1
|
Božić M, Ignjatović Micić D, Anđelković V, Delić N, Nikolić A. Maize transcriptome profiling reveals low temperatures affect photosynthesis during the emergence stage. FRONTIERS IN PLANT SCIENCE 2025; 16:1527447. [PMID: 39935955 PMCID: PMC11810925 DOI: 10.3389/fpls.2025.1527447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 01/03/2025] [Indexed: 02/13/2025]
Abstract
Introduction Earlier sowing is a promising strategy of ensuring sufficiently high maize yields in the face of negative environmental factors caused by climate change. However, it leads to the low temperature exposure of maize plants during emergence, warranting a better understanding of their response and acclimation to suboptimal temperatures. Materials and Methods To achieve this goal, whole transcriptome sequencing was performed on two maize inbred lines - tolerant/susceptible to low temperatures, at the 5-day-old seedling stage. Sampling was performed after 6h and 24h of treatment (10/8°C). The data was filtered, mapped, and the identified mRNAs, lncRNAs, and circRNAs were quantified. Expression patterns of the RNAs, as well as the interactions between them, were analyzed to reveal the ones important for low-temperature response. Results and Discussion Genes involved in different steps of photosynthesis were downregulated in both genotypes: psa, psb, lhc, and cab genes important for photosystem I and II functioning, as well as rca, prk, rbcx1 genes necessary for the Calvin cycle. The difference in low-temperature tolerance between genotypes appeared to arise from their ability to mitigate damage caused by photoinhibition: ctpa2, grx, elip, UF3GT genes showed higher expression in the tolerant genotype. Certain identified lncRNAs also targeted these genes, creating an interaction network induced by the treatment (XLOC_016169-rca; XLOC_002167-XLOC_006091-elip2). These findings shed light on the potential mechanisms of low-temperature acclimation during emergence and lay the groundwork for subsequent analyses across diverse maize genotypes and developmental stages. As such, it offers valuable guidance for future research directions in the molecular breeding of low-temperature tolerant maize.
Collapse
Affiliation(s)
- Manja Božić
- Laboratory for Molecular Genetics and Physiology, Research Department, Maize Research Institute Zemun Polje, Belgrade, Serbia
| | - Dragana Ignjatović Micić
- Laboratory for Molecular Genetics and Physiology, Research Department, Maize Research Institute Zemun Polje, Belgrade, Serbia
| | - Violeta Anđelković
- Gene Bank, Research Department, Maize Research Institute Zemun Polje, Belgrade, Serbia
| | - Nenad Delić
- Maize Breeding Group, Breeding Department, Maize Research Institute Zemun Polje, Belgrade, Serbia
| | - Ana Nikolić
- Laboratory for Molecular Genetics and Physiology, Research Department, Maize Research Institute Zemun Polje, Belgrade, Serbia
| |
Collapse
|
2
|
Zhang Y, Li J, Li W, Gao X, Xu X, Zhang C, Yu S, Dou Y, Luo W, Yu L. Transcriptome Analysis Reveals POD as an Important Indicator for Assessing Low-Temperature Tolerance in Maize Radicles during Germination. PLANTS (BASEL, SWITZERLAND) 2024; 13:1362. [PMID: 38794432 PMCID: PMC11125230 DOI: 10.3390/plants13101362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/09/2024] [Accepted: 05/10/2024] [Indexed: 05/26/2024]
Abstract
Low-temperature stress (TS) limits maize (Zea mays L.) seed germination and agricultural production. Exposure to TS during germination inhibits radicle growth, triggering seedling emergence disorders. Here, we aimed to analyse the changes in gene expression in the radicles of maize seeds under TS by comparing Demeiya1 (DMY1) and Zhengdan958 (ZD958) (the main Northeast China cultivars) and exposing them to two temperatures: 15 °C (control) and 5 °C (TS). TS markedly decreased radicle growth as well as fresh and dry weights while increasing proline and malondialdehyde contents in both test varieties. Under TS treatment, the expression levels of 5301 and 4894 genes were significantly different in the radicles of DMY1 and ZD958, respectively, and 3005 differentially expressed genes coexisted in the radicles of both varieties. The phenylpropanoid biosynthesis pathway was implicated within the response to TS in maize radicles, and peroxidase may be an important indicator for assessing low-temperature tolerance during maize germination. Peroxidase-encoding genes could be important candidate genes for promoting low-temperature resistance in maize germinating radicles. We believe that this study enhances the knowledge of mechanisms of response and adaptation of the maize seed germination process to TS and provides a theoretical basis for efficiently assessing maize seed low-temperature tolerance and improving maize adversity germination performance.
