1
|
Wang S, Li J, Zhang Z, Cao S, Zhang Z, Bian Y, Xu Y, Ma C. Advances in nanomedicine and delivery systems for gastric cancer research. Front Bioeng Biotechnol 2025; 13:1565999. [PMID: 40190709 PMCID: PMC11968739 DOI: 10.3389/fbioe.2025.1565999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Accepted: 03/05/2025] [Indexed: 04/09/2025] Open
Abstract
The early diagnosis rate of gastric cancer is low, and most patients are already at an advanced stage by the time they are diagnosed, posing significant challenges for treatment and exhibiting high recurrence rates, which notably diminish patients' survival time and quality of life. Therefore, there is an urgent need to identify methods that can enhance treatment efficacy. Nanomedicine, distinguished by its small size, high targeting specificity, and strong biological compatibility, is particularly well-suited to address the toxic side effects associated with current diagnostic and therapeutic approaches for gastric cancer. Consequently, the application of nanomedicine and delivery systems in the diagnosis and treatment of gastric cancer has garnered increasing interest from researchers. This review provides an overview of recent advancements in the use of nanomaterials as drugs or drug delivery systems in gastric cancer research, encompassing their applications in diagnosis, chemotherapy, radiotherapy, surgery, and phototherapy, and explores the promising prospects of nanomedicine in the treatment of gastric cancer.
Collapse
Affiliation(s)
- Sizhe Wang
- Henan University of Chinese Medicine(The Second Clinical Medical College of Henan University of Chinese Medicine), Zhengzhou, Henan, China
| | - Jilei Li
- Henan Province Hospital of TCM, Zhengzhou(The Second Affiliated Hospital of Henan University of Chinese Medicine), Zhengzhou, Henan, China
| | - Zhenyu Zhang
- Henan University of Chinese Medicine(The Second Clinical Medical College of Henan University of Chinese Medicine), Zhengzhou, Henan, China
| | - Shasha Cao
- Henan University of Chinese Medicine(The Second Clinical Medical College of Henan University of Chinese Medicine), Zhengzhou, Henan, China
| | - Zihan Zhang
- Henan University of Chinese Medicine(The Second Clinical Medical College of Henan University of Chinese Medicine), Zhengzhou, Henan, China
| | - Yifan Bian
- Henan University of Chinese Medicine(The Second Clinical Medical College of Henan University of Chinese Medicine), Zhengzhou, Henan, China
| | - Yanchao Xu
- Henan Province Hospital of TCM, Zhengzhou(The Second Affiliated Hospital of Henan University of Chinese Medicine), Zhengzhou, Henan, China
| | - Chunzheng Ma
- Henan Province Hospital of TCM, Zhengzhou(The Second Affiliated Hospital of Henan University of Chinese Medicine), Zhengzhou, Henan, China
| |
Collapse
|
2
|
Kang K, do Espirito Santo É, Diaz CJ, Mayfield S, Molino JVD. Engineering microalgal cell wall-anchored proteins using GP1 PPSPX motifs and releasing with intein-mediated fusion. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.23.634604. [PMID: 39896471 PMCID: PMC11785195 DOI: 10.1101/2025.01.23.634604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
Harnessing and controlling the localization of recombinant proteins is critical for advancing applications in synthetic biology, industrial biotechnology, and drug delivery. This study explores protein anchoring and controlled release in Chlamydomonas reinhardtii, providing innovative tools for these fields. Using truncated variants of the GP1 glycoprotein fused to the plastic-degrading enzyme PHL7, we identified the PPSPX motif as essential for anchoring proteins to the cell wall. Constructs with increased PPSPX content exhibited reduced secretion but improved anchoring, pinpointing the potential anchor-signal sites of GP1 and highlighting the distinct roles of these motifs in protein localization. Building on the anchoring capabilities established with these glycomodules, we also demonstrated a controlled release system using a pH-sensitive intein derived from RecA from Mycobacterium tuberculosis. This intein efficiently cleaved and released PHL7 and mCherry that was fused to GP1 under acidic conditions, enabling precise temporal and environmental control. At pH 5.5, fluorescence kinetics demonstrated significant mCherry release from the pJPW4mCherry construct within 4 hours. In contrast, release was minimal under pH 8.0 conditions and negligible for the pJPW2mCherry (W2) control, irrespective of the pH. Additionally, bands on the Western blot at the expected size of mCherry also showed its efficient release from the mCherry::intein::GP1 fusion protein at pH 5.5. Conversely, at pH 8.0, no bands were detected. This anchor-release approach offers significant potential for drug delivery, biocatalysis, and environmental monitoring applications. By integrating glycomodules and pH-sensitive inteins, this study establishes a versatile framework for optimizing protein localization and release in C. reinhardtii, with broad implications for proteomics, biofilm engineering, and scalable therapeutic delivery systems.
Collapse
Affiliation(s)
- Kalisa Kang
- Department of Molecular Biology, School of Biological Sciences, University of California San Diego, La Jolla, CA, United States of America
| | - Évellin do Espirito Santo
- Department of Molecular Biology, School of Biological Sciences, University of California San Diego, La Jolla, CA, United States of America
- Department of Biochemical and Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Crisandra Jade Diaz
- Department of Molecular Biology, School of Biological Sciences, University of California San Diego, La Jolla, CA, United States of America
| | - Stephen Mayfield
- Department of Molecular Biology, School of Biological Sciences, University of California San Diego, La Jolla, CA, United States of America
- Algenesis Inc., 1238 Sea Village Dr., Cardiff, CA, United States of America
| | - João Vitor Dutra Molino
- Department of Molecular Biology, School of Biological Sciences, University of California San Diego, La Jolla, CA, United States of America
| |
Collapse
|
3
|
Hao ZW, Zhang ZY, Wang ZP, Wang Y, Chen JY, Chen TH, Shi G, Li HK, Wang JW, Dong MC, Hong L, Li JF. Bioactive peptides and proteins for tissue repair: microenvironment modulation, rational delivery, and clinical potential. Mil Med Res 2024; 11:75. [PMID: 39639374 PMCID: PMC11619216 DOI: 10.1186/s40779-024-00576-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 10/25/2024] [Indexed: 12/07/2024] Open
Abstract
Bioactive peptides and proteins (BAPPs) are promising therapeutic agents for tissue repair with considerable advantages, including multifunctionality, specificity, biocompatibility, and biodegradability. However, the high complexity of tissue microenvironments and their inherent deficiencies such as short half-live and susceptibility to enzymatic degradation, adversely affect their therapeutic efficacy and clinical applications. Investigating the fundamental mechanisms by which BAPPs modulate the microenvironment and developing rational delivery strategies are essential for optimizing their administration in distinct tissue repairs and facilitating clinical translation. This review initially focuses on the mechanisms through which BAPPs influence the microenvironment for tissue repair via reactive oxygen species, blood and lymphatic vessels, immune cells, and repair cells. Then, a variety of delivery platforms, including scaffolds and hydrogels, electrospun fibers, surface coatings, assisted particles, nanotubes, two-dimensional nanomaterials, and nanoparticles engineered cells, are summarized to incorporate BAPPs for effective tissue repair, modification strategies aimed at enhancing loading efficiencies and release kinetics are also reviewed. Additionally, the delivery of BAPPs can be precisely regulated by endogenous stimuli (glucose, reactive oxygen species, enzymes, pH) or exogenous stimuli (ultrasound, heat, light, magnetic field, and electric field) to achieve on-demand release tailored for specific tissue repair needs. Furthermore, this review focuses on the clinical potential of BAPPs in facilitating tissue repair across various types, including bone, cartilage, intervertebral discs, muscle, tendons, periodontal tissues, skin, myocardium, nervous system (encompassing brain, spinal cord, and peripheral nerve), endometrium, as well as ear and ocular tissue. Finally, current challenges and prospects are discussed.
