1
|
Li Y, Zhang J, Wang A. Durable Superhydrophobic Coatings with Attapulgite for Inhibiting 5G Radome Rain Attenuation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:22446-22454. [PMID: 39387216 DOI: 10.1021/acs.langmuir.4c03432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
5G radomes are easily wetted and stained by rainfall, which greatly reduces the quality of signal transmission. Superhydrophobic coatings are expected to solve this problem because of their unique wettability, but it is still challenging to develop robust superhydrophobic coatings via simple methods. Here, we report the design of robust superhydrophobic coatings containing oxalic acid-modified attapulgite (MDP) for inhibiting rain attenuation of 5G radomes. First, a homogeneous suspension was prepared by nonsolvent-induced phase separation of a silicone-modified polyester adhesive (SMPA) solution containing fluorinated MDP (F-MDP) nanorods. Superhydrophobic coatings can be easily prepared by spraying the suspension. The effects of phase separation and the SMPA/F-MDP ratio on the surface morphology, superhydrophobicity, and stability of the coatings were systematically investigated. The micro-/nanostructure and low surface energy endow the coatings with excellent static and dynamic superhydrophobicity. Compared with previous studies, the coatings exhibit excellent mechanical stability, flexibility, chemical stability, and pressure resistance due to the combined effects of adhesion by SMPA, self-similar micro-/nanostructures, reinforcement by the MDP nanorods, etc. Consequently, the coatings show good performance in preventing rain attenuation of 5G radomes, an emerging application of Superhydrophobic coatings. We believe that the coatings have great application potential in various fields, including 5G communication.
Collapse
Affiliation(s)
- Yan Li
- Research Center of Resource Chemistry and Energy Materials, Key Laboratory of Clay Minerals of Gansu, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, P.R. China
| | - Junping Zhang
- Research Center of Resource Chemistry and Energy Materials, Key Laboratory of Clay Minerals of Gansu, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, P.R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Aiqin Wang
- Research Center of Resource Chemistry and Energy Materials, Key Laboratory of Clay Minerals of Gansu, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, P.R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| |
Collapse
|
2
|
Kumar V, Alam MN, Yewale MA, Park SS. Multifunctional Aspects of Mechanical and Electromechanical Properties of Composites Based on Silicone Rubber for Piezoelectric Energy Harvesting Systems. Polymers (Basel) 2024; 16:2058. [PMID: 39065375 PMCID: PMC11281235 DOI: 10.3390/polym16142058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 07/10/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
Energy harvesting systems fabricated from rubber composite materials are promising due to their ability to produce green energy with no environmental pollution. Thus, the present work investigated energy harvesting through piezoelectricity using rubber composites. These composites were fabricated by mixing titanium carbide (TiC) and molybdenum disulfide (MoS2) as reinforcing and electrically conductive fillers into a silicone rubber matrix. Excellent mechanical and electromechanical properties were produced by these composites. For example, the compressive modulus was 1.55 ± 0.08 MPa (control) and increased to 1.95 ± 0.07 MPa (6 phr or per hundred parts of rubber of TiC) and 2.02 ± 0.09 MPa (6 phr of MoS2). Similarly, the stretchability was 133 ± 7% (control) and increased to 153 ± 9% (6 phr of TiC) and 165 ± 12% (6 phr of MoS2). The reinforcing efficiency (R.E.) and reinforcing factor (R.F.) were also determined theoretically. These results agree well with those of the mechanical property tests and thus validate the experimental work. Finally, the electromechanical tests showed that at 30% strain, the output voltage was 3.5 mV (6 phr of TiC) and 6.7 mV (6 phr of MoS2). Overall, the results show that TiC and MoS2 added to silicone rubber lead to robust and versatile composite materials. These composite materials can be useful in achieving higher energy generation, high stretchability, and optimum stiffness and are in line with existing theoretical models.
