SN, Kornev TA, Shvedova AE, Masliy AN, Syakaev VV, Alekseev IS, Vatsouro IM, Mambetova GS, Lapaev DV, Nizameev IR, Enrichi F, Kuznetsov AM, Kovalev VV, Mustafina AR. Role of PSS-based assemblies in stabilization of Eu and Sm luminescent complexes and their thermoresponsive luminescence. Colloids Surf B Biointerfaces 2022; 217:112664. [PMID: 35780611 DOI: 10.1016/j.colsurfb.2022.112664] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 06/11/2022] [Accepted: 06/24/2022] [Indexed: 01/09/2023]
Abstract
The present work introduces self-assembled polystyrenesulfonate (PSS) molecules as soft nanocapsules for incorporation of Eu3+-Sm3+ complexes by the solvent exchange procedure. The high levels of Eu3+- and Sm3+-luminescence of the complexes derives from the ligand-to-metal energy transfer, in turn, resulted from the complex formation of Eu3+and Sm3+ ions with the three recently synthesized cyclophanic 1,3-diketones. The structural features of the ligands are optimized for the high thermal sensitivity of Eu3+- luminescence in DMF solutions. The PSS-nanocapsules (∼100 nm) provide both colloid and chemical stabilization of the ultrasmall (3-5 nm) nanoprecipitates of the complexes, although their luminescence spectra patterns and excited state lifetimes differ from the values measured for the complexes in DMF solutions. The specific concentration ratio of the Eu3+-Sm3+ complexes in the DMF solutions allows to tune the intensity ratio of the luminescence bands at 612 and 650 nm in the heterometallic Eu3+-Sm3+ colloids. The thermal sensitivity of the Eu3+- and Sm3+-luminescence of the complexes derives from the static quenching both in PSS-colloids and in DMF solutions, while the thermo-induced dynamic quenching of the luminescence is significant only in DMF solutions. The reversibility of thermo-induced luminescence changes of the Eu3+-Sm3+ colloids is demonstrated by six heating-cooling cycles. The DLS measurements before and after the six cycles reveal the invariance of the PSS-based capsule as the prerequisite for the recyclability of the temperature monitoring through the ratio of Eu3+-to- Sm3+ luminescence.
Collapse
Affiliation(s)
- Rustem R Zairov
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov str., 8, 420088 Kazan, Russian Federation.
| | - Alexey P Dovzhenko
- Kazan (Volga region) Federal University, Kremlyovskaya str., 18, 420008 Kazan, Russian Federation; Department of Chemistry, M. V. Lomonosov Moscow State University, Lenin's Hills1, 119991 Moscow, Russian Federation
| | - Sergey N Podyachev
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov str., 8, 420088 Kazan, Russian Federation; Department of Chemistry, M. V. Lomonosov Moscow State University, Lenin's Hills1, 119991 Moscow, Russian Federation
| | - Svetlana N Sudakova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov str., 8, 420088 Kazan, Russian Federation
| | - Timur A Kornev
- Kazan (Volga region) Federal University, Kremlyovskaya str., 18, 420008 Kazan, Russian Federation; Department of Chemistry, M. V. Lomonosov Moscow State University, Lenin's Hills1, 119991 Moscow, Russian Federation
| | - Anastasiya E Shvedova
- Kazan National Research Technological University, K. Marx Str., 68, 420015 Kazan, Russian Federation
| | - Alexey N Masliy
- Kazan National Research Technological University, K. Marx Str., 68, 420015 Kazan, Russian Federation
| | - Victor V Syakaev
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov str., 8, 420088 Kazan, Russian Federation
| | - Ivan S Alekseev
- Department of Chemistry, M. V. Lomonosov Moscow State University, Lenin's Hills1, 119991 Moscow, Russian Federation
| | - Ivan M Vatsouro
- Department of Chemistry, M. V. Lomonosov Moscow State University, Lenin's Hills1, 119991 Moscow, Russian Federation
| | - Gulnaz Sh Mambetova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov str., 8, 420088 Kazan, Russian Federation; Department of Chemistry, M. V. Lomonosov Moscow State University, Lenin's Hills1, 119991 Moscow, Russian Federation
| | - Dmitry V Lapaev
- Zavoisky Physical-Technical Institute, FRC Kazan Scientific Center of RAS, Sibirsky tract, 10/7, 420029 Kazan, Russian Federation
| | - Irek R Nizameev
- Kazan National Research Technical University, A.N. Tupolev - KAI, 10, K. Marx str., Kazan 420111, Russian Federation
| | - Francesco Enrichi
- Department of Computer Science, University of Verona, Strada Le Grazie 15, 37134 Verona, Italy; CNR-ISP, Institute of Polar Science of the National Research Council, via Torino 155, 30174 Mestre-Venezia, Italy
| | - Andrey M Kuznetsov
- Kazan National Research Technological University, K. Marx Str., 68, 420015 Kazan, Russian Federation
| | - Vladimir V Kovalev
- Department of Chemistry, M. V. Lomonosov Moscow State University, Lenin's Hills1, 119991 Moscow, Russian Federation