Collapse
Affiliation(s)
- Yifei Zhang
- College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing 163319, China; (J.L.); (W.L.); (X.G.); (X.X.); (C.Z.); (S.Y.); (Y.D.); (W.L.)
- Heilongjiang Provincial Key Laboratory of Modern Agricultural Cultivation and Crop Germplasm Improvement, Daqing 163319, China
- Key Laboratory of Low-Carbon Green Agriculture in Northeastern China, Ministry of Agriculture and Rural Affairs, Daqing 163319, China
| | - Jiayu Li
- College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing 163319, China; (J.L.); (W.L.); (X.G.); (X.X.); (C.Z.); (S.Y.); (Y.D.); (W.L.)
| | - Weiqing Li
- College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing 163319, China; (J.L.); (W.L.); (X.G.); (X.X.); (C.Z.); (S.Y.); (Y.D.); (W.L.)
| | - Xinhan Gao
- College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing 163319, China; (J.L.); (W.L.); (X.G.); (X.X.); (C.Z.); (S.Y.); (Y.D.); (W.L.)
| | - Xiangru Xu
- College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing 163319, China; (J.L.); (W.L.); (X.G.); (X.X.); (C.Z.); (S.Y.); (Y.D.); (W.L.)
| | - Chunyu Zhang
- College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing 163319, China; (J.L.); (W.L.); (X.G.); (X.X.); (C.Z.); (S.Y.); (Y.D.); (W.L.)
- Heilongjiang Provincial Key Laboratory of Modern Agricultural Cultivation and Crop Germplasm Improvement, Daqing 163319, China
- Key Laboratory of Low-Carbon Green Agriculture in Northeastern China, Ministry of Agriculture and Rural Affairs, Daqing 163319, China
| | - Song Yu
- College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing 163319, China; (J.L.); (W.L.); (X.G.); (X.X.); (C.Z.); (S.Y.); (Y.D.); (W.L.)
- Heilongjiang Provincial Key Laboratory of Modern Agricultural Cultivation and Crop Germplasm Improvement, Daqing 163319, China
- Key Laboratory of Low-Carbon Green Agriculture in Northeastern China, Ministry of Agriculture and Rural Affairs, Daqing 163319, China
| | - Yi Dou
- College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing 163319, China; (J.L.); (W.L.); (X.G.); (X.X.); (C.Z.); (S.Y.); (Y.D.); (W.L.)
| | - Wenqi Luo
- College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing 163319, China; (J.L.); (W.L.); (X.G.); (X.X.); (C.Z.); (S.Y.); (Y.D.); (W.L.)
| | - Lihe Yu
- College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing 163319, China; (J.L.); (W.L.); (X.G.); (X.X.); (C.Z.); (S.Y.); (Y.D.); (W.L.)
