1
|
Carroll SL, Pullman D, Gardner M, Krahn AD, Healey JS. Patient Preferences in Arrhythmogenic Right Ventricular Cardiomyopathy (ARVC) Screening and ICD Implantation: Canadian ARVC Registry Substudy. CJC Open 2025; 7:27-34. [PMID: 39872644 PMCID: PMC11763522 DOI: 10.1016/j.cjco.2024.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 10/20/2024] [Indexed: 01/30/2025] Open
Abstract
Background Arrhythmogenic right ventricular cardiomyopathy (ARVC) is typically diagnosed following an arrhythmic event or during screening after a family member experiences sudden cardiac death. Implantation of a defibrillator (ICD) improves survival but can be associated with morbidity and risks, an important consideration within a shared decision-making context. This study examined patient decisional needs and preferences surrounding ARVC screening and prophylactic ICD implantation. Methods This Canadian ARVC registry substudy included 20 new patients and/or families offered ARVC screening (the screen group), and 27 diagnosed ARVC patients who were offered an ICD. Measures included the following: the Decisional Conflict Scale; preference and benefit-risk visual analogue scales; the Medical Outcomes Study Short Form-36 (SF-36); and exercise restriction. Descriptive analysis was employed, and results are reported as mean (standard deviation) or proportions. Results ICD patients reported having lower decisional conflict scores-19.6 (13.6) compared to the screen group patients-33.1 (32.2). The visual analogue scale results showed lower benefit and risk clarity scores for screen group patients-6.6 (3.6)-compared to those offered ICD implantation-7.4 (2.6). More screen group patients (55%) reported restricting exercise than did ICD patients (30%). In both groups, the Medical Outcomes Study Short Form-36 Physical Component Summary scores were higher than population norms-50 (standard deviation 10): the screen group, 52.0 (8.8); the ICD group, 54.1 (7.4), and the Mental Component Summary scores were slightly lower-the screen group, 47.7 (10.8); the ICD group, 49.7 (8.9). Conclusions Patients undergoing ARVC screening reported greater decisional conflict and lower benefit and risk clarity compared to patients diagnosed with ARVC who were offered an ICD. Screen group patients were more restrictive in their exercise. Understanding patient preferences and needs during ARVC screening and ICD candidacy can assist in improving decision support with patients and families.
Collapse
Affiliation(s)
- Sandra L. Carroll
- School of Nursing, McMaster University, Hamilton, Ontario, Canada
- Population Health Research Institute, Hamilton, Ontario, Canada
| | - Daryl Pullman
- Faculty of Medicine, M4M211 Memorial University of Newfoundland St. John's, Newfoundland, Canada
| | - Martin Gardner
- Division of Cardiology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Andrew D. Krahn
- Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Jeff S. Healey
- Population Health Research Institute, Hamilton, Ontario, Canada
| |
Collapse
|
2
|
Zaveri S, Chahine M, Boutjdir M. Arrhythmias and ion channelopathies causing sudden cardiac death in Hispanic/Latino and Indigenous populations. J Cardiovasc Electrophysiol 2024; 35:1219-1228. [PMID: 38654386 PMCID: PMC11176016 DOI: 10.1111/jce.16282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/29/2024] [Accepted: 04/02/2024] [Indexed: 04/25/2024]
Abstract
The limited literature and increasing interest in studies on cardiac electrophysiology, explicitly focusing on cardiac ion channelopathies and sudden cardiac death in diverse populations, has prompted a comprehensive examination of existing research. Our review specifically targets Hispanic/Latino and Indigenous populations, which are often underrepresented in healthcare studies. This review encompasses investigations into genetic variants, epidemiology, etiologies, and clinical risk factors associated with arrhythmias in these demographic groups. The review explores the Hispanic paradox, a phenomenon linking healthcare outcomes to socioeconomic factors within Hispanic communities in the United States. Furthermore, it discusses studies exemplifying this observation in the context of arrhythmias and ion channelopathies in Hispanic populations. Current research also sheds light on disparities in overall healthcare quality in Indigenous populations. The available yet limited literature underscores the pressing need for more extensive and comprehensive research on cardiac ion channelopathies in Hispanic/Latino and Indigenous populations. Specifically, additional studies are essential to fully characterize pathogenic genetic variants, identify population-specific risk factors, and address health disparities to enhance the detection, prevention, and management of arrhythmias and sudden cardiac death in these demographic groups.
Collapse
Affiliation(s)
- Sahil Zaveri
- Cardiovascular Research Program, VA New York Harbor Healthcare System, New York, New York, USA
- Department of Medicine, SUNY Downstate Health Sciences University, New York, New York, USA
| | - Mohamed Chahine
- CERVO Brain Research Center, Institut Universitaire en Santé Mentale de Québec, Québec City, Québec, Canada
- Department of Medicine, Faculté de Médecine, Université Laval, Quebec City, Québec, Canada
| | - Mohamed Boutjdir
- Cardiovascular Research Program, VA New York Harbor Healthcare System, New York, New York, USA
- Department of Medicine, SUNY Downstate Health Sciences University, New York, New York, USA
- Division of Cardiology, Department of Medicine, NYU Grossman School of Medicine, New York, New York, USA
| |
Collapse
|
3
|
Davies RA, Ladouceur VB, Green MS, Joza J, Juurlink DN, Krahn AD, McMurtry MS, Roberts JD, Roston TM, Sanatani S, Steinberg C, MacIntyre C. The 2023 Canadian Cardiovascular Society Clinical Practice Update on Management of the Patient With a Prolonged QT Interval. Can J Cardiol 2023; 39:1285-1301. [PMID: 37827588 DOI: 10.1016/j.cjca.2023.06.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 06/08/2023] [Accepted: 06/09/2023] [Indexed: 10/14/2023] Open
Abstract
A prolonged QT interval on the electrocardiogram is associated with an increased risk of the torsades de pointes form of ventricular arrhythmia resulting in syncope, sudden cardiac arrest or death, or misdiagnosis as a seizure disorder. The cause of QT prolongation can be congenital and inherited as an autosomal dominant variant, or it can be transient and acquired, often because of QT-prolonging drugs or electrolyte abnormalities. Automated measurement of the QT interval can be inaccurate, especially when the baseline electrocardiogram is abnormal, and manual verification is recommended. In this clinical practice update we provide practical tips about measurement of the QT interval, diagnosis, and management of congenital long QT syndrome and acquired prolongation of the QT interval. For congenital long QT syndrome, certain β-adrenergic-blocking drugs are highly effective, and implantable defibrillators are infrequently required. Many commonly prescribed drugs such as antidepressants and antibiotics can prolong the QT interval, and recommendations are provided on their safe use.
Collapse
Affiliation(s)
- Ross A Davies
- University of Ottawa Heart Institute, Ottawa, Ontario, Canada.
| | | | - Martin S Green
- University of Ottawa Heart Institute, Ottawa, Ontario, Canada
| | | | - David N Juurlink
- University of Toronto, ICES, Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Andrew D Krahn
- Center for Cardiovascular Innovation, Division of Cardiology, University of British Columbia, Vancouver, British Columbia, Canada
| | | | - Jason D Roberts
- Population Health Research Institute, McMaster University, Hamilton Health Sciences, Hamilton, Ontario, Canada
| | - Thomas M Roston
- Center for Cardiovascular Innovation, Division of Cardiology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Shubhayan Sanatani
- Department of Pediatrics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Christian Steinberg
- Institut universitaire de cardiologie et de pneumologie de Québec, Laval University, Québec, Québec, Canada
| | - Ciorsti MacIntyre
- Dalhousie University, Halifax, Nova Scotia, Canada; Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
4
|
Christian S, Dzwiniel T. Principles of Genetic Counseling in Inherited Heart Conditions. Card Electrophysiol Clin 2023; 15:229-239. [PMID: 37558294 DOI: 10.1016/j.ccep.2023.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/11/2023]
Abstract
Cardiac genetic counseling is the process of helping individuals adapt to a personal diagnosis or family history of an inherited heart condition. The process is shown to benefit patients and includes specialized skills, such as counseling children and interpreting complex genetic results. Emerging areas include: evolving service delivery models for caring for patients and communicating risk to relatives, new areas of need including postmortem molecular autopsy, and new populations of individuals found to carry a likely pathogenic/pathogenic cardiac variant identified through genomic screening. This article provides an overview of the cardiac genetic counseling process and evolving areas in the field.
Collapse
Affiliation(s)
- Susan Christian
- Department of Medical Genetics, University of Alberta, Edmonton, Alberta, Canada.
| | - Tara Dzwiniel
- Department of Medical Genetics, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
5
|
Allan KS, Mason KL, Garner J, Dainty KN, Huyer D, Cunningham K, Dorian P, Lewis KB. " It's Overwhelming With the Grief" A Qualitative Study of Families' Experiences When a Young Relative Dies of Sudden Cardiac Death. Circ Cardiovasc Qual Outcomes 2023; 16:e009524. [PMID: 37013814 DOI: 10.1161/circoutcomes.122.009524] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 02/02/2023] [Indexed: 04/05/2023]
Abstract
BACKGROUND Sudden cardiac death (SCD) in younger individuals is frequently caused by heritable cardiac conditions. The unexpected nature of SCD leaves families with many unanswered questions and an insufficient understanding of the cause of death and their own risk for heritable disease. We explored the experiences of families of young SCD victims upon learning about their relative's cause of death and how they perceive their own risk for heritable cardiac conditions. METHODS We conducted a qualitative descriptive study, by interviewing families of young (ages 12-45) SCD victims, who died between 2014 and 2018 from a heritable cardiac condition and were investigated by the Office of the Chief Coroner of Ontario, Canada. We used thematic analysis to analyze the transcripts. RESULTS Between 2018 and 2020, we interviewed 19 family members, of which 10 were males and 9 were females, ages ranging from 21 to 65 (average 46.2±13.1). Four main themes were revealed, each representing a distinct time period that families experience along a trajectory: (1) interactions between bereaved family and others, in particular coroners, shaped their search for answers about their relative's cause of death, with the types, formats, and timing of communication varying by case; (2) searching for answers and processing the cause of death; (3) incidental implications of the SCD event, such as financial strain and lifestyle changes contributed to cumulative stress; (4) receiving answers (or not) and moving forward. CONCLUSIONS Families rely on communication with others, yet the type, formats, and timing of information received varies, which can influence families' experiences of processing the death (and its cause), their perceived risk and their decision to pursue cascade screening. These results may provide key insights for the interprofessional health care team responsible for the delivery and communication of the cause of death to families of SCD victims.
Collapse
Affiliation(s)
- Katherine S Allan
- Division of Cardiology, Unity Health Toronto - St. Michael's Hospital, Ontario, Canada (K.S.A., P.D.)
| | | | - Jodi Garner
- Family Member, Toronto, Ontario, Canada (J.G.)
| | - Katie N Dainty
- Research Chair, Patient Centred Outcomes, North York General Hospital, Toronto, Ontario, Canada (K.N.D.)
| | - Dirk Huyer
- Office of the Chief Coroner of Ontario, Toronto, Canada (D.H.)