| | - Asiya R Mustafina
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov str., 8, 420088 Kazan, Russian Federation
| |
Collapse
|
21
|
Cai G, Hou Z, Sun W, Li P, Zhang J, Yang L, Chen J. Recent Developments in Biomaterial-Based Hydrogel as the Delivery System for Repairing Endometrial Injury. Front Bioeng Biotechnol 2022; 10:894252. [PMID: 35795167 PMCID: PMC9251415 DOI: 10.3389/fbioe.2022.894252] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 05/23/2022] [Indexed: 02/01/2023] Open
Abstract
Endometrial injury caused by intrauterine surgery often leads to pathophysiological changes in the intrauterine environment, resulting in infertility in women of childbearing age. However, clinical treatment strategies, especially for moderate to severe injuries, often fail to provide satisfactory therapeutic effects and pregnancy outcomes. With the development of reproductive medicine and materials engineering, researchers have developed bioactive hydrogel materials, which can be used as a physical anti-adhesion barrier alone or as functional delivery systems for intrauterine injury treatment by loading stem cells or various active substances. Studies have demonstrated that the biomaterial-based hydrogel delivery system can provide sufficient mechanical support and improve the intrauterine microenvironment, enhance the delivery efficiency of therapeutic agents, prolong intrauterine retention time, and perform efficiently targeted repair compared with ordinary drug therapy or stem cell therapy. It shows the promising application prospects of the hydrogel delivery system in reproductive medicine. Herein, we review the recent advances in endometrial repair methods, focusing on the current application status of biomaterial-based hydrogel delivery systems in intrauterine injury repair, including preparation principles, therapeutic efficacy, repair mechanisms, and current limitations and development perspectives.
Collapse
Affiliation(s)
- Guiyang Cai
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Zhipeng Hou
- Center for Molecular Science and Engineering, College of Science, Northeastern University, Shenyang, China
- NHC Key Laboratory of Reproductive Health and Medical Genetics (China Medical University), Liaoning Research Institute of Family Planning (The Reproductive Hospital of China Medical University), Shenyang, China
| | - Wei Sun
- Department of Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health, and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, China
| | - Peng Li
- NHC Key Laboratory of Reproductive Health and Medical Genetics (China Medical University), Liaoning Research Institute of Family Planning (The Reproductive Hospital of China Medical University), Shenyang, China
| | - Jinzhe Zhang
- NHC Key Laboratory of Reproductive Health and Medical Genetics (China Medical University), Liaoning Research Institute of Family Planning (The Reproductive Hospital of China Medical University), Shenyang, China
| | - Liqun Yang
- NHC Key Laboratory of Reproductive Health and Medical Genetics (China Medical University), Liaoning Research Institute of Family Planning (The Reproductive Hospital of China Medical University), Shenyang, China
- *Correspondence: Liqun Yang, ; Jing Chen,
| | - Jing Chen
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
- *Correspondence: Liqun Yang, ; Jing Chen,
| |
Collapse
|
22
|
Plant-Derived Exosomes as A Drug-Delivery Approach for the Treatment of Inflammatory Bowel Disease and Colitis-Associated Cancer. Pharmaceutics 2022; 14:pharmaceutics14040822. [PMID: 35456656 PMCID: PMC9029273 DOI: 10.3390/pharmaceutics14040822] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/02/2022] [Accepted: 04/06/2022] [Indexed: 12/10/2022] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic recurrent intestinal disease and includes Crohn’s disease (CD) and ulcerative colitis (UC). Due to the complex etiology of colitis, the current treatments of IBD are quite limited and are mainly concentrated on the remission of the disease. In addition, the side effects of conventional drugs on the body cannot be ignored. IBD also has a certain relationship with colitis-associated cancer (CAC), and inflammatory cells can produce a large number of tumor-promoting cytokines to promote tumor progression. In recent years, exosomes from plants have been found to have the ability to load drugs to target the intestine and have great potential for the treatment of intestinal diseases. This plant-derived exosome-targeting delivery system can load chemical or nucleic acid drugs and deliver them to intestinal inflammatory sites stably and efficiently. This review summarizes the pathophysiological characteristics of IBD and CAC as well as the application and prospect of plant exosomes in the treatment of IBD and CAC.