Collapse
Affiliation(s)
- Zhuo-Wen Hao
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Zhe-Yuan Zhang
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Ze-Pu Wang
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Ying Wang
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Jia-Yao Chen
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Tian-Hong Chen
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Guang Shi
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Han-Ke Li
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Jun-Wu Wang
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Min-Chao Dong
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Li Hong
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| | - Jing-Feng Li
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China.
| |
Collapse
|
4
|
Gonzalez-Pujana A, Igartua M, Hernandez RM, Santos-Vizcaino E. Laponite nanoclays for the sustained delivery of therapeutic proteins. Eur J Pharm Sci 2024; 201:106858. [PMID: 39033884 DOI: 10.1016/j.ejps.2024.106858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/22/2024] [Accepted: 07/17/2024] [Indexed: 07/23/2024]
Abstract
Protein therapeutics hold immense promise for treating a wide array of diseases. However, their efficacy is often compromised by rapid degradation and clearance. The synthetic smectite clay Laponite emerges as a promising candidate for their sustained delivery. Despite its unique properties allow to load and release proteins mitigating burst release and extending their effects, precise control over Laponite-protein interactions remains challenging since it depends on a complex interplay of factors whose implication is not fully understood yet. The aim of this review article is to shed light on this issue, providing a comprehensive discussion of the factors influencing protein loading and release, including the physicochemical properties of the nanoclay and proteins, pH, dispersion buffer, clay/protein concentration and Laponite degradation. Furthermore, we thoroughly revise the array of bioactive proteins that have been delivered from formulations containing the nanoclay, highlighting Laponite-polymer nanocomposite hydrogels, a promising avenue currently under extensive investigation.
Collapse
Affiliation(s)
- Ainhoa Gonzalez-Pujana
- NanoBioCel Research Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, Vitoria-Gasteiz 01006, Spain; Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Institute of Health Carlos III, Madrid, Spain; Bioaraba, NanoBioCel Research Group, Vitoria-Gasteiz, Spain
| | - Manoli Igartua
- NanoBioCel Research Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, Vitoria-Gasteiz 01006, Spain; Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Institute of Health Carlos III, Madrid, Spain; Bioaraba, NanoBioCel Research Group, Vitoria-Gasteiz, Spain
| | - Rosa Maria Hernandez
- NanoBioCel Research Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, Vitoria-Gasteiz 01006, Spain; Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Institute of Health Carlos III, Madrid, Spain; Bioaraba, NanoBioCel Research Group, Vitoria-Gasteiz, Spain.
| | - Edorta Santos-Vizcaino
- NanoBioCel Research Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, Vitoria-Gasteiz 01006, Spain; Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Institute of Health Carlos III, Madrid, Spain; Bioaraba, NanoBioCel Research Group, Vitoria-Gasteiz, Spain.
| |
Collapse
|
5
|
Abal-Sanisidro M, Nieto-García O, Cotelo-Costoya C, de la Fuente M. Versatile and Efficient Protein Association Through Chemically Modified Sphingomyelin Nanosystems (SNs) for Enhanced Delivery. Chembiochem 2024:e202400450. [PMID: 39255447 DOI: 10.1002/cbic.202400450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 08/12/2024] [Accepted: 09/06/2024] [Indexed: 09/12/2024]
Abstract
Proteins are biological macromolecules well known to regulate many cellular signaling mechanisms. For instance, they are very appealing for their application as therapeutic agents, presenting high specificity and activity. Nonetheless, they suffer from unfolding, instability and low bioavailability making their administration through systemic and other routes very tough. To overcome these drawbacks, drug delivery systems and nanotechnology have arisen to deliver biomolecules in a sustained manner while, at the same time, increasing dose availability, protecting the cargo without compromising proteins' bioactivity, and enhancing intracellular delivery. In this work, we proposed the optimization of sphingomyelin nanosystems (SNs) for the delivery of a wide collection of proteins (ranging from 10-500 kDa and pI) using diverse chemical association strategies. We have further characterized SNs by varied analytical methodologies. We have also carried out in vitro experiments to validate the potential of the developed formulations. As the final goal, we aim to obtain evidence of the potential use of SNs for the development of protein therapeutics.
Collapse
Affiliation(s)
- Marcelina Abal-Sanisidro
- Nano-Oncology and Translational Therapeutics group, IDIS, Complexo Hospitalario Universitario de Santiago de Compostela (CHUS), 15706, Santiago de Compostela, Spain
- University of Santiago de Compostela (USC), 15782, Santiago de Compostela, Spain
- Biomedical Research Networking Center on Oncology (CIBERONC), 28029, Madrid, Spain
| | - Olaia Nieto-García
- Nano-Oncology and Translational Therapeutics group, IDIS, Complexo Hospitalario Universitario de Santiago de Compostela (CHUS), 15706, Santiago de Compostela, Spain
| | - Cristina Cotelo-Costoya
- Nano-Oncology and Translational Therapeutics group, IDIS, Complexo Hospitalario Universitario de Santiago de Compostela (CHUS), 15706, Santiago de Compostela, Spain
| | - María de la Fuente
- Nano-Oncology and Translational Therapeutics group, IDIS, Complexo Hospitalario Universitario de Santiago de Compostela (CHUS), 15706, Santiago de Compostela, Spain
- University of Santiago de Compostela (USC), 15782, Santiago de Compostela, Spain
- Biomedical Research Networking Center on Oncology (CIBERONC), 28029, Madrid, Spain
- DIVERSA Technologies S.L., Edificio Emprendia, Campus Sur, 15782, Santiago de Compostela, Spain
| |
Collapse
|
6
|
Bizeau J, Journaux-Duclos J, Kiefer C, Freis B, Ihiawakrim D, Ramirez MDLA, Lucante T, Parkhomenko K, Vichery C, Carrey J, Sandre O, Bertagnolli C, Ersen O, Bégin-Colin S, Gigoux V, Mertz D. Tailoring the pore structure of iron oxide core@stellate mesoporous silica shell nanocomposites: effects on MRI and magnetic hyperthermia properties and applicability to anti-cancer therapies. NANOSCALE 2024; 16:15585-15614. [PMID: 39104307 DOI: 10.1039/d4nr01388c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/07/2024]
Abstract
Core-shell nanocomposites made of iron oxide core (IO NPs) coated with mesoporous silica (MS) shells are promising theranostic agents. While the core is being used as an efficient heating nanoagent under alternating magnetic field (AMF) and near infra-red (NIR) light and as a suitable contrast agent for magnetic resonance imaging (MRI), the MS shell is particularly relevant to ensure colloidal stability in a biological buffer and to transport a variety of therapeutics. However, a major challenge with such inorganic nanostructures is the design of adjustable silica structures, especially with tunable large pores which would be useful, for instance, for the delivery of large therapeutic biomolecule loading and further sustained release. Furthermore, the effect of tailoring a porous silica structure on the magneto- or photothermal dissipation still remains poorly investigated. In this work, we undertake an in-depth investigation of the growth of stellate mesoporous silica (STMS) shells around IO NPs cores and of their micro/mesoporous features respectively through time-lapse and in situ liquid phase transmission electron microscopy (LPTEM) and detailed nitrogen isotherm adsorption studies. We found here that the STMS shell features (thickness, pore size, surface area) can be finely tuned by simply controlling the sol-gel reaction time, affording a novel range of IO@STMS core@shell NPs. Finally, regarding the responses under alternating magnetic fields and NIR light which are evaluated as a function of the silica structure, IO@STMS NPs having a tunable silica shell structure are shown to be efficient as T2-weighted MRI agents and as heating agents for magneto- and photoinduced hyperthermia. Furthermore, such IO@STMS are found to display anti-cancer effects in pancreatic cancer cells under magnetic fields (both alternating and rotating).