Collapse
Affiliation(s)
| | | | | | - Sang-Shin Park
- School of Mechanical Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan 38541, Gyeongbuk, Republic of Korea; (V.K.); (M.N.A.); (M.A.Y.)
| |
Collapse
|
3
|
Li Y, Yang B, Wei J, Li B, Mao M, Zhang J. Attapulgite-Based Stable Superhydrophobic Coatings for Preventing Rain Attenuation of 5G Radomes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:7760-7768. [PMID: 38546182 DOI: 10.1021/acs.langmuir.4c00492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
Superhydrophobic coatings hold immense promise for various applications. However, their practical use is currently hindered by issues such as poor stability, high costs, and complex preparation processes. Here, we present the preparation of cost-effective and stable superhydrophobic coatings through fluorination of natural attapulgite (F-ATP) nanorods and subsequent solvent-induced phase separation of a silicone-modified polyester adhesive (SMPA) with the F-ATP nanorods dispersed in it. Phase separation of the F-ATP/SMPA system forms a uniform suspension of microaggregates, which can be easily utilized for preparing superhydrophobic coatings via spray coating. The coatings have a low-surface-energy hierarchical micro/nanostructure due to phase separation of SMPA and adhesion of F-ATP to it. Moreover, the effects of the solvent composition (i.e., phase separation degree of SMPA) and the SMPA/F-ATP mass ratio on the morphology, superhydrophobicity, and stability of the coatings were investigated. After systematic optimization, the coatings exhibit excellent static and dynamic superhydrophobicity as well as high mechanical, chemical, thermal, and UV aging stability. Finally, the coatings were applied to the 5G radome surface and showed good rain attenuation prevention performance. Thus, we are confident that the superhydrophobic coatings have great application potential due to their advantages of outstanding performance, straightforward preparation procedures, cost-effectiveness, etc.
Collapse
Affiliation(s)
- Yan Li
- Department of Chemical Engineering, College of Petrochemical Engineering, Lanzhou University of Technology, Lanzhou 730050, P. R. China
- Center of Eco-Material and Green Chemistry, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, P. R. China
| | - Baoping Yang
- Department of Chemical Engineering, College of Petrochemical Engineering, Lanzhou University of Technology, Lanzhou 730050, P. R. China
| | - Jinfei Wei
- Department of Chemical Engineering, College of Petrochemical Engineering, Lanzhou University of Technology, Lanzhou 730050, P. R. China
- Center of Eco-Material and Green Chemistry, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, P. R. China
| | - Bucheng Li
- Department of Chemical Engineering, College of Petrochemical Engineering, Lanzhou University of Technology, Lanzhou 730050, P. R. China
- Center of Eco-Material and Green Chemistry, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, P. R. China
| | - Mingyuan Mao
- Department of Chemical Engineering, College of Petrochemical Engineering, Lanzhou University of Technology, Lanzhou 730050, P. R. China
- Center of Eco-Material and Green Chemistry, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, P. R. China
| | - Junping Zhang
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
- Center of Eco-Material and Green Chemistry, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, P. R. China
| |
Collapse
|
4
|
Xia R, Zhang B, Dong K, Yan Y, Guan Z. HD-SiO 2/SiO 2 Sol@PDMS Superhydrophobic Coating with Good Durability and Anti-Corrosion for Protection of Al Sheets. MATERIALS (BASEL, SWITZERLAND) 2023; 16:ma16093532. [PMID: 37176414 PMCID: PMC10180274 DOI: 10.3390/ma16093532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 04/26/2023] [Accepted: 05/03/2023] [Indexed: 05/15/2023]
Abstract
Superhydrophobic coatings with excellent water-repellent properties imply a wide range of application areas. However, improvements are needed in terms of stability and complex processing procedures. In the present study, a superhydrophobic coating on Al sheets was prepared by mixing hexadecyltrimethoxysilane (HDTMS)-modified SiO2 nanoparticles and acid-catalyzed silica sols (HD-SiO2/SiO2 Sol) with polydimethylsiloxane (PDMS) binder. The HD-SiO2 nanoparticles and acid-catalyzed silica sol (SiO2 sol) form a binary graded micro-nanostructure, providing excellent superhydrophobicity (Water Contact Angle = 158.5°, Sliding angle = 0°). Superhydrophobic coatings with excellent water-repellent properties have potential for corrosion prevention. However the commonly used organic resins have poor chemical and mechanical properties. In the present study, the results of outdoor exposure for 30 days, immersion in acid and alkaline solutions for 24 h, grit abrasion, and water impact experiments, respectively, showed that the prepared superhydrophobic coating has good wear resistance. The integrated superhydrophobic coating on the Al sheets exhibited good corrosion inhibition with an efficiency (η) of 98.9%, which is much higher than that of the uncoated sheets. The present study provides a promising approach for producing stable superhydrophobic coatings at a low cost, with the potential to supplant conventional organic resin anti-corrosion coatings.
