1
|
Du J, You Y, Reis RL, Kundu SC, Li J. Manipulating supramolecular gels with surfactants: Interfacial and non-interfacial mechanisms. Adv Colloid Interface Sci 2023; 318:102950. [PMID: 37352741 DOI: 10.1016/j.cis.2023.102950] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 05/03/2023] [Accepted: 06/14/2023] [Indexed: 06/25/2023]
Abstract
Gel is a class of self-supporting soft materials with applications in many fields. Fast, controllable gelation, micro/nano structure and suitable rheological properties are essential considerations for the design of gels for specific applications. Many methods can be used to control these parameters, among which the additive approach is convenient as it is a simple physical mixing process with significant advantages, such as avoidance of pH change and external energy fields (ultrasound, UV light and others). Although surfactants are widely used to control the formation of many materials, particularly nanomaterials, their effects on gelation are less known. This review summarizes the studies that utilized different surfactants to control the formation, structure, and properties of molecular and silk fibroin gels. The mechanisms of surfactants, which are interfacial and non-interfacial effects, are classified and discussed. Knowledge and technical gaps are identified, and perspectives for further research are outlined. This review is expected to inspire increasing research interest in using surfactants for designing/fabricating gels with desirable formation kinetics, structure, properties and functionalities.
Collapse
Affiliation(s)
- Juan Du
- Institute for Frontier Materials, Deakin University, Geelong, Victoria 3220, Australia
| | - Yue You
- Institute for Frontier Materials, Deakin University, Geelong, Victoria 3220, Australia
| | - Rui L Reis
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark - Parque da Ciência e Tecnologia, 4805-017 Barco, Guimarães, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Subhas C Kundu
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark - Parque da Ciência e Tecnologia, 4805-017 Barco, Guimarães, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Jingliang Li
- Institute for Frontier Materials, Deakin University, Geelong, Victoria 3220, Australia.
| |
Collapse
|
2
|
Javan Nikkhah S, Sammalkorpi M. Single core and multicore aggregates from a polymer mixture: A dissipative particle dynamics study. J Colloid Interface Sci 2023; 635:231-241. [PMID: 36587575 DOI: 10.1016/j.jcis.2022.12.119] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 12/04/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022]
Abstract
HYPOTHESIS Multicore block copolymer aggregates correspond to self-assembly such that the polymer system spontaneously phase separates to multiple, droplet-like cores differing in the composition from the polymer surroundings. Such multiple core aggregates are highly useful capsules for different applications, e.g., drug transport, catalysis, controlled solvation, and chemical reactions platforms. We postulate that polymer system composition provides a direct means for designing polymer systems that self-assemble to such morphologies and controlling the assembly response. SIMULATIONS Using dissipative particle dynamics (DPD) simulations, we examine the self-assembly of a mixture of highly and weakly solvophobic homopolymers and an amphiphilic block copolymer in the presence of solvent. We map the multicore vs single core (core-shell particles) assembly response and aggregate structure in terms of block copolymer concentration, polymer component ratios, and chain length of the weakly solvophobic homopolymer. FINDINGS For fixed components and polymer chemistries, the amount of block copolymer is the key to controlling single core vs multicore aggregation. We find a polymer system dependent critical copolymer concentration for the multicore aggregation and that a minimum level of incompatibility between the solvent and the weakly solvophobic component is required for multicore assembly. We discuss the implications for polymer system design for multicore assemblies. In summary, the study presents guidelines to produce multicore aggregates and to tune the assembly from multicore aggregation to single core core-shell particles.
Collapse
Affiliation(s)
- Sousa Javan Nikkhah
- Department of Chemistry and Materials Science, School of Chemical Engineering, Aalto University, P.O. Box 16100, FI-00076 Aalto, Finland; Department of Physics, Bernal Institute, University of Limerick, V94 T9PX Limerick, Ireland; Department of Chemical Sciences, Bernal Institute, University of Limerick, V94 T9PX Limerick, Ireland.
| | - Maria Sammalkorpi
- Department of Chemistry and Materials Science, School of Chemical Engineering, Aalto University, P.O. Box 16100, FI-00076 Aalto, Finland; Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, P.O. Box 16100, FI-00076 Aalto, Finland; Academy of Finland Center of Excellence in Life-Inspired Hybrid Materials (LIBER), Aalto University, P.O. Box 16100, FI-00076 Aalto, Finland.