Collapse
Affiliation(s)
- Joëlle Bizeau
- Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS), UMR-7504 CNRS-Université de Strasbourg, 23 rue du Lœss, BP 34 67034, Strasbourg Cedex 2, France.
| | - Justine Journaux-Duclos
- Centre de Recherches en Cancérologie de Toulouse UMR1037 CNRS - Inserm/Université Paul Sabatier, 1 avenue Jean Poulhes, BP 84225, 31432 Toulouse, Cedex 4, France
| | - Céline Kiefer
- Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS), UMR-7504 CNRS-Université de Strasbourg, 23 rue du Lœss, BP 34 67034, Strasbourg Cedex 2, France.
| | - Barbara Freis
- Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS), UMR-7504 CNRS-Université de Strasbourg, 23 rue du Lœss, BP 34 67034, Strasbourg Cedex 2, France.
| | - Dris Ihiawakrim
- Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS), UMR-7504 CNRS-Université de Strasbourg, 23 rue du Lœss, BP 34 67034, Strasbourg Cedex 2, France.
| | - Maria de Los Angeles Ramirez
- Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS), UMR-7504 CNRS-Université de Strasbourg, 23 rue du Lœss, BP 34 67034, Strasbourg Cedex 2, France.
| | - Théo Lucante
- Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS), UMR-7504 CNRS-Université de Strasbourg, 23 rue du Lœss, BP 34 67034, Strasbourg Cedex 2, France.
| | - Ksenia Parkhomenko
- Institut de Chimie des Procédés pour l'Energie, l'Environnement et la Santé (ICPEES), UMR-7515 CNRS-Université de Strasbourg, 25 rue Becquerel, 67087 Strasbourg, France
| | - Charlotte Vichery
- Université Clermont Auvergne, Clermont Auvergne INP, CNRS, ICCF, F-63000 Clermont-Ferrand, France
| | - Julian Carrey
- LPCNO (Laboratoire de Physique et Chimie des Nano-Objets), UMR-5215, Université de Toulouse, CNRS, INSA, UPS, 31077 Toulouse, France
| | - Olivier Sandre
- Laboratoire de Chimie des Polymères Organiques (LCPO) UMR 5629 Univ. Bordeaux/CNRS/Bordeaux INP, 16 Avenue Pey-Berland, 33607 Pessac, France
| | - Caroline Bertagnolli
- Institut Pluridisciplinaire Hubert Curien (IPHC), UMR 7178 CNRS-Université de Strasbourg, 25 Rue Becquerel, 67087 Strasbourg, France
| | - Ovidiu Ersen
- Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS), UMR-7504 CNRS-Université de Strasbourg, 23 rue du Lœss, BP 34 67034, Strasbourg Cedex 2, France.
| | - Sylvie Bégin-Colin
- Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS), UMR-7504 CNRS-Université de Strasbourg, 23 rue du Lœss, BP 34 67034, Strasbourg Cedex 2, France.
| | - Véronique Gigoux
- Centre de Recherches en Cancérologie de Toulouse UMR1037 CNRS - Inserm/Université Paul Sabatier, 1 avenue Jean Poulhes, BP 84225, 31432 Toulouse, Cedex 4, France
| | - Damien Mertz
- Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS), UMR-7504 CNRS-Université de Strasbourg, 23 rue du Lœss, BP 34 67034, Strasbourg Cedex 2, France.
| |
Collapse
|
7
|
Liu Y, Hamm T, Eichinger TR, Kamm W, Wieland HA, Loretz B, Hirsch AKH, Lee S, Lehr CM. Biodynamer Nano-Complexes and -Emulsions for Peptide and Protein Drug Delivery. Int J Nanomedicine 2024; 19:4429-4449. [PMID: 38784761 PMCID: PMC11114140 DOI: 10.2147/ijn.s448578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 03/26/2024] [Indexed: 05/25/2024] Open
Abstract
Background Therapeutic proteins and peptides offer great advantages compared to traditional synthetic molecular drugs. However, stable protein loading and precise control of protein release pose significant challenges due to the extensive range of physicochemical properties inherent to proteins. The development of a comprehensive protein delivery strategy becomes imperative accounting for the diverse nature of therapeutic proteins. Methods Biodynamers are amphiphilic proteoid dynamic polymers consisting of amino acid derivatives connected through pH-responsive dynamic covalent chemistry. Taking advantage of the amphiphilic nature of the biodynamers, PNCs and DEs were possible to be prepared and investigated to compare the delivery efficiency in drug loading, stability, and cell uptake. Results As a result, the optimized PNCs showed 3-fold encapsulation (<90%) and 5-fold loading capacity (30%) compared to DE-NPs. PNCs enhanced the delivery efficiency into the cells but aggregated easily on the cell membrane due to the limited stability. Although DE-NPs were limited in loading capacity compared to PNCs, they exhibit superior adaptability in stability and capacity for delivering a wider range of proteins compared to PNCs. Conclusion Our study highlights the potential of formulating both PNCs and DE-NPs using the same biodynamers, providing a comparative view on protein delivery efficacy using formulation methods.
Collapse
Affiliation(s)
- Yun Liu
- Department of Drug Delivery Across Biological Barriers, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarbrücken, Germany
- Department of Pharmacy, Saarland University, Saarbrücken, Germany
| | - Timo Hamm
- Department of Research and Development, Sanofi-Aventis Deutschland GmbH, Frankfurt Am Main, Germany
| | - Thomas Ralf Eichinger
- Department of Research and Development, Sanofi-Aventis Deutschland GmbH, Frankfurt Am Main, Germany
| | - Walter Kamm
- Department of Research and Development, Sanofi-Aventis Deutschland GmbH, Frankfurt Am Main, Germany
| | - Heike Andrea Wieland
- Department of Research and Development, Sanofi-Aventis Deutschland GmbH, Frankfurt Am Main, Germany
| | - Brigitta Loretz
- Department of Drug Delivery Across Biological Barriers, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarbrücken, Germany
| | - Anna K H Hirsch
- Department of Pharmacy, Saarland University, Saarbrücken, Germany
- Department of Drug Design and Optimisation, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarbrücken, Germany
| | - Sangeun Lee
- Department of Drug Delivery Across Biological Barriers, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarbrücken, Germany
- Department of Pharmacy, Saarland University, Saarbrücken, Germany
| | - Claus-Michael Lehr
- Department of Drug Delivery Across Biological Barriers, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarbrücken, Germany
- Department of Pharmacy, Saarland University, Saarbrücken, Germany
| |
Collapse
|
8
|
Bahavarnia F, Hasanzadeh M, Bahavarnia P, Shadjou N. Advancements in application of chitosan and cyclodextrins in biomedicine and pharmaceutics: recent progress and future trends. RSC Adv 2024; 14:13384-13412. [PMID: 38660530 PMCID: PMC11041621 DOI: 10.1039/d4ra01370k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 04/18/2024] [Indexed: 04/26/2024] Open
Abstract
The global community is faced with numerous health concerns such as cancer, cardiovascular and neurological diseases, diabetes, joint pain, osteoporosis, among others. With the advancement of research in the fields of materials chemistry and medicine, pharmaceutical technology and biomedical analysis have entered a new stage of development. The utilization of natural oligosaccharides and polysaccharides in pharmaceutical/biomedical studies has gained significant attention. Over the past decade, several studies have shown that chitosan and cyclodextrin have promising biomedical implications in background analysis, ongoing development, and critical applications in biomedical and pharmaceutical research fields. This review introduces different types of saccharides/natural biopolymers such as chitosan and cyclodextrin and discusses their wide-ranging applications in the biomedical/pharmaceutical research area. Recent research advances in pharmaceutics and drug delivery based on cyclodextrin, and their response to smart stimuli, as well as the biological functions of cyclodextrin and chitosan, such as the immunomodulatory effects, antioxidant, and antibacterial properties, have also been discussed, along with their applications in tissue engineering, wound dressing, and drug delivery systems. Finally, the innovative applications of chitosan and cyclodextrin in the pharmaceutical/biomedicine were reviewed, and current challenges, research/technological gaps, and future development opportunities were surveyed.