Collapse
|
23
|
Shariatinia Z. Big family of nano- and microscale drug delivery systems ranging from inorganic materials to polymeric and stimuli-responsive carriers as well as drug-conjugates. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102790] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
24
|
Wang J, Yang C, Xie Y, Chen X, Jiang T, Tian J, Hu S, Lu Y. Application of Bioactive Hydrogels for Functional Treatment of Intrauterine Adhesion. Front Bioeng Biotechnol 2021; 9:760943. [PMID: 34621732 PMCID: PMC8490821 DOI: 10.3389/fbioe.2021.760943] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 09/09/2021] [Indexed: 12/19/2022] Open
Abstract
Intrauterine adhesion (IUA) is a common endometrial disease and one of the main causes of infertility in women of childbearing age. Current treatment strategies, such as hysteroscopic adhesion resection, hysteroscopic transcervical resection of adhesion (TCRA), the use of local hormone drugs, and anti-adhesion scaffold implantation, do not provide a satisfactory pregnancy outcome for moderate-severe IUA, which presents a great challenge in reproductive medicine. With the development of material engineering, various bioactive and functional hydrogels have been developed using natural and synthetic biomaterials. These hydrogels are not only used as barely physical barriers but are also designed as vectors of hormone drugs, growth factors, and stem cells. These characteristics give bioactive hydrogels potentially important roles in the prevention and treatment of IUA. However, there is still no systematic review or consensus on the current advances and future research direction in this field. Herein, we review recent advances in bioactive hydrogels as physical anti-adhesion barriers, in situ drug delivery systems, and 3D cell delivery and culture systems for seeded cells in IUA treatment. In addition, current limitations and future perspectives are presented for further research guidance, which may provide a comprehensive understanding of the application of bioactive hydrogels in intrauterine adhesion treatment.
Collapse
Affiliation(s)
- Jingying Wang
- Department of Obstetrics and Gynecology, The Second Hospital, Jilin University, Changchun, China
| | - Chao Yang
- Department of Obstetrics and Gynecology, The Second Hospital, Jilin University, Changchun, China
| | - Yuxin Xie
- Department of Obstetrics and Gynecology, The Second Hospital, Jilin University, Changchun, China
| | - Xiaoxu Chen
- Department of Obstetrics and Gynecology, The Second Hospital, Jilin University, Changchun, China
| | - Ting Jiang
- Department of Obstetrics and Gynecology, The Second Hospital, Jilin University, Changchun, China
| | - Jing Tian
- Department of Obstetrics and Gynecology, The Second Hospital, Jilin University, Changchun, China
| | - Sihui Hu
- Department of Obstetrics and Gynecology, The Second Hospital, Jilin University, Changchun, China
| | - Yingli Lu
- Department of Obstetrics and Gynecology, The Second Hospital, Jilin University, Changchun, China
| |
Collapse
|
25
|
Wei W, Tang J, Hu L, Feng Y, Li H, Yin C, Tang F. Experimental anti-tumor effect of emodin in suspension - in situ hydrogels formed with self-assembling peptide. Drug Deliv 2021; 28:1810-1821. [PMID: 34470553 PMCID: PMC8425708 DOI: 10.1080/10717544.2021.1971795] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Lung cancer is a major cause of cancer-related deaths worldwide. Stimulus-sensitive hydrogels, which can be formed by responding to stimuli in the cancer microenvironment, have been widely studied as controlled-release carriers for hydrophobic anticancer drugs. In this study, self-assembling peptide RADA16-I was used to encapsulate the hydrophobic drug emodin (EM) under magnetic stirring to form a colloidal suspension, and the colloidal suspension (RADA16-I-EM) was introduced into environments with physiological pH/ionic strength to form hydrogels in situ. The results showed that RADA16-I had good cell compatibility and the RADA16-I-EM in situ hydrogels can obviously reduce the toxicity of EM to normal cells. In addition, compared with free EM (in water suspensions without peptide) at equivalent concentrations, RADA16-I-EM in situ hydrogels significantly reduced the survival fraction of LLC lung cancer cells, while increased the uptake of EM by the cells, and it also induced apoptosis and cell cycle arrest in the G2/M phase more significantly and reduced the migration, invasion, and clone abilities of the cells in vitro. The RADA16-I-EM in situ hydrogels also showed better cancer growth inhibition effects in cancer models (mice bearing LLC cells xenograft cancer), which induced cell apoptosis in the cancer tissue and reduced the toxic side effects of EM on normal tissues and organs in vivo compared with the free EM. It was revealed that RADA16-I can be exploited as a promising carrier for hydrophobic anticancer drugs and has the potential to improve the administration of anticancer drugs to treat cancer effectively with enhanced chemotherapy.