Collapse
Affiliation(s)
- Ruohan Xia
- College of Materials Science & Engineering, Nanjing Tech University, 30 South PuZhu Road, Nanjing 211816, China
| | - Bing Zhang
- College of Materials Science & Engineering, Nanjing Tech University, 30 South PuZhu Road, Nanjing 211816, China
| | - Kousuo Dong
- College of Materials Science & Engineering, Nanjing Tech University, 30 South PuZhu Road, Nanjing 211816, China
| | - Yao Yan
- College of Materials Science & Engineering, Nanjing Tech University, 30 South PuZhu Road, Nanjing 211816, China
| | - Zisheng Guan
- College of Materials Science & Engineering, Nanjing Tech University, 30 South PuZhu Road, Nanjing 211816, China
| |
Collapse
|
5
|
Temperature-control and low emissivity dual-working modular infrared stealth fabric. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
6
|
He W, Zhang F, Zhang F, He Q. Effect of
CeO
2
on
UV
aging of composite insulators prepared by template‐spraying method. J Appl Polym Sci 2022. [DOI: 10.1002/app.53274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Wenjie He
- College of Mechanical and Electrical Engineering Gansu Agricultural University Lanzhou China
- College of Civil Aviation Safety Engineering Civil Aviation Flight University of China Guanghan China
| | - Fangyuan Zhang
- College of Mechanical and Electrical Engineering Gansu Agricultural University Lanzhou China
- College of Civil Aviation Safety Engineering Civil Aviation Flight University of China Guanghan China
| | - Fengwei Zhang
- College of Mechanical and Electrical Engineering Gansu Agricultural University Lanzhou China
| | - Qiang He
- College of Civil Aviation Safety Engineering Civil Aviation Flight University of China Guanghan China
| |
Collapse
|
7
|
Preparation of Iron Ore Tailings-Based Superhydrophobic Coatings. MATERIALS 2022; 15:ma15124235. [PMID: 35744293 PMCID: PMC9229385 DOI: 10.3390/ma15124235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 03/13/2022] [Accepted: 03/16/2022] [Indexed: 02/04/2023]
Abstract
In this study, ball mill pretreated iron ore tailings were modified with tetraethoxysilane (TEOS) and hexadecyltrimethoxysilane (HDTMS) to obtain iron ore tailings/polysiloxane (IOT/POS) superhydrophobic powders, which were subsequently mixed with chloroprene rubber solution (CRS) to prepare durable superhydrophobic composite coatings. The effect of HDTMS amount and reaction time on the wettability of the superhydrophobic powder was investigated. The influence of the superhydrophobic powders concentration on the wettability of the composite coatings as well as the degree of damage of the superhydrophobicity of the composite coating was analyzed by using the sandpaper abrasion and tape peeling tests. Further, SEM and FTIR were used to analyze the formation mechanism of the IOT/POS superhydrophobic powders and coatings. The results showed for an HDTMS amount of 2.5 mmol and reaction time of 4 h, the contact angle of the IOT/POS powder was 157.3 ± 0.6°, whereas the slide angle was determined to be 5.9 ± 0.8°. For an IOT/POS powder content of 0.06 g/mL in CRS, the contact angle value of the superhydrophobic composite coating was 159.2 ± 0.5°, whereas the slide angle value was 5.5 ± 0.8°. The superhydrophobic composite coating still maintained the superhydrophobicity after the sandpaper abrasion and tape peeling tests, which indicated the iron ore tailings solid waste has the potential to prepare superhydrophobic coatings.
Collapse
|