- Heilongjiang Provincial Key Laboratory of Modern Agricultural Cultivation and Crop Germplasm Improvement, Daqing 163319, China
- Key Laboratory of Low-Carbon Green Agriculture in Northeastern China, Ministry of Agriculture and Rural Affairs, Daqing 163319, China
| |
Collapse
|
3
|
Xiao Y, Chen M, Zheng N, Xu Z, Zhang J, Hu X, Li L, Gu R, Du X, Wang J. Transcriptome Analysis Identifies Novel Genes Associated with Low-Temperature Seed Germination in Sweet Corn. PLANTS (BASEL, SWITZERLAND) 2022; 12:159. [PMID: 36616288 PMCID: PMC9824086 DOI: 10.3390/plants12010159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 12/21/2022] [Accepted: 12/21/2022] [Indexed: 06/17/2023]
Abstract
Typically, sweet corn, particularly sh2 sweet corn, has low seed vigor owing to its high sugar and low starch content, which is a major problem in sweet corn production, particularly at low temperatures. There is considerable variation in the germination rates among sweet corn varieties under low-temperature conditions, and the underlying mechanisms behind this phenomenon remain unclear. In this study, we screened two inbred sweet corn lines (tolerant line L282 and sensitive line L693) differing in their low-temperature germination rates; while no difference was observed in their germination rates at normal temperatures. To identify the specifically induced genes influencing the germination capacity of sweet corn at low temperatures, a transcriptome analysis of the two lines was conducted at both normal and low temperatures. Compared to the lines at a normal temperature, 3926 and 1404 differently expressed genes (DEGs) were identified from L282 and L693, respectively, under low-temperature conditions. Of them, 830 DEGs were common DEGs (cDEGs) that were identified from both L282 and L693, which were majorly enriched in terms of microtubule-based processes, histone H3-K9 modification, single-organism cellular processes, and carbohydrate metabolic processes. In addition, 3096 special DEGs (sDEGs), with 2199 upregulated and 897 downregulated, were detected in the tolerant line L282, but not in the sensitive line L693. These sDEGs were primarily related to plasma membranes and oxygen-containing compounds. Furthermore, electric conductivity measurements demonstrated that the membrane of L282 experienced less damage, which is consistent with its strong tolerance at low temperatures. These results expand our understanding of the complex mechanisms involved in the cold germination of sweet corn and provide a set of candidate genes for further genetic analysis.
Collapse
Affiliation(s)
- Yingni Xiao
- Beijing Innovation Center for Crop Seed Technology, Ministry of Agriculture and Rural Affairs, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
- Guangdong Provincial Key Laboratory of Crop Genetic Improvement, Crops Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Mei Chen
- Beijing Innovation Center for Crop Seed Technology, Ministry of Agriculture and Rural Affairs, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Nannan Zheng
- Beijing Innovation Center for Crop Seed Technology, Ministry of Agriculture and Rural Affairs, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Zhuoyi Xu
- Beijing Innovation Center for Crop Seed Technology, Ministry of Agriculture and Rural Affairs, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Jie Zhang
- Beijing Innovation Center for Crop Seed Technology, Ministry of Agriculture and Rural Affairs, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Xinmin Hu
- Beijing Innovation Center for Crop Seed Technology, Ministry of Agriculture and Rural Affairs, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Li Li
- Beijing Innovation Center for Crop Seed Technology, Ministry of Agriculture and Rural Affairs, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Riliang Gu
- Beijing Innovation Center for Crop Seed Technology, Ministry of Agriculture and Rural Affairs, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Xuemei Du
- Beijing Innovation Center for Crop Seed Technology, Ministry of Agriculture and Rural Affairs, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Jianhua Wang
- Beijing Innovation Center for Crop Seed Technology, Ministry of Agriculture and Rural Affairs, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| |
Collapse
|
4
|
Li Y, Zhang Y, Li B, Hou L, Yu J, Jia C, Wang Z, Chen S, Zhang M, Qin J, Cao N, Cui J, Shi W. Preliminary Expression Analysis of the OSCA Gene Family in Maize and Their Involvement in Temperature Stress. Int J Mol Sci 2022; 23:13658. [PMID: 36362446 PMCID: PMC9656168 DOI: 10.3390/ijms232113658] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/01/2022] [Accepted: 11/05/2022] [Indexed: 12/01/2023] Open
Abstract