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada (D.H., K.C., P.D.), University of Toronto, Ontario, Canada
- Department of Pediatrics (D.H.), University of Toronto, Ontario, Canada
| | - Kris Cunningham
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada (D.H., K.C., P.D.), University of Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology (K.C.), University of Toronto, Ontario, Canada
- Ontario Forensic Pathology Service, Toronto, Ontario, Canada (K.C.)
| | - Paul Dorian
- Division of Cardiology, Unity Health Toronto - St. Michael's Hospital, Ontario, Canada (K.S.A., P.D.)
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada (D.H., K.C., P.D.), University of Toronto, Ontario, Canada
| | - Krystina B Lewis
- Faculty of Health Sciences School of Nursing, University of Ottawa (K.B.L.)
- University of Ottawa Heart Institute, Ontario, Canada (K.B.L.)
| |
Collapse
|
6
|
Nagata Y, Watanabe R, Eichhorn C, Ohno S, Aiba T, Ishikawa T, Nakano Y, Aizawa Y, Hayashi K, Murakoshi N, Nakajima T, Yagihara N, Mishima H, Sudo T, Higuchi C, Takahashi A, Sekine A, Makiyama T, Tanaka Y, Watanabe A, Tachibana M, Morita H, Yoshiura KI, Tsunoda T, Watanabe H, Kurabayashi M, Nogami A, Kihara Y, Horie M, Shimizu W, Makita N, Tanaka T. Targeted deep sequencing analyses of long QT syndrome in a Japanese population. PLoS One 2022; 17:e0277242. [PMID: 36480497 PMCID: PMC9731492 DOI: 10.1371/journal.pone.0277242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 10/22/2022] [Indexed: 12/13/2022] Open
Abstract
Long QT syndrome (LQTS) is one of the most common inherited arrhythmias and multiple genes have been reported as causative. Presently, genetic diagnosis for LQTS patients is becoming widespread and contributing to implementation of therapies. However, causative genetic mutations cannot be detected in about 20% of patients. To elucidate additional genetic mutations in LQTS, we performed deep-sequencing of previously reported 15 causative and 85 candidate genes for this disorder in 556 Japanese LQTS patients. We performed in-silico filtering of the sequencing data and found 48 novel variants in 33 genes of 53 cases. These variants were predicted to be damaging to coding proteins or to alter the binding affinity of several transcription factors. Notably, we found that most of the LQTS-related variants in the RYR2 gene were in the large cytoplasmic domain of the N-terminus side. They might be useful for screening of LQTS patients who had no known genetic factors. In addition, when the mechanisms of these variants in the development of LQTS are revealed, it will be useful for early diagnosis, risk stratification, and selection of treatment.
Collapse
Affiliation(s)
- Yuki Nagata
- Bioresourse Research Center, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
- Department of Human Genetics and Disease Diversity, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Ryo Watanabe
- Department of Human Genetics and Disease Diversity, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Christian Eichhorn
- Department of Human Genetics and Disease Diversity, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
- Private University of the Principality of Liechtenstein, Triesen, Liechtenstein
| | - Seiko Ohno
- Department of Bioscience and Genetics, National Cerebral and Cardiovascular Center, Suita, Japan
| | - Takeshi Aiba
- Devision of Arrhythmia, National Cerebral and Cardiovascular Center, Suita, Japan
| | - Taisuke Ishikawa
- Omics Research Center, National Cerebral and Cardiovascular Center, Suita, Japan
| | - Yukiko Nakano
- Department of Cardiovascular Medicine, Hiroshima University, Hiroshima, Japan
| | - Yoshiyasu Aizawa
- Department of Cardiology, International University of Health and Welfare Narita Hospital, Narita, Japan
| | - Kenshi Hayashi
- Department of Cardiovascular Medicine, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
| | - Nobuyuki Murakoshi
- Department of Cardiology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Tadashi Nakajima
- Department of Cardiovascular Medicine, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Nobue Yagihara
- Department of Cardiovascular Medicine, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Hiroyuki Mishima
- Department of Human Genetics, Atomic Bomb Disease Institute, Nagasaki University, Nagasaki, Japan
| | - Takeaki Sudo
- Institute of Education, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Chihiro Higuchi
- Artificial Intelligence Center for Health and Biomedical Research, National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki, Japan
| | - Atsushi Takahashi
- Department of Genomic Medicine, National Cerebral and Cardiovascular Center, Suita, Japan
| | - Akihiro Sekine
- Department of Infection and Host Defense, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Takeru Makiyama
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yoshihiro Tanaka
- Center for Arrhythmia Research, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States of America
| | - Atsuyuki Watanabe
- Department of Cardiology, National Hospital Organization Okayama Medical Center, Okayama, Japan
| | - Motomi Tachibana
- Department of Cardiology, Sakakibara heart institute of Okayama, Okayama, Japan
| | - Hiroshi Morita
- Department of Cardiovascular Therapeutics, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Koh-ichiro Yoshiura
- Department of Human Genetics, Atomic Bomb Disease Institute, Nagasaki University, Nagasaki, Japan
- Division of Advanced Preventive Medical Sciences and Leading Medical Research Core Unit, Nagasaki Univerisity Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Tatsuhiko Tsunoda
- Laboratory for Medical Science Mathematics, Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
- Laboratory for Medical Science Mathematics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Hiroshi Watanabe
- Department of Cardiovascular Medicine, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Masahiko Kurabayashi
- Department of Cardiovascular Medicine, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Akihiko Nogami
- Department of Cardiology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Yasuki Kihara
- Department of Cardiovascular Medicine, Hiroshima University, Hiroshima, Japan
| | - Minoru Horie
- Department of Cardiovascular Medicine, Shiga University of Medical Science, Otsu, Japan
| | - Wataru Shimizu
- Department of Cardiovascular Medicine, Nippon Medical School, Tokyo, Japan
| | - Naomasa Makita
- Omics Research Center, National Cerebral and Cardiovascular Center, Suita, Japan
| | - Toshihiro Tanaka
- Bioresourse Research Center, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
- Department of Human Genetics and Disease Diversity, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| |
Collapse
|
7
|
Abstract
Brugada syndrome is a heritable channelopathy characterized by a peculiar electrocardiogram (ECG) pattern and increased risk of cardiac arrhythmias and sudden death. The arrhythmias originate because of an imbalance between the repolarizing and depolarizing currents that modulate the cardiac action potential. Even if an overt structural cardiomyopathy is not typical of Brugada syndrome, fibrosis and structural changes in the right ventricle contribute to a conduction slowing, which ultimately facilitates ventricular arrhythmias. Currently, Mendelian autosomal dominant transmission is detected in less than 25% of all clinical confirmed cases. Although 23 genes have been associated with the condition, only SCN5A, encoding the cardiac sodium channel, is considered clinically actionable and disease causing. The limited monogenic inheritance has pointed toward new perspectives on the possible complex genetic architecture of the disease, involving polygenic inheritance and a polygenic risk score that can influence penetrance and risk stratification. Expected final online publication date for the Annual Review of Genomics and Human Genetics, Volume 23 is October 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Marina Cerrone
- Leon H. Charney Division of Cardiology, Grossman School of Medicine, New York University, New York, NY, USA;
| | - Sarah Costa
- Department of Internal Medicine, Kantonsspital Baden, Baden, Switzerland
| | - Mario Delmar
- Leon H. Charney Division of Cardiology, Grossman School of Medicine, New York University, New York, NY, USA;
| |
Collapse
|
8
|
Krahn AD, Behr ER, Hamilton R, Probst V, Laksman Z, Han HC. Brugada Syndrome. JACC Clin Electrophysiol 2022; 8:386-405. [PMID: 35331438 DOI: 10.1016/j.jacep.2021.12.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 12/09/2021] [Accepted: 12/15/2021] [Indexed: 12/15/2022]
Abstract
Brugada syndrome (BrS) is an "inherited" condition characterized by predisposition to syncope and cardiac arrest, predominantly during sleep. The prevalence is ∼1:2,000, and is more commonly diagnosed in young to middle-aged males, although patient sex does not appear to impact prognosis. Despite the perception of BrS being an inherited arrhythmia syndrome, most cases are not associated with a single causative gene variant. Electrocardiogram (ECG) findings support variable extent of depolarization and repolarization changes, with coved ST-segment elevation ≥2 mm and a negative T-wave in the right precordial leads. These ECG changes are often intermittent, and may be provoked by fever or sodium channel blocker challenge. Growing evidence from cardiac imaging, epicardial ablation, and pathology studies suggests the presence of an epicardial arrhythmic substrate within the right ventricular outflow tract. Risk stratification aims to identify those who are at increased risk of sudden cardiac death, with well-established factors being the presence of spontaneous ECG changes and a history of cardiac arrest or cardiogenic syncope. Current management involves conservative measures in asymptomatic patients, including fever management and drug avoidance. Symptomatic patients typically undergo implantable cardioverter defibrillator insertion, with quinidine and epicardial ablation used for patients with recurrent arrhythmia. This review summarizes our current understanding of BrS and provides clinicians with a practical approach to diagnosis and management.
Collapse
Affiliation(s)
- Andrew D Krahn
- Center for Cardiovascular Innovation, Heart Rhythm Services, Division of Cardiology, University of British Columbia, Vancouver, British Columbia, Canada.
| | - Elijah R Behr
- Cardiovascular Clinical Academic Group and Cardiology Research Centre, St. George's, University of London and St. George's University Hospitals NHS Foundation Trust, London, United Kingdom
| | - Robert Hamilton
- Department of Pediatrics (Cardiology), The Labatt Family Heart Centre and Translational Medicine, The Hospital for Sick Children & Research Institute and the University of Toronto, Toronto, Canada
| | - Vincent Probst
- Cardiologic Department and Reference Center for Hereditary Arrhythmic Diseases, Nantes University Hospital, Nantes, France
| | - Zachary Laksman
- Center for Cardiovascular Innovation, Heart Rhythm Services, Division of Cardiology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Hui-Chen Han
- Center for Cardiovascular Innovation, Heart Rhythm Services, Division of Cardiology, University of British Columbia, Vancouver, British Columbia, Canada; Victorian Heart Institute, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
9
|
Guo Q, Lai Y, Chu J, Chen X, Gao M, Sang C, Dong J, Pu J, Ma C. LRP6 Polymorphisms Is Associated With Sudden Cardiac Death in Patients With Chronic Heart Failure in the Chinese Han Population. Front Cardiovasc Med 2022; 8:815595. [PMID: 35187114 PMCID: PMC8854291 DOI: 10.3389/fcvm.2021.815595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 12/15/2021] [Indexed: 11/13/2022] Open
Abstract
Low-density lipoprotein receptor-related protein 6 (LRP6) plays a critical role in cardiovascular homeostasis. The deficiency of LRP6 is associated with a high risk of arrhythmias. However, the association between genetic variations of LRP6 and sudden cardiac death (SCD) remains unknown. This study aims to explore the association between common variants of LRP6 and the prognosis of chronic heart failure (CHF) patients. From July 2005 to December 2009, patients with CHF were enrolled from 10 hospitals in China. The single-nucleotide polymorphism (SNP) rs2302684 was selected for the evaluation of the effect of LRP6 polymorphisms on the survival in patients with CHF. A total of 1,437 patients with CHF were finally included for the analysis. During a median follow-up of 61 months (range 0.4–129 months), a total of 546 (38.0%) patients died, including 201 (36.8%) cases with SCD and 345 (63.2%) cases with non-SCD. Patients carrying A allele of rs2302684 had an increased risk of all-cause death (adjusted HR 1.452, 95% CI 1.189–1.706; P < 0.001) and SCD (adjusted HR 1.783, 95% CI 1.337–2.378; P < 0.001). Therefore, the SNP rs2302684 T>A in LRP6 indicated higher risks of all-cause death and SCD in patients with CHF. LRP6 could be added as a novel predictor of SCD and might be a potential therapeutic target in the prevention of SCD in the CHF population.