Collapse
Affiliation(s)
- Farnaz Bahavarnia
- Nutrition Research Center, Tabriz University of Medical Sciences Tabriz Iran
| | - Mohammad Hasanzadeh
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences Tabriz Iran
| | - Parinaz Bahavarnia
- Food and Drug Safety Research Center, Tabriz University of Medical Sciences Tabriz Iran
| | - Nasrin Shadjou
- Department of Nanotechnology, Faculty of Chemistry, Urmia University Urmia Iran
| |
Collapse
|
9
|
Khan MRH, Armstrong Z, Lenertz M, Saenz B, Kale N, Li Q, MacRae A, Yang Z, Quadir M. Metal-Organic Framework Induced Stabilization of Proteins in Polymeric Nanoparticles. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 38490971 DOI: 10.1021/acsami.3c16534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/18/2024]
Abstract
Developing protein confinement platforms is an attractive research area that not only promotes protein delivery but also can result in artificial environment mimicking of the cellular one, impacting both the controlled release of proteins and the fundamental protein biophysics. Polymeric nanoparticles (PNPs) are attractive platforms to confine proteins due to their superior biocompatibility, low cytotoxicity, and controllable release under external stimuli. However, loading proteins into PNPs can be challenging due to the potential protein structural perturbation upon contacting the interior of PNPs. In this work, we developed a novel approach to encapsulate proteins in PNPs with the assistance of the zeolitic imidazolate framework (ZIF). Here, ZIF offers an additional protection layer to the target protein by forming the protein@ZIF composite via aqueous-phase cocrystallization. We demonstrated our platform using a model protein, lysozyme, and a widely studied PNP composed of poly(ethylene glycol)-poly(lactic-co-glycolic acid) (PEG-PLGA). A comprehensive study via standard loading and release tests as well as various spectroscopic techniques was carried out on lysozyme loaded onto PEG-PLGA with and without ZIF protection. As compared with the direct protein encapsulation, an additional layer with ZIF prior to loading offered enhanced loading capacity, reduced leaching, especially in the initial stage, led to slower release kinetics, and reduced secondary structural perturbation. Meanwhile, the function, cytotoxicity, and cellular uptake of proteins encapsulated within the ZIF-bound systems are decent. Our results demonstrated the use of ZIF in assisting in protein encapsulation in PNPs and established the basis for developing more sophisticated protein encapsulation platforms using a combination of materials of diverse molecular architectures and disciplines. As such, we anticipate that the protein-encapsulated ZIF systems will serve as future polymer protein confinement and delivery platforms for both fundamental biophysics and biochemistry research and biomedical applications where protein delivery is needed to support therapeutics and/or nutrients.
Collapse
Affiliation(s)
- Md Rakib Hasan Khan
- Biomedical Engineering Program, North Dakota State University, Fargo, North Dakota 58108, United States
| | - Zoe Armstrong
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, North Dakota 58108, United States
| | - Mary Lenertz
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, North Dakota 58108, United States
| | - Briana Saenz
- Department of Chemistry and Biochemistry, St. Mary's University, San Antonio, Texas 78228, United States
| | - Narendra Kale
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, North Dakota 58108, United States
| | - Qiaobin Li
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, North Dakota 58108, United States
| | - Austin MacRae
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, North Dakota 58108, United States
| | - Zhongyu Yang
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, North Dakota 58108, United States
| | - Mohiuddin Quadir
- Biomedical Engineering Program, North Dakota State University, Fargo, North Dakota 58108, United States
- Department of Coatings and Polymeric Materials, North Dakota State University, Fargo, North Dakota 58108, United States
| |
Collapse
|
10
|
Dou Y, Zhang L, Wang J, Xue Y, Zhou Y, Liu Y, Zhang L, Shi R. Trends and Future Research in Skeletal Muscle Tissue Engineering in the Past Decade (2012-2022). Tissue Eng Part C Methods 2024; 30:130-141. [PMID: 38265015 DOI: 10.1089/ten.tec.2023.0216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2024] Open
Abstract
To learn about advances in skeletal muscle tissue engineering (SMTE) in recent years, we used VOSviewer and Citespace software to quantitatively analyze and visualize relevant literature in the Web of Science database during the period 2012-2022. By mapping high-frequency keyword relationship networks, keyword time zones, and journal article cocitations, we clarified the areas of great interest, evolutionary paths, and developmental trends in research on SMTE. We conducted an in-depth analysis of highly cited and representative articles at various stages to summarize the mainstream research areas of great interest in SMTE and discussed the future development and challenges in this field, intending to provide a reference for the clinical treatment of skeletal muscle injury repair. We found that a collaborative network of authors has formed in this field; the journals publishing SMTE articles belong to the fields of biomaterials and tissue engineering, and open-access journals have played a key role in the promotion of the development of SMTE; and in the past decade, there has been rapid progress in SMTE research in terms of both depth and breadth. Impact statement Compared with the literature review method, bibliometrics can provide a comprehensive knowledge of a knowledge area based on a huge amount of literature. In this article, based on the Web of Science database, CiteSpace, and Vosviewer visualization tools were used to measure and analyze the literature reports in the field of skeletal muscle tissue engineering (SMTE). The research hotspots and cutting-edge information on SMTE were mined in terms of the number of publications, the number of citations, the keywords, the authors, and the publishing institutions to understand the current status of the research on SMTE in the world, to provide a reference for related researchers, engineering research in the field of SMTE, to comprehensively understand the current status of global research in the field of SMTE, and to provide a reference for related researchers.