Hyperosmolality-gated calcium-permeable channels (OSCA) are characterized as an osmosensor in plants; they are able to recognize and respond to exogenous and endogenous osmotic changes, and play a vital role in plant growth and adaptability to environmental stress. To explore the potential biological functions of OSCAs in maize, we performed a bioinformatics and expression analysis of the ZmOSCA gene family. Using bioinformatics methods, we identified twelve OSCA genes from the genome database of maize. According to their sequence composition and phylogenetic relationship, the maize OSCA family was classified into four groups (Ⅰ, Ⅱ, Ⅲ, and Ⅳ). Multiple sequence alignment analysis revealed a conserved DUF221 domain in these members. We modeled the calcium binding sites of four OSCA families using the autodocking technique. The expression profiles of ZmOSCA genes were analyzed in different tissues and under diverse abiotic stresses such as drought, salt, high temperature, and chilling using quantitative real-time PCR (qRT-PCR). We found that the expression of twelve ZmOSCA genes is variant in different tissues of maize. Furthermore, abiotic stresses such as drought, salt, high temperature, and chilling differentially induced the expression of twelve ZmOSCA genes. We chose ZmOSCA2.2 and ZmOSCA2.3, which responded most strongly to temperature stress, for prediction of protein interactions. We modeled the calcium binding sites of four OSCA families using autodocking tools, obtaining a number of new results. These results are helpful in understanding the function of the plant OSCA gene family for study of the molecular mechanism of plant osmotic stress and response, as well as exploration of the interaction between osmotic stress, high-temperature stress, and low-temperature stress signal transduction mechanisms. As such, they can provide a theoretical basis for crop breeding.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | - Wuliang Shi
- Center for Emerging Agricultural Education & Advanced Interdisciplinary Science, College of Plant Science, Jilin University, Changchun 130062, China
| |
Collapse
|
5
|
Xuhui L, Weiwei C, Siqi L, Junteng F, Hang Z, Xiangbo Z, Yongwen Q. Full-length transcriptome analysis of maize root tips reveals the molecular mechanism of cold stress during the seedling stage. BMC PLANT BIOLOGY 2022; 22:398. [PMID: 35963989 PMCID: PMC9375949 DOI: 10.1186/s12870-022-03787-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 08/03/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND As maize originated in tropical or subtropical zones, most maize germplasm is extremely sensitive to low temperatures during the seedling stage. Clarifying the molecular mechanism of cold acclimation would facilitate the breeding of cold tolerant maize varieties, which is one of the major sustainability factors for crop production. To meet this goal, we investigated two maize inbred lines with contrasting levels of cold tolerance at the seedling stage (IL85, a cold tolerant line; B73, a cold sensitive line), and performed full-length transcriptome sequencing on the root tips of seedlings before and after 24 h of cold treatment. RESULTS We identified 152,263 transcripts, including 20,993 novel transcripts, and determined per-transcript expression levels. A total of 1,475 transcripts were specifically up-regulated in the cold tolerant line IL85 under cold stress. GO enrichment analysis revealed that 25 transcripts were involved in reactive oxygen species (ROS) metabolic processes and 15 transcripts were related to the response to heat. Eight genes showed specific differential alternative splicing (DAS) in IL85 under cold stress, and were mainly involved in amine metabolism. A total of 1,111 lncRNAs were further identified, 62 of which were up-regulated in IL85 or B73 under cold stress, and their corresponding target genes were enriched in protein phosphorylation. CONCLUSIONS These results provide new insights into the molecular mechanism of cold acclimation during the seedling stage in maize, and will facilitate the development of cultivars with improved cold stress tolerance.
Collapse
Affiliation(s)
- Li Xuhui
- Institute of Nanfan & Seed Industry, Guangdong Academy of Science, Guangzhou, 510316, Guangdong, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, Guangdong, China
| | - Chen Weiwei
- Institute of Nanfan & Seed Industry, Guangdong Academy of Science, Guangzhou, 510316, Guangdong, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, Guangdong, China
| | - Lu Siqi
- College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou, 510325, Guangdong, China
| | - Fang Junteng
- College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou, 510325, Guangdong, China
| | - Zhu Hang
- College of Agriculture, Yangtze University, Jingzhou, 434025, Hubei, China
| | - Zhang Xiangbo
- Institute of Nanfan & Seed Industry, Guangdong Academy of Science, Guangzhou, 510316, Guangdong, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, Guangdong, China
| | - Qi Yongwen
- Institute of Nanfan & Seed Industry, Guangdong Academy of Science, Guangzhou, 510316, Guangdong, China.
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, Guangdong, China.