Collapse
Affiliation(s)
- Qi Guo
- Department of Cardiology, National Clinical Research Center for Cardiovascular Diseases, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Yiwei Lai
- Department of Cardiology, National Clinical Research Center for Cardiovascular Diseases, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Jianmin Chu
- State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Disease, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xuhua Chen
- State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Disease, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Mingyang Gao
- Department of Cardiology, National Clinical Research Center for Cardiovascular Diseases, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Caihua Sang
- Department of Cardiology, National Clinical Research Center for Cardiovascular Diseases, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Jianzeng Dong
- Department of Cardiology, National Clinical Research Center for Cardiovascular Diseases, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Jielin Pu
- State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Disease, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Department of Cardiology, Shanghai East Hospital, Tongji University, Shanghai, China
- *Correspondence: Jielin Pu
| | - Changsheng Ma
- Department of Cardiology, National Clinical Research Center for Cardiovascular Diseases, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
- Changsheng Ma
| |
Collapse
|
10
|
Grondin S, Davies B, Cadrin-Tourigny J, Steinberg C, Cheung CC, Jorda P, Healey JS, Green MS, Sanatani S, Alqarawi W, Angaran P, Arbour L, Antiperovitch P, Khan H, Leather R, Guerra PG, Rivard L, Simpson CS, Gardner M, MacIntyre C, Seifer C, Fournier A, Joza J, Gollob MH, Lettre G, Talajic M, Laksman ZW, Roberts JD, Krahn AD, Tadros R. OUP accepted manuscript. Eur Heart J 2022; 43:3071-3081. [PMID: 35352813 PMCID: PMC9392649 DOI: 10.1093/eurheartj/ehac145] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 01/25/2022] [Accepted: 03/07/2022] [Indexed: 12/04/2022] Open
Abstract
Aims Genetic testing is recommended in specific inherited heart diseases but its role remains unclear and it is not currently recommended in unexplained cardiac arrest (UCA). We sought to assess the yield and clinical utility of genetic testing in UCA using whole-exome sequencing (WES). Methods and results Survivors of UCA requiring external defibrillation were included from the Cardiac Arrest Survivor with Preserved Ejection fraction Registry. Whole-exome sequencing was performed, followed by assessment of rare variants in previously reported cardiovascular disease genes. A total of 228 UCA survivors (mean age at arrest 39 ± 13 years) were included. The majority were males (66%) and of European ancestry (81%). Following advanced clinical testing at baseline, the likely aetiology of cardiac arrest was determined in 21/228 (9%) cases. Whole-exome sequencing identified a pathogenic or likely pathogenic (P/LP) variant in 23/228 (10%) of UCA survivors overall, increasing the proportion of ‘explained’ cases from 9% only following phenotyping to 18% when combining phenotyping with WES. Notably, 13 (57%) of the 23 P/LP variants identified were located in genes associated with cardiomyopathy, in the absence of a diagnosis of cardiomyopathy at the time of arrest. Conclusions Genetic testing identifies a disease-causing variant in 10% of apparent UCA survivors. The majority of disease-causing variants was located in cardiomyopathy-associated genes, highlighting the arrhythmogenic potential of such variants in the absence of an overt cardiomyopathy diagnosis. The present study supports the use of genetic testing including assessment of arrhythmia and cardiomyopathy genes in survivors of UCA.
Collapse
Affiliation(s)
- Steffany Grondin
- Cardiovascular Genetics Center, Montreal Heart Institute, Department of Medicine, Université de Montréal, 5000 Belanger, Montreal, QC, Canada H1T 1C8
| | - Brianna Davies
- Center for Cardiovascular Innovation, Division of Cardiology, Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Julia Cadrin-Tourigny
- Cardiovascular Genetics Center, Montreal Heart Institute, Department of Medicine, Université de Montréal, 5000 Belanger, Montreal, QC, Canada H1T 1C8
| | - Christian Steinberg
- Institut universitaire de cardiologie et pneumologie de Québec, Université Laval, Québec City, QC, Canada
| | - Christopher C Cheung
- Center for Cardiovascular Innovation, Division of Cardiology, Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Paloma Jorda
- Cardiovascular Genetics Center, Montreal Heart Institute, Department of Medicine, Université de Montréal, 5000 Belanger, Montreal, QC, Canada H1T 1C8
| | - Jeffrey S Healey
- Population Health Research Institute, McMaster University, and Hamilton Health Sciences, Hamilton, ON, Canada
| | - Martin S Green
- Division of Cardiology, University of Ottawa Heart Institute, Ottawa, ON, Canada
| | - Shubhayan Sanatani
- Division of Pediatric Cardiology, British Columbia Children’s Hospital, Vancouver, BC, Canada
| | - Wael Alqarawi
- Division of Cardiology, University of Ottawa Heart Institute, Ottawa, ON, Canada
- Department of Cardiac Sciences, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Paul Angaran
- Cardiac Arrhythmia Service, St Michael’s Hospital, Toronto, ON, Canada
| | - Laura Arbour
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - Pavel Antiperovitch
- Section of Cardiac Electrophysiology, Division of Cardiology, Department of Medicine, Western University, London, ON, Canada
| | - Habib Khan
- Section of Cardiac Electrophysiology, Division of Cardiology, Department of Medicine, Western University, London, ON, Canada
| | - Richard Leather
- Division of Cardiology, Royal Jubilee Hospital, Victoria, BC, Canada
| | - Peter G Guerra
- Cardiovascular Genetics Center, Montreal Heart Institute, Department of Medicine, Université de Montréal, 5000 Belanger, Montreal, QC, Canada H1T 1C8
| | - Lena Rivard
- Cardiovascular Genetics Center, Montreal Heart Institute, Department of Medicine, Université de Montréal, 5000 Belanger, Montreal, QC, Canada H1T 1C8
| | | | - Martin Gardner
- Queen Elizabeth II Health Sciences Center, Halifax, NS, Canada
| | | | - Colette Seifer
- St Boniface Hospital, University of Manitoba, Winnipeg, MB, Canada
| | - Anne Fournier
- Ste-Justine Hospital, Université de Montréal, Montreal, QC, Canada
| | - Jacqueline Joza
- Department of Medicine, McGill University Health Center, Montreal, QC, Canada
| | - Michael H Gollob
- Division of Cardiology, University Health Network, Toronto General Hospital, Toronto, ON, Canada
| | - Guillaume Lettre
- Cardiovascular Genetics Center, Montreal Heart Institute, Department of Medicine, Université de Montréal, 5000 Belanger, Montreal, QC, Canada H1T 1C8
| | - Mario Talajic
- Cardiovascular Genetics Center, Montreal Heart Institute, Department of Medicine, Université de Montréal, 5000 Belanger, Montreal, QC, Canada H1T 1C8
| | - Zachary W Laksman
- Center for Cardiovascular Innovation, Division of Cardiology, Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Jason D Roberts
- Population Health Research Institute, McMaster University, and Hamilton Health Sciences, Hamilton, ON, Canada
- Section of Cardiac Electrophysiology, Division of Cardiology, Department of Medicine, Western University, London, ON, Canada
| | - Andrew D Krahn
- Center for Cardiovascular Innovation, Division of Cardiology, Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Rafik Tadros
- Corresponding author. Tel: +1 514 376 3330, Fax: +1 514 593 2158, , Twitter: @rafik_tadros
| |
Collapse
|
11
|
Vriz O, AlSergani H, Elshaer AN, Shaik A, Mushtaq AH, Lioncino M, Alamro B, Monda E, Caiazza M, Mauro C, Bossone E, Al-Hassnan ZN, Albert-Brotons D, Limongelli G. A complex unit for a complex disease: the HCM-Family Unit. Monaldi Arch Chest Dis 2021; 92. [PMID: 34964577 DOI: 10.4081/monaldi.2021.2147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 11/30/2021] [Indexed: 11/23/2022] Open
Abstract
Hypertrophic cardiomyopathy (HCM) is a group of heterogeneous disorders that are most commonly passed on in a heritable manner. It is a relatively rare disease around the globe, but due to increased rates of consanguinity within the Kingdom of Saudi Arabia, we speculate a high incidence of undiagnosed cases. The aim of this paper is to elucidate a systematic approach in dealing with HCM patients and since HCM has variable presentation, we have summarized differentials for diagnosis and how different subtypes and genes can have an impact on the clinical picture, management and prognosis. Moreover, we propose a referral multi-disciplinary team HCM-Family Unit in Saudi Arabia and an integrated role in a network between King Faisal Hospital and Inherited and Rare Cardiovascular Disease Unit-Monaldi Hospital, Italy (among the 24 excellence centers of the European Reference Network (ERN) GUARD-Heart). Graphical Abstract.