Collapse
Affiliation(s)
- Yichun Dou
- College of Material Science & Engineering, Beijing University of Chemical Technology, Beijing, P.R. China
- Beijing Laboratory of Biomedical Materials, State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, P.R. China
| | - Ling Zhang
- College of Material Science & Engineering, Beijing University of Chemical Technology, Beijing, P.R. China
- Beijing Laboratory of Biomedical Materials, State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, P.R. China
| | - Jiaqi Wang
- College of Material Science & Engineering, Beijing University of Chemical Technology, Beijing, P.R. China
- Beijing Laboratory of Biomedical Materials, State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, P.R. China
| | - Yun Xue
- National Center for Orthopaedics, Institute of Traumatology and Orthopaedics, Beijing Jishuitan Hospital, Beijing, P.R. China
| | - You Zhou
- National Center for Orthopaedics, Institute of Traumatology and Orthopaedics, Beijing Jishuitan Hospital, Beijing, P.R. China
| | - Yajun Liu
- National Center for Orthopaedics, Beijing Jishuitan Hospital, Institute of Traumatology and Orthopaedics, Beijing, P.R. China
| | - Liqun Zhang
- College of Material Science & Engineering, Beijing University of Chemical Technology, Beijing, P.R. China
- Beijing Laboratory of Biomedical Materials, State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, P.R. China
| | - Rui Shi
- National Center for Orthopaedics, Institute of Traumatology and Orthopaedics, Beijing Jishuitan Hospital, Beijing, P.R. China
| |
Collapse
|
11
|
Sun Q, Yang Z, Qi X. Design and Application of Hybrid Polymer-Protein Systems in Cancer Therapy. Polymers (Basel) 2023; 15:polym15092219. [PMID: 37177365 PMCID: PMC10181109 DOI: 10.3390/polym15092219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/29/2023] [Accepted: 05/05/2023] [Indexed: 05/15/2023] Open
Abstract
Polymer-protein systems have excellent characteristics, such as non-toxic, non-irritating, good water solubility and biocompatibility, which makes them very appealing as cancer therapeutics agents. Inspiringly, they can achieve sustained release and targeted delivery of drugs, greatly improving the effect of cancer therapy and reducing side effects. However, many challenges, such as reducing the toxicity of materials, protecting the activities of proteins and controlling the release of proteins, still need to be overcome. In this review, the design of hybrid polymer-protein systems, including the selection of polymers and the bonding forms of polymer-protein systems, is presented. Meanwhile, vital considerations, including reaction conditions and the release of proteins in the design process, are addressed. Then, hybrid polymer-protein systems developed in the past decades for cancer therapy, including targeted therapy, gene therapy, phototherapy, immunotherapy and vaccine therapy, are summarized. Furthermore, challenges for the hybrid polymer-protein systems in cancer therapy are exemplified, and the perspectives of the field are covered.
Collapse
Affiliation(s)
- Qi Sun
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, China
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Beijing 100069, China
- Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Beijing 100069, China
| | - Zhenzhen Yang
- Drug Clinical Trial Center, Peking University Third Hospital, Peking University, Beijing 100191, China
- Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing 100191, China
| | - Xianrong Qi
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| |
Collapse
|
12
|
Adam A, Mertz D. Iron Oxide@Mesoporous Silica Core-Shell Nanoparticles as Multimodal Platforms for Magnetic Resonance Imaging, Magnetic Hyperthermia, Near-Infrared Light Photothermia, and Drug Delivery. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1342. [PMID: 37110927 PMCID: PMC10145772 DOI: 10.3390/nano13081342] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 03/31/2023] [Accepted: 04/02/2023] [Indexed: 06/19/2023]
Abstract
The design of core-shell nanocomposites composed of an iron oxide core and a silica shell offers promising applications in the nanomedicine field, especially for developing efficient theranostic systems which may be useful for cancer treatments. This review article addresses the different ways to build iron oxide@silica core-shell nanoparticles and it reviews their properties and developments for hyperthermia therapies (magnetically or light-induced), combined with drug delivery and MRI imaging. It also highlights the various challenges encountered, such as the issues associated with in vivo injection in terms of NP-cell interactions or the control of the heat dissipation from the core of the NP to the external environment at the macro or nanoscale.
Collapse
|
13
|
Bizeau J, Adam A, Nadal C, Francius G, Siniscalco D, Pauly M, Bégin-Colin S, Mertz D. Protein sustained release from isobutyramide-grafted stellate mesoporous silica nanoparticles. Int J Pharm X 2022; 4:100130. [PMID: 36156982 PMCID: PMC9494245 DOI: 10.1016/j.ijpx.2022.100130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 09/05/2022] [Indexed: 10/31/2022] Open
Abstract
Proteins are great therapeutic candidates as endogenous biomolecules providing a wide range of applications. However, their delivery suffers from some limitations and specifically designed delivery systems having an efficient protein anchoring and delivery strategy are still needed. In this work, we propose to combine large pore stellate mesoporous silica (STMS) with isobutyramide (IBAM), as a "glue" molecule which has been shown promising for immobilization of various biomacromolecules at silica surface. We address here for the first time the ability of such IBAM-modified NPs to sustainably deliver proteins over a prolonged time. In this work, a quantitative loading study of proteins (serum albumin (HSA), peroxidase (HRP), immunoglobulin (IgG) and polylysine (PLL)) on STMS@IBAM is first presented using three complementary detection techniques to ensure precision and avoid protein quantification issues. The results demonstrated a high loading capacity for HSA and HRP (≥ ca. 350 μg.mg-1) but a moderate one for IgG and PLL. After evaluating the physicochemical properties of the loaded particles and their stability over scaling-up and washings, the ability of STMS@IBAM to release proteins over prolonged time was evaluated in equilibrium (static) and flow mimicking (dynamic) conditions and at different temperatures (25, 37, 45 °C). Results show not only the potential of such "glue" functionalized STMS to release proteins in a sustained way, but also the retention of the biological activity of immobilized and released HRP, used as an enzyme model. Finally, an AFM-force spectroscopy study was conducted to decipher the interactions between IBAM and proteins, showing the involvement of different interactions in the adsorption and release processes.
Collapse
Affiliation(s)
- Joëlle Bizeau
- Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS), UMR-7504 CNRS-Université de Strasbourg, 23 rue du Lœss, BP 34 67034, Strasbourg, France
| | - Alexandre Adam
- Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS), UMR-7504 CNRS-Université de Strasbourg, 23 rue du Lœss, BP 34 67034, Strasbourg, France
| | - Clémence Nadal
- Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS), UMR-7504 CNRS-Université de Strasbourg, 23 rue du Lœss, BP 34 67034, Strasbourg, France
| | - Grégory Francius
- Laboratoire de Chimie Physique et Microbiologie pour les Matériaux et l'Environnement (LCPME), UMR 7564 CNRS-Université de Lorraine, 405 rue de Vandoeuvre, 54600 Villers-lès-Nancy, France
| | - David Siniscalco
- Laboratoire de Chimie Physique et Microbiologie pour les Matériaux et l'Environnement (LCPME), UMR 7564 CNRS-Université de Lorraine, 405 rue de Vandoeuvre, 54600 Villers-lès-Nancy, France
| | - Matthias Pauly
- Université de Strasbourg, CNRS, Institut Charles Sadron (UPR22), 23 rue du Loess, 67034, Strasbourg BP 84047, France
| | - Sylvie Bégin-Colin
- Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS), UMR-7504 CNRS-Université de Strasbourg, 23 rue du Lœss, BP 34 67034, Strasbourg, France
| | - Damien Mertz
- Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS), UMR-7504 CNRS-Université de Strasbourg, 23 rue du Lœss, BP 34 67034, Strasbourg, France
| |
Collapse
|
14
|
Sun J, Cheng M, Ye T, Li B, Wei Y, Zheng H, Zheng H, Zhou M, Piao JG, Li F. Nanocarrier-based delivery of arsenic trioxide for hepatocellular carcinoma therapy. Nanomedicine (Lond) 2022; 17:2037-2054. [PMID: 36789952 DOI: 10.2217/nnm-2022-0250] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023] Open
Abstract
Hepatocellular carcinoma (HCC) poses a severe threat to human health and economic development. Despite many attempts at HCC treatment, most are inevitably affected by the genetic instability and variability of tumor cells. Arsenic trioxide (ATO) has shown to be effective in HCC. However, time-consuming challenges, especially the optimal concentration in tumor tissue and bioavailability of ATO, remain to be overcome for its transition from the bench to the bedside. To bypass these issues, nanotechnology-based delivery systems have been developed for prevention, diagnosis, monitoring and treatment in recent years. This article is a systematic overview of the latest contributions and detailed insights into ATO-loaded nanocarriers, with particular attention paid to strategies for improving the efficacy of nanocarriers of ATO.
