Shishparenok AN, Petryaev ER, Koroleva SA, Dobryakova NV, Zlotnikov ID, Komedchikova EN, Kolesnikova OA, Kudryashova EV, Zhdanov DD. Bacterial Cellulose-Chitosan Composite for Prolonged-Action L-Asparaginase in Treatment of Melanoma Cells.
BIOCHEMISTRY. BIOKHIMIIA 2024;
89:1727-1743. [PMID:
39523112 DOI:
10.1134/s0006297924100067]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/12/2024] [Accepted: 07/22/2024] [Indexed: 11/16/2024]
Abstract
A significant challenge associated with the therapeutic use of L-ASP for treatment of tumors is its rapid clearance from plasma. Effectiveness of L-ASP is limited by the dose-dependent toxicity. Therefore, new approaches are being developed for L-ASP to improve its therapeutic properties. One of the approaches to improve properties of the enzymes, including L-ASP, is immobilization on various types of biocompatible polymers. Immobilization of enzymes on a carrier could improve stability of the enzyme and change duration of its enzymatic activity. Bacterial cellulose (BC) is a promising carrier for various drugs due to its biocompatibility, non-toxicity, high porosity, and high drug loading capacity. Therefore, this material has high potential for application in biomedicine. Native BC is known to have a number of disadvantages related to structural stability, which has led to consideration of the modified BC as a potential carrier for immobilization of various proteins, including L-ASP. In our study, a BC-chitosan composite in which chitosan is cross-linked with glutaraldehyde was proposed for immobilization of L-ASP. Physicochemical characteristics of the BC-chitosan films were found to be superior to those of native BC films, resulting in increase in the release time of L-ASP in vitro from 8 to 24 h. These films exhibited prolonged toxicity (up to 10 h) against the melanoma cell line. The suggested strategy for A-ASP immobilization on the BC-chitosan films could be potentially used for developing therapeutics for treatment of surface types of cancers including melanomas.
Collapse