Collapse
Affiliation(s)
- Olga Vriz
- Department of Cardiology, King Faisal Specialist Hospital and Research Center, Riyadh.
| | - Hani AlSergani
- Department of Cardiology, King Faisal Specialist Hospital and Research Center, Riyadh.
| | | | | | | | - Michele Lioncino
- Inherited and Rare Cardiovascular Disease Unit, Department of Translational Medical Sciences, University of Campania "Luigi Vanvitelli", AORN dei Colli, Monaldi Hospital, Naples.
| | - Bandar Alamro
- Department of Cardiology, King Faisal Specialist Hospital and Research Center, Riyadh.
| | - Emanuele Monda
- Inherited and Rare Cardiovascular Disease Unit, Department of Translational Medical Sciences, University of Campania "Luigi Vanvitelli", AORN dei Colli, Monaldi Hospital, Naples.
| | - Martina Caiazza
- Inherited and Rare Cardiovascular Disease Unit, Department of Translational Medical Sciences, University of Campania "Luigi Vanvitelli", AORN dei Colli, Monaldi Hospital, Naples.
| | - Ciro Mauro
- Department of Cardiology, Cardarelli Hospital, Naples.
| | | | - Zuhair N Al-Hassnan
- Cardiovascular Genetics Program and Department of Medical Genetics, King Faisal Specialist Hospital and Research Centre, Riyadh.
| | - Dimpna Albert-Brotons
- Department of Cardiology, King Faisal Specialist Hospital and Research Center, Riyadh.
| | - Giuseppe Limongelli
- Inherited and Rare Cardiovascular Disease Unit, Department of Translational Medical Sciences, University of Campania "Luigi Vanvitelli", AORN dei Colli, Monaldi Hospital, Naples.
| |
Collapse
|
12
|
Christian S, Welsh A, Yetman J, Birch P, Bartels K, Burnell L, Curtis F, Huculak C, Zahavich L, Arbor L, Marcadier J, Atallah J. Development and evaluation of decision aids to guide families' predictive testing choices for children at risk for arrhythmia or cardiomyopathy. Can J Cardiol 2021; 37:1586-1592. [PMID: 34147624 DOI: 10.1016/j.cjca.2021.05.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/12/2021] [Accepted: 05/29/2021] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Assessing the issues surrounding predictive genetic testing for children at risk of an inherited arrythmia or cardiomyopathy is complex. The objective of this study was to design and evaluate four cardiac decision aids. The decision aids were developed to assist families with a genetic diagnosis of long QT syndrome, hypertrophic cardiomyopathy, dilated cardiomyopathy or arrhythmogenic right ventricular cardiomyopathy in deciding between predictive genetic testing and cardiac screening for their children. METHOD/RESULTS The decision aids were developed using the International Patient Decision Aid Standards framework and revised based on feedback from individuals with lived experience, genetic counsellors and other healthcare professionals. Response to the decision aids was positive and acceptability and understandability scores were high. CONCLUSION The decision aids can be used before, during or following a genetic counselling appointment as a resource or to guide discussion. These tools permit a balanced and consistent approach to the decision-making process, with a focus on the importance families place on the advantages and disadvantages of each option.
Collapse
Affiliation(s)
| | | | | | - Patrician Birch
- University of British Columbia, Vancouver, British Columbia, Canada
| | - Kirsten Bartels
- University of British Columbia, Vancouver, British Columbia, Canada
| | | | - Fiona Curtis
- Eastern Health, St. John's, Newfoundland, Canada
| | | | | | - Laura Arbor
- University of British Columbia, Vancouver, British Columbia, Canada
| | | | | |
Collapse
|
13
|
Davies B, Bartels K, Hathaway J, Xu F, Roberts JD, Tadros R, Green MS, Healey JS, Simpson CS, Sanatani S, Steinberg C, Gardner M, Angaran P, Talajic M, Hamilton R, Arbour L, Seifer C, Fournier A, Joza J, Krahn AD, Lehman A, Laksman ZWM. Variant Reinterpretation in Survivors of Cardiac Arrest With Preserved Ejection Fraction (the Cardiac Arrest Survivors With Preserved Ejection Fraction Registry) by Clinicians and Clinical Commercial Laboratories. CIRCULATION-GENOMIC AND PRECISION MEDICINE 2021; 14:e003235. [PMID: 33960826 DOI: 10.1161/circgen.120.003235] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Following an unexplained cardiac arrest, clinical genetic testing is increasingly becoming standard of care. Periodic review of variant classification is required, as reinterpretation can change the diagnosis, prognosis, and management of patients and their relatives. METHODS This study aimed to develop and validate a standardized algorithm to facilitate clinical application of the 2015 American College of Medical Genetics and Association for Molecular Pathology guidelines for the interpretation of genetic variants. The algorithm was applied to genetic results in the Cardiac Arrest Survivors With Preserved Ejection Fraction Registry, to assess the rate of variant reclassification over time. Variant classifications were then compared with the classifications of 2 commercial laboratories to determine the rate and identify sources of variant interpretation discordance. RESULTS Thirty-one percent of participants (40 of 131) had at least 1 genetic variant with a clinically significant reclassification over time. Variants of uncertain significance were more likely to be downgraded (73%) to benign than upgraded to pathogenic (27%; P=0.03). For the second part of the study, 50% (70 of 139) of variants had discrepant interpretations (excluding benign variants), provided by at least 1 team. CONCLUSIONS Periodic review of genetic variant classification is a key component of follow-up care given rapidly changing information in the field. There is potential for clinical care gaps with discrepant variant interpretations, based on the interpretation and application of current guidelines. The development of gene- and disease-specific guidelines and algorithms may provide an opportunity to further standardize variant interpretation reporting in the future. Registration: URL: https://www.clinicaltrials.gov; Unique identifier: NCT00292032.
Collapse
Affiliation(s)
- Brianna Davies
- Division of Cardiology, Department of Medicine (B.D., K.B., A.D.K., Z.W.M.L.), The University of British Columbia, Vancouver, Canada
| | - Kirsten Bartels
- Division of Cardiology, Department of Medicine (B.D., K.B., A.D.K., Z.W.M.L.), The University of British Columbia, Vancouver, Canada
| | | | - Fang Xu
- Prevention Genetics, Marshfield, WI (F.X.)
| | - Jason D Roberts
- Section of Cardiac Electrophysiology, Division of Cardiology, Department of Medicine, Western University, London, Ontario (J.D.R.)
| | - Rafik Tadros
- Department of Medicine, Cardiovascular Genetics Center, Montreal Heart Institute, Canada (R.T., M.T.)
| | | | | | | | | | - Christian Steinberg
- Institut Universitaire de Cardiologie et Pneumologie de Québec, Laval University (C. Steinberg)
| | | | - Paul Angaran
- St. Michael's Hospital, University of Toronto, Canada (P.A.)
| | - Mario Talajic
- Department of Medicine, Cardiovascular Genetics Center, Montreal Heart Institute, Canada (R.T., M.T.)
| | - Robert Hamilton
- hTe Hospital for Sick Children (SickKids), Toronto, Canada (R.H.)
| | - Laura Arbour
- Division of Medical Genetics, Island Health, Victoria, Canada (L.A.)
| | - Colette Seifer
- Section of Cardiology, Department of Internal Medicine, University of Manitoba, Winnipeg, Canada (C. Seifer)
| | - Anne Fournier
- Division of Pediatric Cardiology, CHU Sainte-Justine, Université de Montréal, QC (A.F.)
| | - Jacqueline Joza
- Division of Cardiology, McGill University Health Center, Montreal, Canada (J.J.)
| | - Andrew D Krahn
- Division of Cardiology, Department of Medicine (B.D., K.B., A.D.K., Z.W.M.L.), The University of British Columbia, Vancouver, Canada
| | - Anna Lehman
- Department of Medical Genetics (A.L.), The University of British Columbia, Vancouver, Canada
| | - Zachary W M Laksman
- Division of Cardiology, Department of Medicine (B.D., K.B., A.D.K., Z.W.M.L.), The University of British Columbia, Vancouver, Canada
| |
Collapse
|
14
|
Grassi S, Campuzano O, Coll M, Cazzato F, Sarquella-Brugada G, Rossi R, Arena V, Brugada J, Brugada R, Oliva A. Update on the Diagnostic Pitfalls of Autopsy and Post-Mortem Genetic Testing in Cardiomyopathies. Int J Mol Sci 2021; 22:4124. [PMID: 33923560 PMCID: PMC8074148 DOI: 10.3390/ijms22084124] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 04/04/2021] [Accepted: 04/14/2021] [Indexed: 02/08/2023] Open
Abstract
Inherited cardiomyopathies are frequent causes of sudden cardiac death (SCD), especially in young patients. Despite at the autopsy they usually have distinctive microscopic and/or macroscopic diagnostic features, their phenotypes may be mild or ambiguous, possibly leading to misdiagnoses or missed diagnoses. In this review, the main differential diagnoses of hypertrophic cardiomyopathy (e.g., athlete's heart, idiopathic left ventricular hypertrophy), arrhythmogenic cardiomyopathy (e.g., adipositas cordis, myocarditis) and dilated cardiomyopathy (e.g., acquired forms of dilated cardiomyopathy, left ventricular noncompaction) are discussed. Moreover, the diagnostic issues in SCD victims affected by phenotype-negative hypertrophic cardiomyopathy and the relationship between myocardial bridging and hypertrophic cardiomyopathy are analyzed. Finally, the applications/limits of virtopsy and post-mortem genetic testing in this field are discussed, with particular attention to the issues related to the assessment of the significance of the genetic variants.
Collapse
Affiliation(s)
- Simone Grassi
- Department of Health Surveillance and Bioethics, Section of Legal Medicine, Fondazione Policlinico A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (F.C.); (R.R.); (A.O.)
| | - Oscar Campuzano
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain; (O.C.); (M.C.); (J.B.); (R.B.)
- Cardiovascular Genetics Center, Institut d’Investigació Biomèdica Girona (IDIBGI), University of Girona, 17190 Girona, Spain
- Medical Science Department, School of Medicine, University of Girona, 17003 Girona, Spain;
| | - Mònica Coll
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain; (O.C.); (M.C.); (J.B.); (R.B.)
- Cardiovascular Genetics Center, Institut d’Investigació Biomèdica Girona (IDIBGI), University of Girona, 17190 Girona, Spain
- Medical Science Department, School of Medicine, University of Girona, 17003 Girona, Spain;
| | - Francesca Cazzato
- Department of Health Surveillance and Bioethics, Section of Legal Medicine, Fondazione Policlinico A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (F.C.); (R.R.); (A.O.)
| | - Georgia Sarquella-Brugada
- Medical Science Department, School of Medicine, University of Girona, 17003 Girona, Spain;
- Arrhythmias Unit, Hospital Sant Joan de Déu, University of Barcelona, 08950 Barcelona, Spain
| | - Riccardo Rossi
- Department of Health Surveillance and Bioethics, Section of Legal Medicine, Fondazione Policlinico A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (F.C.); (R.R.); (A.O.)
| | - Vincenzo Arena
- Area of Pathology, Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00147 Rome, Italy;
- Istituto di Anatomia Patologica, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Josep Brugada
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain; (O.C.); (M.C.); (J.B.); (R.B.)
- Arrhythmias Unit, Hospital Sant Joan de Déu, University of Barcelona, 08950 Barcelona, Spain
- Institut Clínic Cardiovascular (ICCV), Hospital Clínic, Universitat de Barcelona, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
| | - Ramon Brugada
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain; (O.C.); (M.C.); (J.B.); (R.B.)