Collapse
Affiliation(s)
- Jiang Sun
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Mengying Cheng
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Tingxian Ye
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Bin Li
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Yinghui Wei
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Hangsheng Zheng
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Hongyue Zheng
- Libraries of Zhejiang Chinese Medical University, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Meiqi Zhou
- Department of Oncology Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Ji-Gang Piao
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
- Key Laboratory of Neuropharmacology & Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
- Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Fanzhu Li
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
- Key Laboratory of Neuropharmacology & Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| |
Collapse
|
15
|
Liang X, Wen K, Chen Y, Fang G, Yang S, Li Q. Oral Administration of Therapeutic Enzyme Capsule for the Management of Inflammatory Bowel Disease. Int J Nanomedicine 2022; 17:4843-4860. [PMID: 36262191 PMCID: PMC9574266 DOI: 10.2147/ijn.s378073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 10/06/2022] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Oral administration of proteins/peptides is challenging in clinical application due to their instability and susceptibility in the gastrointestinal tract. MATERIALS AND METHODS The in situ polymerization on the surface of enzymes was used to encapsulate antioxidant enzymes (superoxide dismutase (SOD) and catalase (CAT)) in polymeric shells, and the reactive oxygen species (ROS) scavenging ability was monitored based on DCFH-DA probe using flow cytometry and confocal laser scanning microscopy. The mRNA expression level of pro-inflammatory factors was assessed by real-time qPCR, using lipopolysaccharide-induced RAW264.7 cells as a model. Finally, the enzyme capsules were orally administered for the treatment of inflammatory bowel disease using dextran sodium sulfate (DSS)-induced colitis mice as a model, based on the evaluation of the disease-associated index, ROS level and pro-inflammatory cytokines' expression. RESULTS The enzyme capsules could effectively scavenge the intracellular reactive oxygen species (ROS) through the cascade catalysis of SOD and CAT, and thus protect the cells from ROS-induced oxidative damage. Meanwhile, the enzyme capsules could inhibit the secretion of pro-inflammatory cytokines from macrophages, thereby achieving favorable anti-inflammation effect. Oral administration of enzyme capsules could facilitate the accumulation of enzymes in the inflamed colon tissues of DSS-induced colitis mice. Moreover, the oral delivery of enzyme capsules could effectively alleviate the symptoms associated with colitis, attributing to the excellent ROS scavenging ability and the inhibition of pro-inflammatory cytokines' level. CONCLUSION In summary, our findings provided a promising approach to construct enzyme-based nano-formulations with favorable therapeutic efficacy and biocompatibility, exhibiting great potential in the treatment of gastrointestinal diseases in an oral administration manner.
Collapse
Affiliation(s)
- Xiao Liang
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, People’s Republic of China
| | - Kai Wen
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, People’s Republic of China
| | - Yingxuan Chen
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, People’s Republic of China
| | - Guangxu Fang
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, People’s Republic of China
| | - Shengcai Yang
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, People’s Republic of China
| | - Quanshun Li
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, People’s Republic of China,Correspondence: Quanshun Li; Shengcai Yang, Tel/Fax +86-431-85155200, Email ;
| |
Collapse
|
16
|
Da LC, Sun Y, Lin YH, Chen SZ, Chen GX, Zheng BH, Du SR. Emerging Bioactive Agent Delivery-Based Regenerative Therapies for Lower Genitourinary Tissues. Pharmaceutics 2022; 14:1718. [PMID: 36015344 PMCID: PMC9414065 DOI: 10.3390/pharmaceutics14081718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/05/2022] [Accepted: 08/12/2022] [Indexed: 11/20/2022] Open
Abstract
Injury to lower genitourinary (GU) tissues, which may result in either infertility and/or organ dysfunctions, threatens the overall health of humans. Bioactive agent-based regenerative therapy is a promising therapeutic method. However, strategies for spatiotemporal delivery of bioactive agents with optimal stability, activity, and tunable delivery for effective sustained disease management are still in need and present challenges. In this review, we present the advancements of the pivotal components in delivery systems, including biomedical innovations, system fabrication methods, and loading strategies, which may improve the performance of delivery systems for better regenerative effects. We also review the most recent developments in the application of these technologies, and the potential for delivery-based regenerative therapies to treat lower GU injuries. Recent progress suggests that the use of advanced strategies have not only made it possible to develop better and more diverse functionalities, but also more precise, and smarter bioactive agent delivery systems for regenerative therapy. Their application in lower GU injury treatment has achieved certain effects in both patients with lower genitourinary injuries and/or in model animals. The continuous evolution of biomaterials and therapeutic agents, advances in three-dimensional printing, as well as emerging techniques all show a promising future for the treatment of lower GU-related disorders and dysfunctions.
Collapse
Affiliation(s)
- Lin-Cui Da
- Center of Reproductive Medicine, Fujian Maternity and Child Health Hospital College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou 350001, China
| | - Yan Sun
- Center of Reproductive Medicine, Fujian Maternity and Child Health Hospital College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou 350001, China
| | - Yun-Hong Lin
- Center of Reproductive Medicine, Fujian Maternity and Child Health Hospital College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou 350001, China
| | - Su-Zhu Chen
- Center of Reproductive Medicine, Fujian Maternity and Child Health Hospital College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou 350001, China
| | - Gang-Xin Chen
- Center of Reproductive Medicine, Fujian Maternity and Child Health Hospital College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou 350001, China
| | - Bei-Hong Zheng
- Center of Reproductive Medicine, Fujian Maternity and Child Health Hospital College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou 350001, China
| | - Sheng-Rong Du
- Center of Reproductive Medicine, Fujian Maternity and Child Health Hospital College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou 350001, China
- The Key Laboratory of Innate Immune Biology of Fujian Province, Biomedical Research Center of South China, College of Life Sciences, Fujian Normal University, Fuzhou 350117, China
| |
Collapse
|
17
|
Raddeanin A synergistically enhances the anti-tumor effect of MAP30 in multiple ways, more than promoting endosomal escape. Toxicol Appl Pharmacol 2022; 449:116139. [PMID: 35750203 DOI: 10.1016/j.taap.2022.116139] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 06/15/2022] [Accepted: 06/18/2022] [Indexed: 11/23/2022]
Abstract
Biomacromolecules such as proteins and nucleic acids are very attractive due to their high efficiency and specificity as cancer therapeutics. In fact, the endocytosed macromolecules are often trapped in the endosomes and cannot exhibit pharmacological effects well. Many strategies have been used to address this bottleneck, and one promising approach is to exploit the endosomal escape-promoting effect of triterpenoid saponins to aid in the release of biomacromolecules. Here, Raddeanin A (RA, an oleanane-type triterpenoid saponin) was proved to significantly promote endosomal escape as it recruited Galectin-9, an endosomal escape event reporter. As expected, RA effectively enhanced the anti-tumor effect of MAP30 (a type I ribosome-inactivating protein derived from Momordica charantia). However, based on the results of fluorescent colocalization, RA did not significantly promote MAP30 release from endosomes, suggesting that RA enhances MAP30 activity not only by promoting endosomal escape. Furthermore, it was found that the inhibitors of micropinocytosis and caveolae could almost completely inhibit the cytotoxicity of MAP30 combined with RA without affecting the cytotoxicity of MAP30 alone, indicating that RA may regulate the endocytic pathway of MAP30. Meanwhile, the effect of RA is related to the intra vesicular pH and cholesterol content on cell membrane, and is also cell-type dependent. Therefore, RA enhanced the anti-tumor effect of MAP30 in multiple ways, not just by promoting endosomal escape. Our findings will help to further decipher the possible mechanisms by which triterpenoid saponins enhance drug activity, and provide a new perspective for improving the activity of endocytosed drugs.