Collapse
Affiliation(s)
- Weipeng Wei
- Department of Clinical Pharmacy, Key Laboratory of Basic Pharmacology of Guizhou Province and School of Pharmacy, Zunyi Medical University, Zunyi, China.,Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China.,The Key Laboratory of Clinical Pharmacy of Zunyi City, Zunyi Medical University, Zunyi, China
| | - Jianhua Tang
- Cancer Research UK Manchester Institute, The University of Manchester, Manchester, UK
| | - Lei Hu
- Department of Clinical Pharmacy, Key Laboratory of Basic Pharmacology of Guizhou Province and School of Pharmacy, Zunyi Medical University, Zunyi, China.,Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China.,The Key Laboratory of Clinical Pharmacy of Zunyi City, Zunyi Medical University, Zunyi, China
| | - Yujie Feng
- Department of Clinical Pharmacy, Key Laboratory of Basic Pharmacology of Guizhou Province and School of Pharmacy, Zunyi Medical University, Zunyi, China.,Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China.,The Key Laboratory of Clinical Pharmacy of Zunyi City, Zunyi Medical University, Zunyi, China
| | - Hongfang Li
- Department of Clinical Pharmacy, Key Laboratory of Basic Pharmacology of Guizhou Province and School of Pharmacy, Zunyi Medical University, Zunyi, China.,Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China.,The Key Laboratory of Clinical Pharmacy of Zunyi City, Zunyi Medical University, Zunyi, China
| | - Chengchen Yin
- Department of Clinical Pharmacy, Key Laboratory of Basic Pharmacology of Guizhou Province and School of Pharmacy, Zunyi Medical University, Zunyi, China.,Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China.,The Key Laboratory of Clinical Pharmacy of Zunyi City, Zunyi Medical University, Zunyi, China
| | - Fushan Tang
- Department of Clinical Pharmacy, Key Laboratory of Basic Pharmacology of Guizhou Province and School of Pharmacy, Zunyi Medical University, Zunyi, China.,Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China.,The Key Laboratory of Clinical Pharmacy of Zunyi City, Zunyi Medical University, Zunyi, China
| |
Collapse
|
26
|
Nordin N, Bordonali L, Davoodi H, Ratnawati ND, Gygli G, Korvink JG, Badilita V, MacKinnon N. Real‐Time NMR Monitoring of Spatially Segregated Enzymatic Reactions in Multilayered Hydrogel Assemblies**. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202103585] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Nurdiana Nordin
- Institute of Microstructure Technology Karlsruhe Institute of Technology Eggenstein-Leopoldshafen Germany
- Department of Chemistry Faculty of Science University of Malaya Kuala Lumpur Malaysia
| | - Lorenzo Bordonali
- Institute of Microstructure Technology Karlsruhe Institute of Technology Eggenstein-Leopoldshafen Germany
| | - Hossein Davoodi
- Institute of Microstructure Technology Karlsruhe Institute of Technology Eggenstein-Leopoldshafen Germany
| | - Novindi Dwi Ratnawati
- Institute of Microstructure Technology Karlsruhe Institute of Technology Eggenstein-Leopoldshafen Germany
| | - Gudrun Gygli
- Institute of Biological Interfaces-1 Karlsruhe Institute of Technology Eggenstein-Leopoldshafen Germany
| | - Jan G. Korvink
- Institute of Microstructure Technology Karlsruhe Institute of Technology Eggenstein-Leopoldshafen Germany
| | - Vlad Badilita
- Institute of Microstructure Technology Karlsruhe Institute of Technology Eggenstein-Leopoldshafen Germany
| | - Neil MacKinnon
- Institute of Microstructure Technology Karlsruhe Institute of Technology Eggenstein-Leopoldshafen Germany
| |
Collapse
|
27
|
Nordin N, Bordonali L, Davoodi H, Ratnawati ND, Gygli G, Korvink JG, Badilita V, MacKinnon N. Real-Time NMR Monitoring of Spatially Segregated Enzymatic Reactions in Multilayered Hydrogel Assemblies*. Angew Chem Int Ed Engl 2021; 60:19176-19182. [PMID: 34132012 PMCID: PMC8457052 DOI: 10.1002/anie.202103585] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 05/11/2021] [Indexed: 11/16/2022]
Abstract
Compartmentalized chemical reactions at the microscale are important in biotechnology, yet monitoring the molecular content at these small scales is challenging. To address this challenge, we integrate a compact, reconfigurable reaction cell featuring electrochemical functionality with high‐resolution NMR spectroscopy. We demonstrate the operation of this system by monitoring the activity of enzymes immobilized in chemically distinct layers within a multi‐layered chitosan hydrogel assembly. As a benchmark, we observed the parallel activities of urease (Urs), catalase (Cat), and glucose oxidase (GOx) by monitoring reagent and product concentrations in real‐time. Simultaneous monitoring of an independent enzymatic process (Urs) together with a cooperative process (GOx + Cat) was achieved, with chemical conversion modulation of the GOx + Cat process demonstrated by varying the order in which the hydrogel was assembled.