- Cardiovascular Genetics Center, Institut d’Investigació Biomèdica Girona (IDIBGI), University of Girona, 17190 Girona, Spain
- Medical Science Department, School of Medicine, University of Girona, 17003 Girona, Spain;
| | - Antonio Oliva
- Department of Health Surveillance and Bioethics, Section of Legal Medicine, Fondazione Policlinico A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (F.C.); (R.R.); (A.O.)
| |
Collapse
|
15
|
Primorac D, Odak L, Perić V, Ćatić J, Šikić J, Radeljić V, Manola Š, Nussbaum R, Vatta M, Aradhya S, Sofrenović T, Matišić V, Molnar V, Skelin A, Mirat J, Brachmann J. Sudden Cardiac Death-A New Insight Into Potentially Fatal Genetic Markers. Front Med (Lausanne) 2021; 8:647412. [PMID: 33829027 PMCID: PMC8019733 DOI: 10.3389/fmed.2021.647412] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 03/01/2021] [Indexed: 01/13/2023] Open
Abstract
Sudden cardiac death (SCD) is an unexpected and dramatic event. It draws special attention especially in young, seemingly healthy athletes. Our scientific paper is based on the death of a young, 23-year-old professional footballer, who died on the football field after a two-year history of cardiac symptoms. In this study we analyzed clinical, ECG and laboratory data, as well as results of genetic testing analysis in family members. To elucidate potential genetic etiology of SCD in this family, our analysis included 294 genes related to various cardiac conditions.
Collapse
Affiliation(s)
- Dragan Primorac
- St. Catherine Specialty Hospital, Zagreb, Croatia.,Eberly College of Science, The Pennsylvania State University, University Park, State College, Philadelphia, PA, United States.,The Henry C. Lee College of Criminal Justice and Forensic Sciences, University of New Haven, West Haven, CT, United States.,Medical School, University of Split, Split, Croatia.,Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia.,Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia.,Medical School, University of Rijeka, Rijeka, Croatia.,Medical School REGIOMED, Coburg, Germany.,Medical School, University of Mostar, Mostar, Bosnia and Herzegovina
| | - Ljubica Odak
- St. Catherine Specialty Hospital, Zagreb, Croatia.,Children's Hospital Zagreb, Zagreb, Croatia
| | | | - Jasmina Ćatić
- St. Catherine Specialty Hospital, Zagreb, Croatia.,Department of Cardiology, Clinical Hospital Dubrava, Zagreb, Croatia
| | - Jozica Šikić
- Department of Cardiology, Clinical Hospital Sveti Duh, Zagreb, Croatia
| | - Vjekoslav Radeljić
- Department of Cardiology, Clinical Hospital Center Sestre Milosrdnice, Zagreb, Croatia
| | - Šime Manola
- Department of Cardiology, Clinical Hospital Center Sestre Milosrdnice, Zagreb, Croatia
| | | | | | | | | | - Vid Matišić
- St. Catherine Specialty Hospital, Zagreb, Croatia
| | - Vilim Molnar
- St. Catherine Specialty Hospital, Zagreb, Croatia
| | | | - Jure Mirat
- Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
| | - Johannes Brachmann
- Medical School, University of Split, Split, Croatia.,Medical School REGIOMED, Coburg, Germany
| |
Collapse
|
16
|
Plumereau Q, Theriault O, Pouliot V, Moreau A, Morel E, Fressart V, Denjoy I, Delinière A, Bessière F, Chevalier P, Gamal El-Din TM, Chahine M. Novel G1481V and Q1491H SCN5A Mutations Linked to Long QT Syndrome Destabilize the Nav1.5 Inactivation State. CJC Open 2021; 3:256-266. [PMID: 33778442 PMCID: PMC7984979 DOI: 10.1016/j.cjco.2020.09.023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 09/27/2020] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND Nav1.5, which is encoded by the SCN5A gene, is the predominant voltage-gated Na+ channel in the heart. Several mutations of this gene have been identified and reported to be involved in several cardiac rhythm disorders, including type 3 long QT interval syndrome, that can cause sudden cardiac death. We analyzed the biophysical properties of 2 novel variants of the Nav1.5 channel (Q1491H and G1481V) detected in 5- and 12-week-old infants diagnosed with a prolonged QT interval. METHODS The Nav1.5 wild-type and the Q1491H and G1481V mutant channels were reproduced in vi tr o. Wild-type or mutant channels were cotransfected in human embryonic kidney (HEK) 293 cells with the beta 1 regulatory subunit. Na+ currents were recorded using the whole-cell configuration of the patch-clamp technique. RESULTS The Q1491H mutant channel exhibited a lower current density, a persistent Na+ current, an enhanced window current due to a +20-mV shift of steady-state inactivation, a +10-mV shift of steady-state activation, a faster onset of slow inactivation, and a recovery from fast inactivation with fast and slow time constants of recovery. The G1481V mutant channel exhibited an increase in current density and a +7-mV shift of steady-state inactivation. The observed defects are characteristic of gain-of-function mutations typical of type 3 long QT interval syndrome. CONCLUSIONS The 5- and 12-week-old infants displayed prolonged QT intervals. Our analyses of the Q1491H and G1481V mutations correlated with the clinical diagnosis. The observed biophysical dysfunctions associated with both mutations were most likely responsible for the sudden deaths of the 2 infants.
Collapse
Affiliation(s)
| | | | | | - Adrien Moreau
- Inserm U1046, CNRS UMR 9214, Université de Montpellier, Montpellier, France
| | - Elodie Morel
- Lyon Reference Center for Inherited Arrhythmias, Louis Pradel Cardiovascular Hospital, Bron, France
| | - Véronique Fressart
- Centre de Génétique Moléculaire et Chromosomique, Hôpital Pitié-Salpêtrière, Paris, France
| | | | - Antoine Delinière
- Lyon Reference Center for Inherited Arrhythmias, Louis Pradel Cardiovascular Hospital, Bron, France
| | - Francis Bessière
- Lyon Reference Center for Inherited Arrhythmias, Louis Pradel Cardiovascular Hospital, Bron, France
| | - Philippe Chevalier
- Lyon Reference Center for Inherited Arrhythmias, Louis Pradel Cardiovascular Hospital, Bron, France
- Department of Rhythmology, Louis Pradel Cardiovascular Hospital, Lyon, France
- Université de Lyon, Lyon, France
| | | | - Mohamed Chahine
- CERVO Brain Research Center, Quebec City, Quebec, Canada
- Department of Medicine, Faculty of Medicine, Université Laval, Quebec City, Quebec, Canada
| |
Collapse
|
17
|
Schulze-Bahr E, Dettmeyer RB, Klingel K, Kauferstein S, Wolf C, Baba HA, Bohle RM, Gebauer R, Milting H, Schmidt U, Meder B, Rieß O, Paul T, Bajanowski T, Schunkert H. Postmortale molekulargenetische Untersuchungen (molekulare Autopsie) bei kardiovaskulären und bei ungeklärten Todesfällen. KARDIOLOGE 2021. [DOI: 10.1007/s12181-020-00438-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
18
|
Ghidoni A, Elliott PM, Syrris P, Calkins H, James CA, Judge DP, Murray B, Barc J, Probst V, Schott JJ, Song JP, Hauer RNW, Hoorntje ET, van Tintelen JP, Schulze-Bahr E, Hamilton RM, Mittal K, Semsarian C, Behr ER, Ackerman MJ, Basso C, Parati G, Gentilini D, Kotta MC, Mayosi BM, Schwartz PJ, Crotti L. Cadherin 2-Related Arrhythmogenic Cardiomyopathy: Prevalence and Clinical Features. CIRCULATION-GENOMIC AND PRECISION MEDICINE 2021; 14:e003097. [PMID: 33566628 DOI: 10.1161/circgen.120.003097] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND Arrhythmogenic cardiomyopathy (ACM) is an inherited cardiac disease characterized by fibrofatty replacement of the right and left ventricle, often causing ventricular dysfunction and life-threatening arrhythmias. Variants in desmosomal genes account for up to 60% of cases. Our objective was to establish the prevalence and clinical features of ACM stemming from pathogenic variants in the nondesmosomal cadherin 2 (CDH2), a novel genetic substrate of ACM. METHODS A cohort of 500 unrelated patients with a definite diagnosis of ACM and no disease-causing variants in the main ACM genes was assembled. Genetic screening of CDH2 was performed through next-generation or Sanger sequencing. Whenever possible, cascade screening was initiated in the families of CDH2-positive probands, and clinical evaluation was performed. RESULTS Genetic screening of CDH2 led to the identification of 7 rare variants: 5, identified in 6 probands, were classified as pathogenic or likely pathogenic. The previously established p.D407N pathogenic variant was detected in 2 additional probands. Probands and family members with pathogenic/likely pathogenic variants in CDH2 were clinically evaluated, and along with previously published cases, altogether contributed to the identification of gene-specific features (13 cases from this cohort and 11 previously published, for a total of 9 probands and 15 family members). Ventricular arrhythmic events occurred in most CDH2-positive subjects (20/24, 83%), while the occurrence of heart failure was rare (2/24, 8.3%). Among probands, sustained ventricular tachycardia and sudden cardiac death occurred in 5/9 (56%). CONCLUSIONS In this worldwide cohort of previously genotype-negative ACM patients, the prevalence of probands with CDH2 pathogenic/likely pathogenic variants was 1.2% (6/500). Our data show that this cohort of CDH2-ACM patients has a high incidence of ventricular arrhythmias, while evolution toward heart failure is rare.
Collapse
Affiliation(s)
- Alice Ghidoni
- Center for Cardiac Arrhythmias of Genetic Origin (A.G., M.-C.K., P.J.S., L.C.), Istituto Auxologico Italiano, IRCCS, Milan, Italy
| | - Perry M Elliott
- Center for Heart Muscle Disease, Institute of Cardiovascular Science, University College London, United Kingdom (P.M.E., P.S.)
| | - Petros Syrris
- Center for Heart Muscle Disease, Institute of Cardiovascular Science, University College London, United Kingdom (P.M.E., P.S.)
| | - Hugh Calkins
- Division of Cardiology, Department of Medicine, Johns Hopkins University, Baltimore, MD (H.C., C.A.J., B.M.)
| | - Cynthia A James
- Division of Cardiology, Department of Medicine, Johns Hopkins University, Baltimore, MD (H.C., C.A.J., B.M.)
| | - Daniel P Judge
- Medical University of South Carolina, Charleston, SC (D.P.J.)
| | - Brittney Murray
- Division of Cardiology, Department of Medicine, Johns Hopkins University, Baltimore, MD (H.C., C.A.J., B.M.)
| | - Julien Barc
- Université de Nantes (J.B.), CNRS, Inserm, l'Institut du Thorax, France
| | - Vincent Probst
- Université de Nantes, CHU Nantes (V.P., J.J.S.), CNRS, Inserm, l'Institut du Thorax, France.,Member of the European Reference Network for Rare, Low Prevalence and Complex Diseases of the Heart-ERN GUARD-Heart (V.P., E.S.-B., E.R.B., C.B., P.J.S., L.C.)
| | - Jean Jacques Schott
- Université de Nantes, CHU Nantes (V.P., J.J.S.), CNRS, Inserm, l'Institut du Thorax, France
| | - Jiang-Ping Song
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China (J.-P.S.)
| | - Richard N W Hauer
- Netherlands Heart Institute (R.N.W.H., E.T.H., J.P.v.T.), University Medical Center Utrecht.,Department of Cardiology (R.N.W.H.), University Medical Center Utrecht
| | - Edgar T Hoorntje
- Netherlands Heart Institute (R.N.W.H., E.T.H., J.P.v.T.), University Medical Center Utrecht.,Department of Genetics, University Medical Center Groningen, University of Groningen, the Netherlands (E.T.H.)