Collapse
|
18
|
Sherstneva AA, Demina TS, Monteiro APF, Akopova TA, Grandfils C, Ilangala AB. Biodegradable Microparticles for Regenerative Medicine: A State of the Art and Trends to Clinical Application. Polymers (Basel) 2022; 14:1314. [PMID: 35406187 PMCID: PMC9003224 DOI: 10.3390/polym14071314] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/14/2022] [Accepted: 03/22/2022] [Indexed: 12/22/2022] Open
Abstract
Tissue engineering and cell therapy are very attractive in terms of potential applications but remain quite challenging regarding the clinical aspects. Amongst the different strategies proposed to facilitate their implementation in clinical practices, biodegradable microparticles have shown promising outcomes with several advantages and potentialities. This critical review aims to establish a survey of the most relevant materials and processing techniques to prepare these micro vehicles. Special attention will be paid to their main potential applications, considering the regulatory constraints and the relative easiness to implement their production at an industrial level to better evaluate their application in clinical practices.
Collapse
Affiliation(s)
- Anastasia A. Sherstneva
- Enikolopov Institute of Synthetic Polymeric Materials, Russian Academy of Sciences, 70 Profsouznaya Str., 117393 Moscow, Russia; (A.A.S.); (T.A.A.)
| | - Tatiana S. Demina
- Enikolopov Institute of Synthetic Polymeric Materials, Russian Academy of Sciences, 70 Profsouznaya Str., 117393 Moscow, Russia; (A.A.S.); (T.A.A.)
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University, 8-2 Trubetskaya Str., 119991 Moscow, Russia
| | - Ana P. F. Monteiro
- Interfaculty Research Centre on Biomaterials (CEIB), Chemistry Institute, University of Liège, B6C, 11 Allée du 6 Août, B-4000 Liege, Belgium; (A.P.F.M.); (C.G.); (A.B.I.)
| | - Tatiana A. Akopova
- Enikolopov Institute of Synthetic Polymeric Materials, Russian Academy of Sciences, 70 Profsouznaya Str., 117393 Moscow, Russia; (A.A.S.); (T.A.A.)
| | - Christian Grandfils
- Interfaculty Research Centre on Biomaterials (CEIB), Chemistry Institute, University of Liège, B6C, 11 Allée du 6 Août, B-4000 Liege, Belgium; (A.P.F.M.); (C.G.); (A.B.I.)
| | - Ange B. Ilangala
- Interfaculty Research Centre on Biomaterials (CEIB), Chemistry Institute, University of Liège, B6C, 11 Allée du 6 Août, B-4000 Liege, Belgium; (A.P.F.M.); (C.G.); (A.B.I.)
| |
Collapse
|
19
|
Zhang X, Liu XY, Yang H, Chen JN, Lin Y, Han SY, Cao Q, Zeng HS, Ye JW. A Polyhydroxyalkanoates-Based Carrier Platform of Bioactive Substances for Therapeutic Applications. Front Bioeng Biotechnol 2022; 9:798724. [PMID: 35071207 PMCID: PMC8767415 DOI: 10.3389/fbioe.2021.798724] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 12/02/2021] [Indexed: 12/13/2022] Open
Abstract
Bioactive substances (BAS), such as small molecule drugs, proteins, RNA, cells, etc., play a vital role in many therapeutic applications, especially in tissue repair and regeneration. However, the therapeutic effect is still a challenge due to the uncontrollable release and instable physico-chemical properties of bioactive components. To address this, many biodegradable carrier systems of micro-nano structures have been rapidly developed based on different biocompatible polymers including polyhydroxyalkanoates (PHA), the microbial synthesized polyesters, to provide load protection and controlled-release of BAS. We herein highlight the developments of PHA-based carrier systems in recent therapeutic studies, and give an overview of its prospective applications in various disease treatments. Specifically, the biosynthesis and material properties of diverse PHA polymers, designs and fabrication of micro- and nano-structure PHA particles, as well as therapeutic studies based on PHA particles, are summarized to give a comprehensive landscape of PHA-based BAS carriers and applications thereof. Moreover, recent efforts focusing on novel-type BAS nano-carriers, the functionalized self-assembled PHA granules in vivo, was discussed in this review, proposing the underlying innovations of designs and fabrications of PHA-based BAS carriers powered by synthetic biology. This review outlines a promising and applicable BAS carrier platform of novelty based on PHA particles for different medical uses.
Collapse
Affiliation(s)
- Xu Zhang
- Department of Chemical Engineering, Tsinghua University, Beijing, China
- Key Laboratory of Industrial Biocatalysis, Ministry of Education, Tsinghua University, Beijing, China
- Tsinghua-Peking Center of Life Sciences, Beijing, China
| | - Xin-Yi Liu
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Hao Yang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Jiang-Nan Chen
- Tsinghua-Peking Center of Life Sciences, Beijing, China
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Ying Lin
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Shuang-Yan Han
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Qian Cao
- China Manned Space Agency, Beijing, China
| | - Han-Shi Zeng
- Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Jian-Wen Ye
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| |
Collapse
|
20
|
Villeneuve P, Bourlieu-Lacanal C, Durand E, Lecomte J, McClements DJ, Decker EA. Lipid oxidation in emulsions and bulk oils: a review of the importance of micelles. Crit Rev Food Sci Nutr 2021:1-41. [PMID: 34839769 DOI: 10.1080/10408398.2021.2006138] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Lipid oxidation is a major cause of quality deterioration in food products. In these foods, lipids are often present in a bulk or in emulsified forms. In both systems, the rate, extent and pathway of oxidation are highly dependent on the presence of colloidal structures and interfaces because these are the locations where oxidation normally occurs. In bulk oils, reverse micelles (association colloids) are present and are believed to play a crucial role on lipid oxidation. Conversely, in emulsions, surfactant micelles are present that also play a major role in lipid oxidation pathways. After a brief description of lipid oxidation and antioxidants mechanisms, this review discusses the current understanding of the influence of micellar structures on lipid oxidation. In particular, is discussed the major impact of the presence of micelles in emulsions, or reverse micelles (association colloids) in bulk oil on the oxidative stability of both systems. Indeed, both micelles in emulsions and associate colloids in bulk oils are discussed in this review as nanoscale structures that can serve as reservoirs of antioxidants and pro-oxidants and are involved in their transport within the concerned system. Their role as nanoreactors where lipid oxidation reactions occur is also commented.