- College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou, 510325, Guangdong, China.
| |
Collapse
|
6
|
Wu W, Yang H, Xing P, Dong Y, Shen J, Wu G, Zheng S, Da L, He J, Wu Y. Comparative Transcriptome Analysis Revealed the Freezing Tolerance Signaling Events in Winter Rapeseed ( Brassica rapa L.). Front Genet 2022; 13:871825. [PMID: 35559032 PMCID: PMC9086196 DOI: 10.3389/fgene.2022.871825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 04/01/2022] [Indexed: 11/13/2022] Open
Abstract
Winter rapeseed (Brassica rapa L.) is an important oilseed crop in northwest China. Freezing stress severely limits its production and geographical distribution, and frequent extreme freezing events caused by climate change are increasing the chances of winter freeze-injury. However, the underlying mechanism of B. rapa response to freezing stress remains elusive. Here, B. rapa genome (v3.0) was used as a reference for the comparative transcriptomic analysis of Longyou 6 and Tianyou 2 (strong and weak cold tolerance, respectively) under different freezing stress. Before and after freezing stress, 5,982 and 11,630 unique differentially expressed genes (DEGs) between two cultivars were identified, respectively. After freezing stress, the GO terms in Tianyou 2 were mainly involved in "macromolecule biosynthetic process", and those in Longyou 6 were involved in "response to stimulus" and "oxidoreductase activity". Morphological and physiological results indicated that Longyou 6 retained a higher basal freezing resistance than Tinayou 2, and that cold acclimation could strengthen the basal freezing resistance. Freezing stress could activate the MAPK signal cascades, and the phosphorylation level of Longyou 6 showed a higher increase in response to freezing treatment than Tianyou 2. Based on our findings, it was speculated that the cell membrane of B. rapa perceives external signals under freezing stress, which are then transmitted to the nucleus through the cold-activated MAPK cascades and Ca2+-related protein kinase pathway, thus leading to activation of downstream target genes to enhance the freezing resistance of B. rapa.
Collapse
Affiliation(s)
- Wangze Wu
- College of Life Sciences, Northwest Normal University, Lanzhou, China
| | - Haobo Yang
- College of Life Sciences, Northwest Normal University, Lanzhou, China
| | - Peng Xing
- College of Life Sciences, Northwest Normal University, Lanzhou, China
| | - Yun Dong
- Crop Research Institute, Gansu Academy of Agriculture Sciences, Lanzhou, China
| | - Juan Shen
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Guofan Wu
- College of Life Sciences, Northwest Normal University, Lanzhou, China
| | - Sheng Zheng
- College of Life Sciences, Northwest Normal University, Lanzhou, China
| | - Lingling Da
- College of Life Sciences, Northwest Normal University, Lanzhou, China
| | - Jiangtao He
- College of Life Sciences, Northwest Normal University, Lanzhou, China
| | - Yujun Wu
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
| |
Collapse
|
7
|
Abstract
Modern sweet corn is distinguished from other vegetable corns by the presence of one or more recessive alleles within the maize endosperm starch synthesis pathway. This results in reduced starch content and increased sugar concentration when consumed fresh. Fresh sweet corn originated in the USA and has since been introduced in countries around the World with increasing popularity as a favored vegetable choice. Several reviews have been published recently on endosperm genetics, breeding, and physiology that focus on the basic biology and uses in the US. However, new questions concerning sustainability, environmental care, and climate change, along with the introduction of sweet corn in other countries have produced a variety of new uses and research activities. This review is a summary of the sweet corn research published during the five years preceding 2021.
Collapse
|
8
|
Frey FP, Pitz M, Schön CC, Hochholdinger F. Transcriptomic diversity in seedling roots of European flint maize in response to cold. BMC Genomics 2020; 21:300. [PMID: 32293268 PMCID: PMC7158136 DOI: 10.1186/s12864-020-6682-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 03/17/2020] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Low temperatures decrease the capacity for biomass production and lead to growth retardation up to irreversible cellular damage in modern maize cultivars. European flint landraces are an untapped genetic resource for genes and alleles conferring cold tolerance which they acquired during their adaptation to the agroecological conditions in Europe. RESULTS Based on a phenotyping experiment of 276 doubled haploid lines derived from the European flint landrace "Petkuser Ferdinand Rot" diverging for cold tolerance, we selected 21 of these lines for an RNA-seq experiment. The different genotypes showed highly variable transcriptomic responses to cold. We identified 148, 3254 and 563 genes differentially expressed with respect to cold treatment, cold tolerance and growth rate at cold, respectively. Gene ontology (GO) term enrichment demonstrated that the detoxification of reactive oxygen species is associated with cold tolerance, whereas amino acids might play a crucial role as antioxidant precursors and signaling molecules. CONCLUSION Doubled haploids representing a European maize flint landrace display genotype-specific transcriptome patterns associated with cold response, cold tolerance and seedling growth rate at cold. Identification of cold regulated genes in European flint germplasm, could be a starting point for introgressing such alleles in modern breeding material for maize improvement.