| | - J Peter van Tintelen
- Netherlands Heart Institute (R.N.W.H., E.T.H., J.P.v.T.), University Medical Center Utrecht.,Department of Genetics (J.P.v.T.), University Medical Center Utrecht
| | - Eric Schulze-Bahr
- Member of the European Reference Network for Rare, Low Prevalence and Complex Diseases of the Heart-ERN GUARD-Heart (V.P., E.S.-B., E.R.B., C.B., P.J.S., L.C.).,Institute for Genetics of Heart Diseases (IfGH), University Hospital Münster, Germany (E.S.-B.)
| | | | - Kirti Mittal
- Hospital for Sick Children, Toronto, ON, Canada (R.M.H., K.M.)
| | - Christopher Semsarian
- Agnes Ginges Centre for Molecular Cardiology at Centenary Institute, The University of Sydney, NSW, Australia (C.S.)
| | - Elijah R Behr
- Member of the European Reference Network for Rare, Low Prevalence and Complex Diseases of the Heart-ERN GUARD-Heart (V.P., E.S.-B., E.R.B., C.B., P.J.S., L.C.).,Cardiology Clinical Academic Group, Institute of Molecular and Clinical Sciences, St George's University of London, St George's University Hospitals NHS Foundation Trust, London, United Kingdom (E.R.B.)
| | - Michael J Ackerman
- Departments of Cardiovascular Medicine (Division of Heart Rhythm Services, Windland Smith Rice Genetic Heart Rhythm Clinic), Pediatric and Adolescent Medicine (Division of Pediatric Cardiology), and Molecular Pharmacology and Experimental Therapeutics (Windland Smith Rice Sudden Death Genomics Laboratory), Mayo Clinic, Rochester, MN (M.J.A.)
| | - Cristina Basso
- Member of the European Reference Network for Rare, Low Prevalence and Complex Diseases of the Heart-ERN GUARD-Heart (V.P., E.S.-B., E.R.B., C.B., P.J.S., L.C.).,Cardiovascular Pathology Unit, Department of Cardiac, Thoracic and Vascular Sciences, University and Hospital of Padua, Italy (C.B.)
| | - Gianfranco Parati
- Istituto Auxologico Italiano, IRCCS, Cardiomyopathies Unit, Department of Cardiovascular, Neural and Metabolic Sciences, San Luca Hospital, Milan (G.P., L.C.).,Department of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy (G.P., L.C.)
| | - Davide Gentilini
- Bioinformatics and Statistical Genomics Unit (D.G.), Istituto Auxologico Italiano, IRCCS, Milan, Italy.,Department of Brain and Behavioural Sciences, University of Pavia, Italy (D.G.)
| | - Maria-Christina Kotta
- Center for Cardiac Arrhythmias of Genetic Origin (A.G., M.-C.K., P.J.S., L.C.), Istituto Auxologico Italiano, IRCCS, Milan, Italy
| | - Bongani M Mayosi
- Department of Medicine, Hatter Institute for Cardiovascular Research in Africa, Groote Schuur Hospital and Division of Cardiology, Faculty of Health Sciences, University of Cape Town, South Africa (B.M.M.)
| | - Peter J Schwartz
- Center for Cardiac Arrhythmias of Genetic Origin (A.G., M.-C.K., P.J.S., L.C.), Istituto Auxologico Italiano, IRCCS, Milan, Italy.,Member of the European Reference Network for Rare, Low Prevalence and Complex Diseases of the Heart-ERN GUARD-Heart (V.P., E.S.-B., E.R.B., C.B., P.J.S., L.C.)
| | - Lia Crotti
- Center for Cardiac Arrhythmias of Genetic Origin (A.G., M.-C.K., P.J.S., L.C.), Istituto Auxologico Italiano, IRCCS, Milan, Italy.,Member of the European Reference Network for Rare, Low Prevalence and Complex Diseases of the Heart-ERN GUARD-Heart (V.P., E.S.-B., E.R.B., C.B., P.J.S., L.C.).,Istituto Auxologico Italiano, IRCCS, Cardiomyopathies Unit, Department of Cardiovascular, Neural and Metabolic Sciences, San Luca Hospital, Milan (G.P., L.C.).,Department of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy (G.P., L.C.)
| |
Collapse
|
19
|
Popa-Fotea NM, Cojocaru C, Scafa-Udriste A, Micheu MM, Dorobantu M. The Multifaced Perspectives of Genetic Testing in Pediatric Cardiomyopathies and Channelopathies. J Clin Med 2020; 9:2111. [PMID: 32635562 PMCID: PMC7408669 DOI: 10.3390/jcm9072111] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 06/28/2020] [Accepted: 07/02/2020] [Indexed: 12/22/2022] Open
Abstract
Pediatric inherited cardiomyopathies (CMPs) and channelopathies (CNPs) remain important causes of death in this population, therefore, there is a need for prompt diagnosis and tailored treatment. Conventional evaluation fails to establish the diagnosis of pediatric CMPs and CNPs in a significant proportion, prompting further, more complex testing to make a diagnosis that could influence the implementation of lifesaving strategies. Genetic testing in CMPs and CNPs may help unveil the underlying cause, but needs to be carried out with caution given the lack of uniform recommendations in guidelines about the precise time to start the genetic evaluation or the type of targeted testing or whole-genome sequencing. A very diverse etiology and the scarce number of randomized studies of pediatric CMPs and CNPs make genetic testing of these maladies far more particular than their adult counterpart. The genetic diagnosis is even more puzzling if the psychological impact point of view is taken into account. This review aims to put together different perspectives, state-of-the art recommendations-synthetizing the major indications from European and American guidelines-and psychosocial outlooks to construct a comprehensive genetic assessment of pediatric CMPs and CNPs.
Collapse
Affiliation(s)
- Nicoleta-Monica Popa-Fotea
- Department of Cardiology, Clinical Emergency Hospital of Bucharest, Floreasca Street 8, 014461 Bucharest, Romania; (N.-M.P.-F.); (C.C.); (A.S.-U.); (M.D.)
- Department 4—Cardiothoracic Pathology, University of Medicine and Pharmacy Carol Davila, Eroii Sanitari Bvd. 8, 050474 Bucharest, Romania
| | - Cosmin Cojocaru
- Department of Cardiology, Clinical Emergency Hospital of Bucharest, Floreasca Street 8, 014461 Bucharest, Romania; (N.-M.P.-F.); (C.C.); (A.S.-U.); (M.D.)
| | - Alexandru Scafa-Udriste
- Department of Cardiology, Clinical Emergency Hospital of Bucharest, Floreasca Street 8, 014461 Bucharest, Romania; (N.-M.P.-F.); (C.C.); (A.S.-U.); (M.D.)
- Department 4—Cardiothoracic Pathology, University of Medicine and Pharmacy Carol Davila, Eroii Sanitari Bvd. 8, 050474 Bucharest, Romania
| | - Miruna Mihaela Micheu
- Department of Cardiology, Clinical Emergency Hospital of Bucharest, Floreasca Street 8, 014461 Bucharest, Romania; (N.-M.P.-F.); (C.C.); (A.S.-U.); (M.D.)
| | - Maria Dorobantu
- Department of Cardiology, Clinical Emergency Hospital of Bucharest, Floreasca Street 8, 014461 Bucharest, Romania; (N.-M.P.-F.); (C.C.); (A.S.-U.); (M.D.)
- Department 4—Cardiothoracic Pathology, University of Medicine and Pharmacy Carol Davila, Eroii Sanitari Bvd. 8, 050474 Bucharest, Romania
| |
Collapse
|
20
|
Cheung CC, Tadros R, Davies B, Krahn AD. Genetic Testing in Inherited Arrhythmias: Approach, Limitations, and Challenges. Can J Cardiol 2020; 36:584-587. [PMID: 32007350 DOI: 10.1016/j.cjca.2019.08.041] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 08/22/2019] [Accepted: 08/23/2019] [Indexed: 11/18/2022] Open
Abstract
Genetic testing is playing an ever-expanding role in cardiovascular care and is becoming part of the "toolkit" for the cardiovascular clinician. In patients with inherited arrhythmias, genetic testing can confirm a suspected diagnosis, establish a diagnosis in unexplained cases, and help facilitate cascade family screening. Many inherited arrhythmia syndromes are monogenic diseases arising from a single pathogenic variant involved in the structure and function of cardiac ion channels or structural proteins. As such, "arrhythmia gene panels" will often cast a wide net for such heritable diseases. However, challenges may arise when genetic testing results are ambiguous, or when genetic testing results (genotype) and clinical phenotypes do not match. In cases of "genotype-phenotype matching," genetic results complement the clinical phenotype and genetic testing can be used in diagnosis, family screening, and occasionally prognostication. It becomes more challenging when genetic results are negative or noncontributory and "contradict" the clinical phenotype. "Genotype mismatches" can also occur when genotype-positive patients have no clinical phenotype, or when genetic testing results point towards a completely different disease than the clinical phenotype. We discuss an approach to genetic testing and review the challenges that may arise when interpreting genetic testing results. Genetic testing has opened a wealth of opportunities in the diagnosis, management, and cascade screening of inherited arrhythmia syndromes, but has also opened a "Pandora's box" of challenges. Genetic results should be interpreted with caution and in a multidisciplinary clinic, with support from genetic counsellors and an expert with a focused interest in cardiovascular genetics.
Collapse
Affiliation(s)
- Christopher C Cheung
- Heart Rhythm Services, Division of Cardiology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Rafik Tadros
- Cardiovascular Genetics Center, Montreal Heart Institute, Montreal, Quebec, Canada
| | - Brianna Davies
- Heart Rhythm Services, Division of Cardiology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Andrew D Krahn
- Heart Rhythm Services, Division of Cardiology, University of British Columbia, Vancouver, British Columbia, Canada.
| |
Collapse
|
21
|
Adler A, Novelli V, Amin AS, Abiusi E, Care M, Nannenberg EA, Feilotter H, Amenta S, Mazza D, Bikker H, Sturm AC, Garcia J, Ackerman MJ, Hershberger RE, Perez MV, Zareba W, Ware JS, Wilde AAM, Gollob MH. An International, Multicentered, Evidence-Based Reappraisal of Genes Reported to Cause Congenital Long QT Syndrome. Circulation 2020; 141:418-428. [PMID: 31983240 PMCID: PMC7017940 DOI: 10.1161/circulationaha.119.043132] [Citation(s) in RCA: 251] [Impact Index Per Article: 50.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Supplemental Digital Content is available in the text. Background: Long QT syndrome (LQTS) is the first described and most common inherited arrhythmia. Over the last 25 years, multiple genes have been reported to cause this condition and are routinely tested in patients. Because of dramatic changes in our understanding of human genetic variation, reappraisal of reported genetic causes for LQTS is required. Methods: Utilizing an evidence-based framework, 3 gene curation teams blinded to each other’s work scored the level of evidence for 17 genes reported to cause LQTS. A Clinical Domain Channelopathy Working Group provided a final classification of these genes for causation of LQTS after assessment of the evidence scored by the independent curation teams. Results: Of 17 genes reported as being causative for LQTS, 9 (AKAP9, ANK2, CAV3, KCNE1, KCNE2, KCNJ2, KCNJ5, SCN4B, SNTA1) were classified as having limited or disputed evidence as LQTS-causative genes. Only 3 genes (KCNQ1, KCNH2, SCN5A) were curated as definitive genes for typical LQTS. Another 4 genes (CALM1, CALM2, CALM3, TRDN) were found to have strong or definitive evidence for causality in LQTS with atypical features, including neonatal atrioventricular block. The remaining gene (CACNA1C) had moderate level evidence for causing LQTS. Conclusions: More than half of the genes reported as causing LQTS have limited or disputed evidence to support their disease causation. Genetic variants in these genes should not be used for clinical decision-making, unless accompanied by new and sufficient genetic evidence. The findings of insufficient evidence to support gene-disease associations may extend to other disciplines of medicine and warrants a contemporary evidence-based evaluation for previously reported disease-causing genes to ensure their appropriate use in precision medicine.