Collapse
Affiliation(s)
- Pierre Villeneuve
- CIRAD, UMR QualiSud, Montpellier, France.,QualiSud, Univ Montpellier, CIRAD, Montpellier SupAgro, Université d'Avignon, Université de La Réunion, Montpellier, France
| | - Claire Bourlieu-Lacanal
- QualiSud, Univ Montpellier, CIRAD, Montpellier SupAgro, Université d'Avignon, Université de La Réunion, Montpellier, France.,UMR IATE, Univ Montpellier, INRAE, Institut Agro, Montpellier, France
| | - Erwann Durand
- CIRAD, UMR QualiSud, Montpellier, France.,QualiSud, Univ Montpellier, CIRAD, Montpellier SupAgro, Université d'Avignon, Université de La Réunion, Montpellier, France
| | - Jérôme Lecomte
- CIRAD, UMR QualiSud, Montpellier, France.,QualiSud, Univ Montpellier, CIRAD, Montpellier SupAgro, Université d'Avignon, Université de La Réunion, Montpellier, France
| | | | - Eric A Decker
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts, USA
| |
Collapse
|
21
|
3D and 4D printing: From innovation to evolution. Adv Colloid Interface Sci 2021; 294:102482. [PMID: 34274721 DOI: 10.1016/j.cis.2021.102482] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 06/30/2021] [Accepted: 07/02/2021] [Indexed: 12/20/2022]
Abstract
The world and science are moving forward nonstop. Every day, we see novel technologies that are coming to improve life quality. One of them is 3D printing or additive manufacturing. This technology covers the shortage of the current manufacturing technologies, and it has been enhanced by introducing smart materials like smart polymers as feed. The following product can adapt to circumstance conditions such as temperature changes, compression alteration, etc. These responses resulted in an advanced 3D printing technology called 4D printing. 3D and 4D printing technologies found their applications in all areas and industry sizes, from home-scale to large-scale industries. Regardless of all advantages of these technologies, there are still some shortages like low printing speed. But this never stops their progression and promotion. In this review, we aimed to cover general knowledge about 3D and 4D printing and their recent applications in various fields.
Collapse
|
22
|
Ledford B, Barron C, Van Dyke M, He JQ. Keratose hydrogel for tissue regeneration and drug delivery. Semin Cell Dev Biol 2021; 128:145-153. [PMID: 34219034 DOI: 10.1016/j.semcdb.2021.06.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 05/16/2021] [Accepted: 06/23/2021] [Indexed: 11/28/2022]
Abstract
Keratin (KRT), a natural fibrous structural protein, can be classified into two categories: "soft" cytosolic KRT that is primarily found in the epithelia tissues (e.g., skin, the inner lining of digestive tract) and "hard" KRT that is mainly found in the protective tissues (e.g., hair, horn). The latter is the predominant form of KRT widely used in biomedical research. The oxidized form of extracted KRT is exclusively denoted as keratose (KOS) while the reduced form of KRT is termed as kerateine (KRTN). KOS can be processed into various forms (e.g., hydrogel, films, fibers, and coatings) for different biomedical applications. KRT/KOS offers numerous advantages over other types of biomaterials, such as bioactivity, biocompatibility, degradability, immune/inflammatory privileges, mechanical resilience, chemical manipulability, and easy accessibility. As a result, KRT/KOS has attracted considerable attention and led to a large number of publications associated with this biomaterial over the past few decades; however, most (if not all) of the published review articles focus on KRT regarding its molecular structure, biochemical/biophysical properties, bioactivity, biocompatibility, drug/cell delivery, and in vivo transplantation, as well as its applications in biotechnical products and medical devices. Current progress that is directly associated with KOS applications in tissue regeneration and drug delivery appears an important topic that merits a commentary. To this end, the present review aims to summarize the current progress of KOS-associated biomedical applications, especially focusing on the in vitro and in vivo effects of KOS hydrogel on cultured cells and tissue regeneration following skin injury, skeletal muscle loss, peripheral nerve injury, and cardiac infarction.
Collapse
Affiliation(s)
- Benjamin Ledford
- Department of Biomedical Sciences and Pathobiology, College of Veterinary Medicine, Virginia Tech, Blacksburg, VA 24061, USA
| | - Catherine Barron
- Department of Biomedical Sciences and Pathobiology, College of Veterinary Medicine, Virginia Tech, Blacksburg, VA 24061, USA
| | - Mark Van Dyke
- Department of Biomedical Engineering, College of Engineering, University of Arizona, 1209 E. 2nd Street, Tucson, AZ 85721, USA
| | - Jia-Qiang He
- Department of Biomedical Sciences and Pathobiology, College of Veterinary Medicine, Virginia Tech, Blacksburg, VA 24061, USA.
| |
Collapse
|
23
|
Wang J, Xie B, Zhu Z, Xie G, Luo B. 3D-printed construct from hybrid suspension as spatially and temporally controlled protein delivery system. J Biomater Appl 2021; 36:264-275. [PMID: 34102913 DOI: 10.1177/08853282211023257] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Protein delivery systems have been extensively applied in controlled releasing of protein or polypeptides for therapeutic treatment or tissue regeneration. While 3 D printing technology shows great promise in novel dosage form with tailoring dose size and drug release profile, 3 D printable protein delivery system has to face many difficult challenges. In this study, we developed a hybrid suspension combining Eudragit polyacrylate colloid as matrix material and Pluronic polyether hydrogel as diffusion channel for protein release. This hybrid suspension can be 3 D-printed into construct with complex shape and inner structures thanks to its pseudoplastic and thixotropic rheological properties. The protein can be incorporated in hybrid suspension either in its original or nanoparticle capsulated form. The experiment shows that the protein release from construct is a function of drying time, molecular weight (MW) of chitosan, as well as their own structural/diffusional properties. Also, the theoretical derivation suggests polyacrylate matrix tortuosity, chitosan erosion rate as well as hydrogel diffusion coefficient all contributed to the extended duration of release profile. In addition, cytotoxicity test through cell culture confirmed that the construct fabricated from hybrid suspension exhibit relative good bio-compatibility. Finally, heterogeneous constructs with zoned design were fabricated as protein delivery system, which demonstrated the capability of hybrid suspension technique for spatial and temporal release of macromolecular drugs to realize pharmaceutical effectiveness or guild cell organization.
Collapse
Affiliation(s)
- Jiangtao Wang
- College of Mechanical and Electrical Engineering, Jiaxing University, Jiaxing, China
| | - Baojun Xie
- College of Mechanical and Electrical Engineering, Jiaxing University, Jiaxing, China
| | - Zicai Zhu
- Shaanxi Key Lab of Intelligent Robots, School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Guijun Xie
- Department of Ophthalmology, Baoji People's Hospital, Baoji, Shaanxi, China
| | - Bin Luo
- School of Mechanical and Energy Engineering, Shaoyang University, Shaoyang Hunan, China
| |
Collapse
|
24
|
|
25
|
Sustained Release Systems for Delivery of Therapeutic Peptide/Protein. Biomacromolecules 2021; 22:2299-2324. [PMID: 33957752 DOI: 10.1021/acs.biomac.1c00160] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Peptide/protein therapeutics have been significantly applied in the clinical treatment of various diseases such as cancer, diabetes, etc. owing to their high biocompatibility, specificity, and therapeutic efficacy. However, due to their immunogenicity, instability stemming from its complex tertiary and quaternary structure, vulnerability to enzyme degradation, and rapid renal clearance, the clinical application of protein/peptide therapeutics is significantly confined. Though nanotechnology has been demonstrated to prevent enzyme degradation of the protein therapeutics and thus enhance the half-life, issues such as initial burst release and uncontrollable release kinetics are still unsolved. Moreover, the traditional administration method results in poor patient compliance, limiting the clinical application of protein/peptide therapeutics. Exploiting the sustained-release formulations for more controllable delivery of protein/peptide therapeutics to decrease the frequency of injection and enhance patient compliance is thus greatly meaningful. In this review, we comprehensively summarize the substantial advancements of protein/peptide sustained-release systems in the past decades. In addition, the advantages and disadvantages of all these sustained-release systems in clinical application together with their future challenges are also discussed in this review.
Collapse
|