Collapse
Affiliation(s)
- Nurdiana Nordin
- Institute of Microstructure Technology, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany.,Department of Chemistry, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
| | - Lorenzo Bordonali
- Institute of Microstructure Technology, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany
| | - Hossein Davoodi
- Institute of Microstructure Technology, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany
| | - Novindi Dwi Ratnawati
- Institute of Microstructure Technology, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany
| | - Gudrun Gygli
- Institute of Biological Interfaces-1, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany
| | - Jan G Korvink
- Institute of Microstructure Technology, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany
| | - Vlad Badilita
- Institute of Microstructure Technology, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany
| | - Neil MacKinnon
- Institute of Microstructure Technology, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
28
|
Injectable thermosensitive hydrogel-based drug delivery system for local cancer therapy. Colloids Surf B Biointerfaces 2021; 200:111581. [DOI: 10.1016/j.colsurfb.2021.111581] [Citation(s) in RCA: 104] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 12/17/2020] [Accepted: 01/11/2021] [Indexed: 12/16/2022]
|
29
|
Poloxamine/D-α-Tocopheryl polyethylene glycol succinate (TPGS) mixed micelles and gels: Morphology, loading capacity and skin drug permeability. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2020.114930] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
30
|
Di Gioia S, Hossain MN, Conese M. Biological properties and therapeutic effects of plant-derived nanovesicles. Open Med (Wars) 2020; 15:1096-1122. [PMID: 33336066 PMCID: PMC7718644 DOI: 10.1515/med-2020-0160] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 07/29/2020] [Accepted: 09/23/2020] [Indexed: 12/11/2022] Open
Abstract
Exosomes-like nanoparticles can be released by a variety of plants and vegetables. The relevance of plant-derived nanovesicles (PDNVs) in interspecies communication is derived from their content in biomolecules (lipids, proteins, and miRNAs), absence of toxicity, easy internalization by mammalian cells, as well as for their anti-inflammatory, immunomodulatory, and regenerative properties. Due to these interesting features, we review here their potential application in the treatment of inflammatory bowel disease (IBD), liver diseases, and cancer as well as their potentiality as drug carriers. Current evidence indicate that PDNVs can improve the disease state at the level of intestine in IBD mouse models by affecting inflammation and promoting prohealing effects. While few reports suggest that anticancer effects can be derived from antiproliferative and immunomodulatory properties of PDNVs, other studies have shown that PDNVs can be used as effective delivery systems for small molecule agents and nucleic acids with therapeutic effects (siRNAs, miRNAs, and DNAs). Finally, since PDNVs are characterized by a proven stability in the gastrointestinal tract, they have been considered as promising delivery systems for natural products contained therein and drugs (including nucleic acids) via the oral route.
Collapse
Affiliation(s)
- Sante Di Gioia
- Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy
| | - Md Niamat Hossain
- Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy
| | - Massimo Conese
- Laboratory of Experimental and Regenerative Medicine, Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| |
Collapse
|
31
|
Puig-Rigall J, Blanco-Prieto MJ, Radulescu A, Dreiss CA, González-Gaitano G. Morphology, gelation and cytotoxicity evaluation of D-α-Tocopheryl polyethylene glycol succinate (TPGS) - Tetronic mixed micelles. J Colloid Interface Sci 2020; 582:353-363. [PMID: 32858401 DOI: 10.1016/j.jcis.2020.08.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 07/22/2020] [Accepted: 08/02/2020] [Indexed: 01/01/2023]
Abstract
HYPOTHESIS The combination of polymeric surfactants into mixed micelles is expected to improve properties relevant to their use in drug delivery, such as micellar size, gelation, and toxicity. We investigated synergistic effects in mixtures of D-α-Tocopheryl polyethylene glycol succinate (TPGS), an FDA-approved PEGylated derivative of vitamin E, and Tetronic surfactants, pH-responsive and thermogelling polyethylene oxide (PEO)-polypropylene oxide (PPO) 4-arm block copolymers. We hypothesized that mixed micelles would form under specific conditions and provide a handle to tune formulation characteristics. EXPERIMENTS We examined the morphology of the self-assembled structures in mixtures of TPGS with two Tetronic: T1107 and T908, using a combination of dynamic light scattering (DLS), small-angle neutron scattering (SANS), NMR spectroscopy (NOESY and diffusion NMR) and oscillatory rheology, over a range of compositions, temperatures and pH. Cell viability was assessed in NIH/3T3 fibroblasts. FINDINGS The combination of TPGS with either of the two Tetronic produces spherical core-shell micelles that comprise both surfactants in their structure (mixed micelles). T1107 unimers incorporate into TPGS aggregates below the critical micelle temperature of the poloxamine, while mixed micelles only form under limited conditions with T908. At high concentration/temperature, small proportions of TPGS extend the gel phase, more markedly with T1107, with similar elastic moduli (30-50 kPa) and a BCC crystalline structure. Cell viability of NIH/3T3 fibroblasts grown in the hydrogels increases significantly when the poloxamine gels are doped with TPGS, making the combination of poloxamines and TPGS a promising platform for drug delivery.