Collapse
Affiliation(s)
- Felix P. Frey
- Institute of Crop Science and Resource Conservation, Crop Functional Genomics, University of Bonn, Bonn, Germany
| | - Marion Pitz
- Institute of Crop Science and Resource Conservation, Crop Functional Genomics, University of Bonn, Bonn, Germany
| | - Chris-Carolin Schön
- Department of Plant Breeding, Technische Universität München, Freising, Germany
| | - Frank Hochholdinger
- Institute of Crop Science and Resource Conservation, Crop Functional Genomics, University of Bonn, Bonn, Germany
| |
Collapse
|
9
|
Sowiński P, Fronk J, Jończyk M, Grzybowski M, Kowalec P, Sobkowiak A. Maize Response to Low Temperatures at the Gene Expression Level: A Critical Survey of Transcriptomic Studies. FRONTIERS IN PLANT SCIENCE 2020; 11:576941. [PMID: 33133117 PMCID: PMC7550719 DOI: 10.3389/fpls.2020.576941] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Accepted: 09/09/2020] [Indexed: 05/19/2023]
Abstract
Maize is a cold-sensitive plant whose physiological reactions to sub-optimal temperatures are well understood, but their molecular foundations are only beginning to be deciphered. In an attempt to identify key genes involved in these reactions, we surveyed several independent transcriptomic studies addressing the response of juvenile maize to moderate or severe cold. Among the tens of thousands of genes found to change expression upon cold treatment less than 500 were reported in more than one study, indicating an astonishing variability of the expression changes, likely depending on the experimental design and plant material used. Nearly all these "common" genes were specific to either moderate or to severe cold and formed distinct interaction networks, indicating fundamentally different responses. Moreover, down-regulation of gene expression dominated strongly in moderate cold and up-regulation prevailed in severe cold. Very few of these genes have ever been mentioned in the literature as cold-stress-related, indicating that most response pathways remain poorly known at the molecular level. We posit that the genes identified by the present analysis are attractive candidates for further functional studies and their arrangement in complex interaction networks indicates that a re-interpretation of the present state of knowledge on the maize cold-response is justified.
Collapse
Affiliation(s)
- Paweł Sowiński
- Department of Plant Molecular Ecophysiology, Faculty of Biology, Institute of Plant Experimental Biology and Biotechnology, University of Warsaw, Warszawa, Poland
- *Correspondence: Paweł Sowiński,
| | - Jan Fronk
- Department of Molecular Biology, Faculty of Biology, Institute of Biochemistry, University of Warsaw, Warszawa, Poland
| | - Maciej Jończyk
- Department of Plant Molecular Ecophysiology, Faculty of Biology, Institute of Plant Experimental Biology and Biotechnology, University of Warsaw, Warszawa, Poland
| | - Marcin Grzybowski
- Department of Plant Molecular Ecophysiology, Faculty of Biology, Institute of Plant Experimental Biology and Biotechnology, University of Warsaw, Warszawa, Poland
| | - Piotr Kowalec
- Department of Plant Molecular Ecophysiology, Faculty of Biology, Institute of Plant Experimental Biology and Biotechnology, University of Warsaw, Warszawa, Poland
| | - Alicja Sobkowiak
- Department of Plant Molecular Ecophysiology, Faculty of Biology, Institute of Plant Experimental Biology and Biotechnology, University of Warsaw, Warszawa, Poland
| |
Collapse
|