Collapse
Affiliation(s)
- Arnon Adler
- Division of Cardiology, Toronto General Hospital and University of Toronto, Canada (A.A, M.C., M.H.G.)
| | - Valeria Novelli
- Fondazione Policlinico Universitario A. Gemelli Istituto di Ricovero e Cura a Carattere Scientifico, and Istituto di Medicina Genomica, Università Cattolica del Sacro Cuore, Rome, Italy (V.N., E.A., S.A., D.M.)
| | - Ahmad S Amin
- Heart Center, Department of Clinical and Experimental Cardiology, Amsterdam Cardiovascular Sciences (A.S.A., A.A.M.W.), Amsterdam University Medical Centers, University of Amsterdam, The Netherlands
| | - Emanuela Abiusi
- Fondazione Policlinico Universitario A. Gemelli Istituto di Ricovero e Cura a Carattere Scientifico, and Istituto di Medicina Genomica, Università Cattolica del Sacro Cuore, Rome, Italy (V.N., E.A., S.A., D.M.)
| | - Melanie Care
- Division of Cardiology, Toronto General Hospital and University of Toronto, Canada (A.A, M.C., M.H.G.)
| | - Eline A Nannenberg
- Department of Clinical Genetics (E.A.N., H.B.), Amsterdam University Medical Centers, University of Amsterdam, The Netherlands
| | - Harriet Feilotter
- Department of Pathology and Molecular Medicine, Queen's University, Kingston, Canada (H.F.)
| | - Simona Amenta
- Fondazione Policlinico Universitario A. Gemelli Istituto di Ricovero e Cura a Carattere Scientifico, and Istituto di Medicina Genomica, Università Cattolica del Sacro Cuore, Rome, Italy (V.N., E.A., S.A., D.M.)
| | - Daniela Mazza
- Fondazione Policlinico Universitario A. Gemelli Istituto di Ricovero e Cura a Carattere Scientifico, and Istituto di Medicina Genomica, Università Cattolica del Sacro Cuore, Rome, Italy (V.N., E.A., S.A., D.M.)
| | - Hennie Bikker
- Department of Clinical Genetics (E.A.N., H.B.), Amsterdam University Medical Centers, University of Amsterdam, The Netherlands
| | - Amy C Sturm
- Geisinger Genomic Medicine Institute, Danville, PA (A.C.S.)
| | - John Garcia
- Invitae Corporation, San Francisco, CA (J.G.)
| | - Michael J Ackerman
- Departments of Cardiovascular Diseases, Pediatrics, and Molecular Pharmacology and Experimental Therapeutics, Divisions of Heart Rhythm Services and Pediatric Cardiology, Windland Smith Rice Sudden Death Genomics Laboratory, Rochester, MN (M.J.A.)
| | - Raymond E Hershberger
- Divisions of Human Genetics and Cardiovascular Medicine in the Department of Internal Medicine, Ohio State University, Columbus (R.E.H.)
| | - Marco V Perez
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University, CA (M.V.P.)
| | - Wojciech Zareba
- Cardiology Unit of the Department of Medicine, University of Rochester Medical Center, NY (W.Z.)
| | - James S Ware
- National Heart and Lung Institute and Medical Research Council London Institute of Medical Sciences, Imperial College London, UK (J.S.W.).,Royal Brompton and Harefield Hospitals National Health Service Trust, London, UK (J.S.W.)
| | - Arthur A M Wilde
- Heart Center, Department of Clinical and Experimental Cardiology, Amsterdam Cardiovascular Sciences (A.S.A., A.A.M.W.), Amsterdam University Medical Centers, University of Amsterdam, The Netherlands.,Columbia University Irving Medical Center, New York (A.A.M.W.)
| | - Michael H Gollob
- Division of Cardiology, Toronto General Hospital and University of Toronto, Canada (A.A, M.C., M.H.G.).,Department of Physiology, University of Toronto, and The Toronto General Hospital Research Institute, University Health Network, University of Toronto, Canada (M.H.G.)
| |
Collapse
|
22
|
Paludan-Müller C, Ghouse J, Vad OB, Herfelt CB, Lundegaard P, Ahlberg G, Schmitt N, Svendsen JH, Haunsø S, Bundgaard H, Hansen T, Kanters JK, Olesen MS. Reappraisal of variants previously linked with sudden infant death syndrome: results from three population-based cohorts. Eur J Hum Genet 2019; 27:1427-1435. [PMID: 31043699 PMCID: PMC6777469 DOI: 10.1038/s41431-019-0416-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 03/21/2019] [Accepted: 04/06/2019] [Indexed: 12/23/2022] Open
Abstract
We aimed to investigate the pathogenicity of cardiac ion channel variants previously associated with SIDS. We reviewed SIDS-associated variants previously reported in databases and the literature in three large population-based cohorts; The ExAC database, the Inter99 study, and the UK Biobank (UKBB). Variants were classified according to the American College of Medical Genetics and Genomics (ACMG) guidelines. Of the 92 SIDS-associated variants, 59 (64%) were present in ExAC, 18 (20%) in Inter99, and 24 (26%) in UKBB. Using the Inter99 cohort, we found no difference in J-point amplitude and QTc-interval between carriers and non-carriers for 14/18 variants. There was no difference in the risk of syncope (P = 0.32), malignant ventricular arrhythmia (P = 0.96), and all-cause mortality (P = 0.59) between carriers and non-carriers. The ACMG guidelines reclassified 75% of all variants as variant-of-uncertain significance, likely benign, and benign. We identified ~2/3 of variants previously associated with SIDS and found no significant associations with electrocardiographic traits, syncope, malignant ventricular arrhythmia, or all-cause mortality. These data indicate that many of these variants are not highly penetrant, monogenic causes of SIDS and underline the importance of frequent reappraisal of genetic variants to avoid future misdiagnosis.
Collapse
Affiliation(s)
- Christian Paludan-Müller
- Laboratory for Molecular Cardiology, The Heart Centre, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jonas Ghouse
- Laboratory for Molecular Cardiology, The Heart Centre, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Oliver B Vad
- Laboratory for Molecular Cardiology, The Heart Centre, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Cecilie B Herfelt
- Laboratory for Molecular Cardiology, The Heart Centre, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Pia Lundegaard
- Laboratory for Molecular Cardiology, The Heart Centre, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Gustav Ahlberg
- Laboratory for Molecular Cardiology, The Heart Centre, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Nicole Schmitt
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jesper H Svendsen
- Laboratory for Molecular Cardiology, The Heart Centre, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Stig Haunsø
- Laboratory for Molecular Cardiology, The Heart Centre, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Henning Bundgaard
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Unit for Inherited Cardiac Diseases, The Heart Centre, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Torben Hansen
- The Novo Nordisk Foundation Centre for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jørgen K Kanters
- Laboratory of Experimental Cardiology, Department of Biomedicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Cardiology, Herlev and Gentofte University Hospitals, Copenhagen, Denmark
| | - Morten S Olesen
- Laboratory for Molecular Cardiology, The Heart Centre, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark.
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
23
|
Cunningham KS, Spears DA, Care M. Evaluation of cardiac hypertrophy in the setting of sudden cardiac death. Forensic Sci Res 2019; 4:223-240. [PMID: 31489388 PMCID: PMC6713129 DOI: 10.1080/20961790.2019.1633761] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 06/17/2019] [Accepted: 06/17/2019] [Indexed: 01/06/2023] Open
Abstract
Ventricular hypertrophy is a common pathological finding at autopsy that can act as a substrate for arrhythmogenesis. Pathologists grapple with the significance of ventricular hypertrophy when assessing the sudden and unexpected deaths of young people and what it could mean for surviving family members. The pathological spectrum of left ventricular hypertrophy (LVH) is reviewed herein. This article is oriented to the practicing autopsy pathologist to help make sense of various patterns of increased heart muscle, particularly those that are not clearly cardiomyopathic, yet present in the setting of sudden cardiac death. The article also reviews factors influencing arrhythmogenesis as well as genetic mutations most commonly associated with ventricular hypertrophy, especially those associated with hypertrophic cardiomyopathy (HCM).
Collapse
Affiliation(s)
- Kristopher S. Cunningham
- Department of Laboratory Medicine and Pathobiology, Ontario Forensic Pathology Service, University of Toronto, Toronto, Canada
| | - Danna A. Spears
- University Health Network, Division of Cardiology – Electrophysiology, University of Toronto, Toronto, Canada
| | - Melanie Care
- Fred A. Litwin Family Centre in Genetic Medicine and Inherited Arrhythmia Clinic, University Health Network & Mount Sinai Hospital, University of Toronto, Toronto, Canada
| |
Collapse
|
24
|
Ahmad F, McNally EM, Ackerman MJ, Baty LC, Day SM, Kullo IJ, Madueme PC, Maron MS, Martinez MW, Salberg L, Taylor MR, Wilcox JE. Establishment of Specialized Clinical Cardiovascular Genetics Programs: Recognizing the Need and Meeting Standards: A Scientific Statement From the American Heart Association. CIRCULATION-GENOMIC AND PRECISION MEDICINE 2019; 12:e000054. [DOI: 10.1161/hcg.0000000000000054] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Cardiovascular genetics is a rapidly evolving subspecialty within cardiovascular medicine, and its growth is attributed to advances in genome sequencing and genetic testing and the expanding understanding of the genetic basis of multiple cardiac conditions, including arrhythmias (channelopathies), heart failure (cardiomyopathies), lipid disorders, cardiac complications of neuromuscular conditions, and vascular disease, including aortopathies. There have also been great advances in clinical diagnostic methods, as well as in therapies to ameliorate symptoms, slow progression of disease, and mitigate the risk of adverse outcomes. Emerging challenges include interpretation of genetic test results and the evaluation, counseling, and management of genetically at-risk family members who have inherited pathogenic variants but do not yet manifest disease. With these advances and challenges, there is a need for specialized programs combining both cardiovascular medicine and genetics expertise. The integration of clinical cardiovascular findings, including those obtained from physical examination, imaging, and functional assessment, with genetic information allows for improved diagnosis, prognostication, and cascade family testing to identify and to manage risk, and in some cases to provide genotype-specific therapy. This emerging subspecialty may ultimately require a new cardiovascular subspecialist, the genetic cardiologist, equipped with these combined skills, to permit interpretation of genetic variation within the context of phenotype and to extend the utility of genetic testing. This scientific statement outlines current best practices for delivering cardiovascular genetic evaluation and care in both the pediatric and the adult settings, with a focus on team member expertise and conditions that most benefit from genetic evaluation.