Collapse
Affiliation(s)
- Joan Puig-Rigall
- Departamento de Química, Universidad de Navarra, 31080 Pamplona, Spain
| | - María J Blanco-Prieto
- Departamento de Tecnología y Química Farmacéutica, Universidad de Navarra, 31080 Pamplona, Spain; Instituto de Investigación Sanitaria de Navarra, IdiSNA, Irunlarrea 3, 31008 Pamplona, Spain.
| | - Aurel Radulescu
- Jülich Center for Neutron Science, JCNS at Heinz Maier-Leibnitz Zentrum MLZ, Forschungszentrum Jülich GmbH, Lichtenbergstraße 1, 85747 Garching, Germany
| | - Cécile A Dreiss
- Institute of Pharmaceutical Science, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NH, UK.
| | | |
Collapse
|
32
|
Mohammadinejad R, Kumar A, Ranjbar-Mohammadi M, Ashrafizadeh M, Han SS, Khang G, Roveimiab Z. Recent Advances in Natural Gum-Based Biomaterials for Tissue Engineering and Regenerative Medicine: A Review. Polymers (Basel) 2020; 12:E176. [PMID: 31936590 PMCID: PMC7022386 DOI: 10.3390/polym12010176] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Revised: 01/05/2020] [Accepted: 01/06/2020] [Indexed: 02/06/2023] Open
Abstract
The engineering of tissues under a three-dimensional (3D) microenvironment is a great challenge and needs a suitable supporting biomaterial-based scaffold that may facilitate cell attachment, spreading, proliferation, migration, and differentiation for proper tissue regeneration or organ reconstruction. Polysaccharides as natural polymers promise great potential in the preparation of a three-dimensional artificial extracellular matrix (ECM) (i.e., hydrogel) via various processing methods and conditions. Natural polymers, especially gums, based upon hydrogel systems, provide similarities largely with the native ECM and excellent biological response. Here, we review the origin and physico-chemical characteristics of potentially used natural gums. In addition, various forms of scaffolds (e.g., nanofibrous, 3D printed-constructs) based on gums and their efficacy in 3D cell culture and various tissue regenerations such as bone, osteoarthritis and cartilage, skin/wound, retinal, neural, and other tissues are discussed. Finally, the advantages and limitations of natural gums are precisely described for future perspectives in tissue engineering and regenerative medicine in the concluding remarks.
Collapse
Affiliation(s)
- Reza Mohammadinejad
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman 7619813159, Iran;
| | - Anuj Kumar
- School of Chemical Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan 38541, Korea
| | | | - Milad Ashrafizadeh
- Department of Basic Science, Faculty of Veterinary Medicine, University of Tabriz, Tabriz 5166616471, Iran;
| | - Sung Soo Han
- School of Chemical Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan 38541, Korea
| | - Gilson Khang
- Department of Polymer Nano Science and Technology, Department of BIN Fusion Technology and BK-21 Polymer BIN Fusion Research Team, Chonbuk National University, Dukjin, Jeonju 54896, Korea;
| | - Ziba Roveimiab
- Department of Biological Sciences, and Department of Physics and Astronomy, University of Manitoba, Winnipeg, MB R3T 2N2, Canada;
| |
Collapse
|
33
|
Li Y, Wang H, Niu Y, Ma S, Xue Z, Song A, Zhang S, Xu W, Ren C. Fabrication of CS/SA Double‐Network Hydrogel and Application in pH‐Controllable Drug Release. ChemistrySelect 2019. [DOI: 10.1002/slct.201904325] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Yuanze Li
- School of Chemistry and Materials ScienceLudong University Yantai 264025 China
| | - Haili Wang
- School of Chemistry and Materials ScienceLudong University Yantai 264025 China
| | - Yuzhong Niu
- School of Chemistry and Materials ScienceLudong University Yantai 264025 China
| | - Songmei Ma
- School of Chemistry and Materials ScienceLudong University Yantai 264025 China
| | - Zhongxin Xue
- School of Chemistry and Materials ScienceLudong University Yantai 264025 China
| | - Aixin Song
- Key Laboratory of Colloid and Interface ChemistryShandong UniversityMinistry of Education Jinan 250100 China
| | - Shaohua Zhang
- School of Chemistry and Materials ScienceLudong University Yantai 264025 China
| | - Wenlong Xu
- School of Chemistry and Materials ScienceLudong University Yantai 264025 China
| | - Chunguang Ren
- Yantai Institute of Materia Medica Yantai 264000 China
| |
Collapse
|
34
|
Duwa R, Emami F, Lee S, Jeong JH, Yook S. Polymeric and lipid-based drug delivery systems for treatment of glioblastoma multiforme. J IND ENG CHEM 2019. [DOI: 10.1016/j.jiec.2019.06.050] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
35
|