| |
Collapse
|
3
|
Muawwadh AL-Balawi A, Zaheer Z, Kosa SA. Silver-platinum bimetallic nanoparticles as heterogeneous persulfate activator for the oxidation of malachite green. ARAB J CHEM 2023. [DOI: 10.1016/j.arabjc.2023.104863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023] Open
|
4
|
Role of ionic surfactants on the activation of K2S2O8 for the advanced oxidation processes. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
5
|
Solubilization of caffeic acid into the cationic micelles and biogenic synthesis of silver nanoparticles for the degradation of dye. JOURNAL OF SAUDI CHEMICAL SOCIETY 2022. [DOI: 10.1016/j.jscs.2022.101529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
6
|
Hejazi SA, Zaheer Z, Kosa SA. Chitosan and cetyltrimethylammonium bromide capped Iridium-silver bimetallic nanoparticles: A comparative study. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119182] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
7
|
Kaur P, Rajput JK, Khullar P, Bakshi MS. Pluronics and tetronics micelles for colloidal stabilization and their complexation tendency with gold nanoparticles. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.118961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
8
|
Al-Thabaiti SA, Khan Z. Role of ionic surfactants on the plasmonic oxidative dissolution of silver nanoparticles by ferric ions. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.115992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
9
|
Khan Z, Bashir O, AL-Thabaiti SA, Rafiquee M. Synthesis of ternary nanoparticles using the complexation-reduction method and their catalytic activities for hydrogen generation from formic acid. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2020.115009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
10
|
Khabeeri OM, Al-Thabaiti SA, Khan Z. Citrus sinensis peel waste assisted synthesis of AgNPs: effect of surfactant on the nucleation and morphology. SN APPLIED SCIENCES 2020. [DOI: 10.1007/s42452-020-03801-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
11
|
Tandon L, Thakur P, Khullar P, Bakshi MS. Longitudinal surface plasmon resonance of gold nanoparticles as an indicator for interparticle fusions controlled by tetronics. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.114319] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
12
|
Biogenic synthesis of silver nanoparticles, sensing and photo catalytic activities for bromothymol blue. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY 2020. [DOI: 10.1016/j.jpap.2020.100010] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
13
|
Al-Ghamdi AD, Zaheer Z, Aazam ES. Sennoside A drug capped biogenic fabrication of silver nanoparticles and their antibacterial and antifungal activities. Saudi Pharm J 2020; 28:1035-1048. [PMID: 32792848 PMCID: PMC7414101 DOI: 10.1016/j.jsps.2020.07.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 06/05/2020] [Accepted: 07/01/2020] [Indexed: 01/14/2023] Open
Abstract
Sennoside A (dianthrone glycoside) shows laxative properties and used as a folk traditional medicine. Sennoside A capped silver nanoparticles (Ag/sennoside A) were synthesized at room temperature for the first time by using sennoside A as reducing and capping agent. UV-visible spectroscopic data reveals that the absorption peaks of pure sennoside A was appeared at 266, and 340 nm, which red shifted to 304, and 354 nm at higher sennoside A concentration. Upon addition of the Ag+ ions, an additional peak also observed at 398 nm, indicating the formation of spherical sennoside A capped silver nanoparticles (Ag/sennoside A). Cetyltrimethylammonium bromide (CTAB) was used a stabilizing agent to determine the role of cationic micelles on the nucleation and growth processes of Ag/sennoside A NPs formation. The 2,2-diphenyl-1-picrylhydrazyl nitrogen radical (DPPH · ), two bacteria strains (Staphylococcus aureus and Escherichia coli) and two yeast strains (Candida albicans ATCC 10231 and Candida parapsilosis ATCC 22019) were used to determine the antioxidant and antimicrobial properties of Ag/sennoside A NPs. In addition, Rhein-9-anthrone (4,5-dihydroxy-10-oxo-9H-anthracene-2-carboxylate) was isolated from the acidic hydrolysis of glycoside linkage of sennoside A and characterized. The antioxidant and antimicrobial activities of rhein-9-anthrone were also determined against DPPH radical, antibacterial and antifungal strains. The minimum inhibitory concentration was determined and discussed.
Collapse
Affiliation(s)
- Areej Dhawi Al-Ghamdi
- Department of Chemistry, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
| | - Zoya Zaheer
- Department of Chemistry, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
| | - Elham Shafik Aazam
- Department of Chemistry, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
| |
Collapse
|
14
|
Effect of CTAB on the surface resonance plasmon intensity of silver nanoparticles: Stability and oxidative dissolution. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.112565] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
15
|
Shanmugapriya K, Kang HW. Engineering pharmaceutical nanocarriers for photodynamic therapy on wound healing: Review. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 105:110110. [PMID: 31546465 DOI: 10.1016/j.msec.2019.110110] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 07/25/2019] [Accepted: 08/20/2019] [Indexed: 12/25/2022]
|
16
|
Nisticò R, Rivolo P, Giorgis F. Tips and Tricks for the Surface Engineering of Well-Ordered Morphologically Driven Silver-Based Nanomaterials. ChemistryOpen 2019; 8:508-519. [PMID: 31061776 PMCID: PMC6488201 DOI: 10.1002/open.201900007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 03/10/2019] [Indexed: 11/30/2022] Open
Abstract
Particularly-shaped silver nanostructures are successfully applied in many scientific fields, such as nanotechnology, catalysis, (nano)engineering, optoelectronics, and sensing. In recent years, the production of shape-controlled silver-based nanostructures and the knowledge around this topic has grown significantly. Hence, on the basis of the most recent results reported in the literature, a critical analysis around the driving forces behind the synthesis of such nanostructures are proposed herein, pointing out the important role of surface-regulating agents in driving crystalline growth by favoring (or opposing) development along specific directions. Additionally, growth mechanisms of the different morphologies considered here are discussed in depth, and critical points highlighted.
Collapse
Affiliation(s)
- Roberto Nisticò
- Department of Applied Science and Technology DISATPolytechnic of TorinoC.so Duca degli Abruzzi 2410129TorinoItaly
| | - Paola Rivolo
- Department of Applied Science and Technology DISATPolytechnic of TorinoC.so Duca degli Abruzzi 2410129TorinoItaly
| | - Fabrizio Giorgis
- Department of Applied Science and Technology DISATPolytechnic of TorinoC.so Duca degli Abruzzi 2410129TorinoItaly
| |
Collapse
|