Fan DY, Tian Y, Liu ZJ. Injectable Hydrogels for Localized Cancer Therapy. Front Chem 2019; 7:675. [PMID: 31681729 PMCID: PMC6797556 DOI: 10.3389/fchem.2019.00675] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 09/25/2019] [Indexed: 12/24/2022] Open
Abstract
Traditional intravenous chemotherapy is relative to many systemic side effects, including myelosuppression, liver or kidney dysfunction, and neurotoxicity. As an alternative method, the injectable hydrogel can efficiently avoid these problems by releasing drugs topically at the tumor site. With advantages of localized drug toxicity in the tumor site, proper injectable hydrogel as the drug delivery system has become a research hotspot. Based on different types and stages of cancer, a variety of hydrogel drug delivery systems were developed, including thermosensitive, pH-sensitive, photosensitive, and dual-sensitive hydrogel. In this review, the latest developments of these hydrogels and related drug delivery systems were summarized. In summary, our increasing knowledge of injectable hydrogel for localized cancer therapy ensures us that it is a more durable and effective approach than traditional chemotherapy. Smart release system reacting to different stimuli at different time according to the micro-environment changes in the tumor site is a promising tendency for further studies.
Collapse
Affiliation(s)
- Dao-Yang Fan
- Department of Orthopedics, Peking University Third Hospital, Beijing, China
| | - Yun Tian
- Department of Orthopedics, Peking University Third Hospital, Beijing, China
| | - Zhong-Jun Liu
- Department of Orthopedics, Peking University Third Hospital, Beijing, China
| |
Collapse
|
36
|
Abrami M, Marizza P, Zecchin F, Bertoncin P, Marson D, Lapasin R, de Riso F, Posocco P, Grassi G, Grassi M. Theoretical Importance of PVP-Alginate Hydrogels Structure on Drug Release Kinetics. Gels 2019; 5:22. [PMID: 31003517 PMCID: PMC6630402 DOI: 10.3390/gels5020022] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 03/25/2019] [Accepted: 04/04/2019] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND The new concepts of personalized and precision medicine require the design of more and more refined delivery systems. In this frame, hydrogels can play a very important role as they represent the best surrogate of soft living tissues for what concerns rheological properties. Thus, this paper focusses on a global theoretical approach able to describe how hydrogel polymeric networks can affect the release kinetics of drugs characterized by different sizes. The attention is focused on a case study dealing with an interpenetrated hydrogel made up by alginate and poly(N-vinyl-2-pyrrolidone). METHODS Information about polymeric network characteristics (mesh size distribution and polymer volume fraction) is deduced from the theoretical interpretation of the rheological and the low field Nuclear Magnetic Resonance (NMR) characterization of hydrogels. This information is then, embodied in the mass balance equation whose resolution provides the release kinetics. RESULTS Our simulations indicate the influence of network characteristics on release kinetics. In addition, the reliability of the proposed approach is supported by the comparison of the model outcome with experimental release data. CONCLUSIONS This study underlines the necessity of a global theoretical approach in order to design reliable delivery systems based on hydrogels.
Collapse
Affiliation(s)
- Michela Abrami
- Department of Engineering and Architecture, Trieste University, via Valerio 6, I-34127 Trieste, Italy.
| | - Paolo Marizza
- Department of Engineering and Architecture, Trieste University, via Valerio 6, I-34127 Trieste, Italy.
| | - Francesca Zecchin
- Department of Engineering and Architecture, Trieste University, via Valerio 6, I-34127 Trieste, Italy.
| | - Paolo Bertoncin
- Department of Life Sciences, University of Trieste, Piazzale Europa 1, I-34127 Trieste, Italy.
| | - Domenico Marson
- Department of Engineering and Architecture, Trieste University, via Valerio 6, I-34127 Trieste, Italy.
| | - Romano Lapasin
- Department of Engineering and Architecture, Trieste University, via Valerio 6, I-34127 Trieste, Italy.
| | - Filomena de Riso
- Department of Micro- and Nanotechnology, Technical University of Denmark (DTU), Ørsteds Plads Bygning 345Ø, 2800 Kgs, Lyngby, Denmark.
| | - Paola Posocco
- Department of Engineering and Architecture, Trieste University, via Valerio 6, I-34127 Trieste, Italy.
| | - Gabriele Grassi
- Department of Life Sciences, Cattinara University Hospital, Trieste University, Strada di Fiume 447, I-34149 Trieste, Italy.
| | - Mario Grassi
- Department of Engineering and Architecture, Trieste University, via Valerio 6, I-34127 Trieste, Italy.
| |
Collapse
|
37
|
Effect of Experimental Parameters on the Formation of Hydrogels by Polyelectrolyte Complexation of Carboxymethylcellulose, Carboxymethyl Starch, and Alginic Acid with Chitosan. INTERNATIONAL JOURNAL OF CHEMICAL ENGINEERING 2019. [DOI: 10.1155/2019/3085691] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Differences in morphology, pH, and electric charge of chitosan (CS) based hydrogels prepared by complexation with carboxymethylcellulose (CMC), carboxymethylated starch (CMS), and alginic acid (AA) at different polymers ratios and changing the order of addition were studied. CMC/CS and AA/CS hydrogels were amorphous and porous three-dimensional networks, with smaller pores at higher anionic polymer/CS ratios. Gelation time increased the agglomeration in the case of CMC/CS and CMS/CS gels. CMC/CS gels showed negative zeta potential values around −372 mV to −51 mV and CMS/CS gels in the range of −526 mV and −158 mV.
Collapse
|
38
|
Milcovich G, Antunes FE, Grassi M, Asaro F. Stabilization of unilamellar catanionic vesicles induced by β-cyclodextrins: A strategy for a tunable drug delivery depot. Int J Pharm 2018; 548:474-479. [DOI: 10.1016/j.ijpharm.2018.07.026] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Revised: 07/05/2018] [Accepted: 07/06/2018] [Indexed: 12/01/2022]
|
39
|
Yang C, Zhang M, Merlin D. Advances in Plant-derived Edible Nanoparticle-based lipid Nano-drug Delivery Systems as Therapeutic Nanomedicines. J Mater Chem B 2018; 6:1312-1321. [PMID: 30034807 PMCID: PMC6053076 DOI: 10.1039/c7tb03207b] [Citation(s) in RCA: 149] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Plant-derived edible nanoparticles (PDNPs) are nano-sized membrane vesicles released by edible plants, such as grapefruit, ginger, broccoli, and lemon. They are non-toxic, have tissue-specific targeting properties, and can be mass-produced. Thus, they have great potential for clinical application. PDNPs offer multiple advantages over the currently available drug delivery systems, such as their relatively high internalization rate, low immunogenicity, proven stability in the gastrointestinal (GI) tract, and ability to overcome the blood-brain barrier but not cross the placental barrier. In this review, we will discuss these merits of PDNPs and analyze the current issues in PDNP research.
Collapse
Affiliation(s)
- Chunhua Yang
- Institute for Biomedical Sciences, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA, 30302 United States
| | - Mingzhen Zhang
- Institute for Biomedical Sciences, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA, 30302 United States
| | - Didier Merlin
- Institute for Biomedical Sciences, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA, 30302 United States
- Atlanta Veterans Affairs Medical Center, Decatur, GA, 30033 United States
| |
Collapse
|
40
|
Khanmohammadi M, Dastjerdi MB, Ai A, Ahmadi A, Godarzi A, Rahimi A, Ai J. Horseradish peroxidase-catalyzed hydrogelation for biomedical applications. Biomater Sci 2018; 6:1286-1298. [DOI: 10.1039/c8bm00056e] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Hydrogels catalyzed by horseradish peroxidase (HRP) serve as an efficient and effective platform for biomedical applications due to their mild reaction conditions for cells, fast and adjustable gelation rate in physiological conditions, and an abundance of substrates as water-soluble biocompatible polymers.
Collapse
Affiliation(s)
- Mehdi Khanmohammadi
- Department of Tissue Engineering and Applied Cell Sciences
- School of Advanced Technologies in Medicine
- Tehran University of Medical Sciences
- Tehran
- Iran
| | - Mahsa Borzouyan Dastjerdi
- Institute of Medical Biotechnology
- National Institute of Genetic Engineering and Biotechnology
- Tehran
- Iran
| | - Arman Ai
- School of Medicine
- Tehran University of Medical Sciences
- Tehran
- Iran
| | - Akbar Ahmadi
- Department of Neuroscience
- School of Advanced Technologies in Medicine
- Tehran University of Medical Sciences
- Iran
| | - Arash Godarzi
- Department of Tissue Engineering and Applied Cell Sciences
- School of Advanced Technologies in Medicine
- Tehran University of Medical Sciences
- Tehran
- Iran
| | - Azam Rahimi
- Department of Tissue Engineering and Applied Cell Sciences
- School of Advanced Technologies in Medicine
- Tehran University of Medical Sciences
- Tehran
- Iran
| | - Jafar Ai
- Department of Tissue Engineering and Applied Cell Sciences
- School of Advanced Technologies in Medicine
- Tehran University of Medical Sciences
- Tehran
- Iran
| |
Collapse
|