Collapse
|
25
|
Abstract
Introduction Phospholamban cardiomyopathy is an inherited cardiomyopathy, characterised by a defect in regulation of the sarcoplasmic reticulum Ca2+ pump, often presenting with malignant arrhythmias and progressive cardiac dysfunction occurring at a young age. Methods Phospholamban R14del mutation carriers and family members were identified from inherited arrhythmia clinics at 13 sites across Canada. Cardiac investigations, including electrocardiograms, Holter monitoring (premature ventricular complexes, PVCs), and imaging results were summarised. Results Fifty patients (10 families) were identified (median age 30 years, range 3–71, 46% female). Mutation carriers were more likely to be older, have low-voltage QRS, T‑wave inversion, frequent PVCs, and cardiac dysfunction, compared to unaffected relatives. Increasing age, low-voltage QRS, T‑wave inversion, late potentials, and frequent PVCs were predictors of cardiac dysfunction (p < 0.05 for all). Older carriers (age ≥45 years) were more likely to have disease manifestations than were their younger counterparts, with disease onset occurring at an older age in Canadian patients and their Dutch counterparts. Discussion Among Canadian patients with phospholamban cardiomyopathy, clinical manifestations resembled those of their Dutch counterparts, with increasing age a major predictor of disease manifestation. Older mutation carriers were more likely to have electrical and structural abnormalities, and may represent variable expressivity, age-dependent penetrance, or genetic heterogeneity among Canadian patients. Electronic supplementary material The online version of this article (10.1007/s12471-019-1247-0) contains supplementary material, which is available to authorized users.
Collapse
|
26
|
Abstract
Genetic testing has an increasingly important role in the diagnosis and management of cardiac disorders, where it confirms the diagnosis, aids prognostication and risk stratification and guides treatment. A genetic diagnosis in the proband also enables clarification of the risk for family members by cascade testing. Genetics in cardiac disorders is complex where epigenetic and environmental factors might come into interplay. Incomplete penetrance and variable expressivity is also common. Genetic results in cardiac conditions are mostly probabilistic and should be interpreted with all available clinical information. With this complexity in cardiac genetics, testing is only indicated in patients with a strong suspicion of an inheritable cardiac disorder after a full clinical evaluation. In this review we discuss the genetics underlying the major cardiomyopathies and channelopathies, and the practical aspects of diagnosing these conditions in the laboratory.
Collapse
|
27
|
Campuzano O, Sarquella-Brugada G, Cesar S, Arbelo E, Brugada J, Brugada R. Recent Advances in Short QT Syndrome. Front Cardiovasc Med 2018; 5:149. [PMID: 30420954 PMCID: PMC6215807 DOI: 10.3389/fcvm.2018.00149] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 10/03/2018] [Indexed: 01/22/2023] Open
Abstract
Short QT syndrome is a highly malignant inherited cardiac disease characterized by ventricular tachyarrhythmias leading to syncope and sudden cardiac death. It is responsible of lethal episodes in young people, mainly infants. International guidelines establish diagnostic criteria with the presence of a QTc ≤ 340 ms in the electrocardiogram despite clinical diagnostic values remain controversial. In last years, clinical diagnosis, risk stratification as well as preventive therapies have been improved due to identification of pathophysiological mechanisms. The only effective option is implantation of a defibrillator despite Quinidine may be at times an effective option. Currently, a limited number of rare variants have been identified in seven genes, which account for nearly 20-30% of families. However, some of these variants are associated with phenotypes showing a shorter QT interval but no conclusive diagnosis of Short QT syndrome. Therefore, an exhaustive interpretation of each variant and a close genotype-phenotype correlation is necessary before clinical translation. Here, we review the main clinical and genetic hallmarks of this rare entity.
Collapse
Affiliation(s)
- Oscar Campuzano
- Medical Science Department, University of Girona, Girona, Spain
- Cardiovascular Genetics Center, IDIBGI, Girona, Spain
- Centro Investigación Biomédica Red Enfermedades Cardiovasculares, Madrid, Spain
| | - Georgia Sarquella-Brugada
- Medical Science Department, University of Girona, Girona, Spain
- Pediatric Arrhythmia Unit, Cardiology Department, Hospital Sant Joan de Déu Barcelona, Barcelona, Spain
| | - Sergi Cesar
- Pediatric Arrhythmia Unit, Cardiology Department, Hospital Sant Joan de Déu Barcelona, Barcelona, Spain
| | - Elena Arbelo
- Centro Investigación Biomédica Red Enfermedades Cardiovasculares, Madrid, Spain
- Institut Clínic Cardiovascular, Hospital Clínic, Universitat de Barcelona, Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| | - Josep Brugada
- Centro Investigación Biomédica Red Enfermedades Cardiovasculares, Madrid, Spain
- Pediatric Arrhythmia Unit, Cardiology Department, Hospital Sant Joan de Déu Barcelona, Barcelona, Spain
- Institut Clínic Cardiovascular, Hospital Clínic, Universitat de Barcelona, Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| | - Ramon Brugada
- Medical Science Department, University of Girona, Girona, Spain
- Cardiovascular Genetics Center, IDIBGI, Girona, Spain
- Pediatric Arrhythmia Unit, Cardiology Department, Hospital Sant Joan de Déu Barcelona, Barcelona, Spain
- Familial Cardiomyopathies Unit, Hospital Universitari de Girona Doctor Josep Trueta, Girona, Spain
| |
Collapse
|
28
|
2017 AHA/ACC/HRS guideline for management of patients with ventricular arrhythmias and the prevention of sudden cardiac death. Heart Rhythm 2018; 15:e73-e189. [DOI: 10.1016/j.hrthm.2017.10.036] [Citation(s) in RCA: 177] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Indexed: 02/07/2023]
|
29
|
Al-Khatib SM, Stevenson WG, Ackerman MJ, Bryant WJ, Callans DJ, Curtis AB, Deal BJ, Dickfeld T, Field ME, Fonarow GC, Gillis AM, Granger CB, Hammill SC, Hlatky MA, Joglar JA, Kay GN, Matlock DD, Myerburg RJ, Page RL. 2017 AHA/ACC/HRS Guideline for Management of Patients With Ventricular Arrhythmias and the Prevention of Sudden Cardiac Death: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines and the Heart Rhythm Society. Circulation 2018; 138:e272-e391. [PMID: 29084731 DOI: 10.1161/cir.0000000000000549] [Citation(s) in RCA: 276] [Impact Index Per Article: 39.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
| | - William G Stevenson
- Writing committee members are required to recuse themselves from voting on sections to which their specific relationships with industry may apply; see Appendix 1 for detailed information. †ACC/AHA Representative. ‡HRS Representative. §ACC/AHA Task Force on Performance Measures Liaison/HFSA Representative. ‖ACC/AHA Task Force on Clinical Practice Guidelines Liaison
| | - Michael J Ackerman
- Writing committee members are required to recuse themselves from voting on sections to which their specific relationships with industry may apply; see Appendix 1 for detailed information. †ACC/AHA Representative. ‡HRS Representative. §ACC/AHA Task Force on Performance Measures Liaison/HFSA Representative. ‖ACC/AHA Task Force on Clinical Practice Guidelines Liaison
| | - William J Bryant
- Writing committee members are required to recuse themselves from voting on sections to which their specific relationships with industry may apply; see Appendix 1 for detailed information. †ACC/AHA Representative. ‡HRS Representative. §ACC/AHA Task Force on Performance Measures Liaison/HFSA Representative. ‖ACC/AHA Task Force on Clinical Practice Guidelines Liaison
| | - David J Callans
- Writing committee members are required to recuse themselves from voting on sections to which their specific relationships with industry may apply; see Appendix 1 for detailed information. †ACC/AHA Representative. ‡HRS Representative. §ACC/AHA Task Force on Performance Measures Liaison/HFSA Representative. ‖ACC/AHA Task Force on Clinical Practice Guidelines Liaison
| | - Anne B Curtis
- Writing committee members are required to recuse themselves from voting on sections to which their specific relationships with industry may apply; see Appendix 1 for detailed information. †ACC/AHA Representative. ‡HRS Representative. §ACC/AHA Task Force on Performance Measures Liaison/HFSA Representative. ‖ACC/AHA Task Force on Clinical Practice Guidelines Liaison
| | - Barbara J Deal
- Writing committee members are required to recuse themselves from voting on sections to which their specific relationships with industry may apply; see Appendix 1 for detailed information. †ACC/AHA Representative. ‡HRS Representative. §ACC/AHA Task Force on Performance Measures Liaison/HFSA Representative. ‖ACC/AHA Task Force on Clinical Practice Guidelines Liaison
| | - Timm Dickfeld
- Writing committee members are required to recuse themselves from voting on sections to which their specific relationships with industry may apply; see Appendix 1 for detailed information. †ACC/AHA Representative. ‡HRS Representative. §ACC/AHA Task Force on Performance Measures Liaison/HFSA Representative. ‖ACC/AHA Task Force on Clinical Practice Guidelines Liaison
| | - Michael E Field
- Writing committee members are required to recuse themselves from voting on sections to which their specific relationships with industry may apply; see Appendix 1 for detailed information. †ACC/AHA Representative. ‡HRS Representative. §ACC/AHA Task Force on Performance Measures Liaison/HFSA Representative. ‖ACC/AHA Task Force on Clinical Practice Guidelines Liaison
| | - Gregg C Fonarow
- Writing committee members are required to recuse themselves from voting on sections to which their specific relationships with industry may apply; see Appendix 1 for detailed information. †ACC/AHA Representative. ‡HRS Representative. §ACC/AHA Task Force on Performance Measures Liaison/HFSA Representative. ‖ACC/AHA Task Force on Clinical Practice Guidelines Liaison
| | - Anne M Gillis
- Writing committee members are required to recuse themselves from voting on sections to which their specific relationships with industry may apply; see Appendix 1 for detailed information. †ACC/AHA Representative. ‡HRS Representative. §ACC/AHA Task Force on Performance Measures Liaison/HFSA Representative. ‖ACC/AHA Task Force on Clinical Practice Guidelines Liaison
| | - Christopher B Granger
- Writing committee members are required to recuse themselves from voting on sections to which their specific relationships with industry may apply; see Appendix 1 for detailed information. †ACC/AHA Representative. ‡HRS Representative. §ACC/AHA Task Force on Performance Measures Liaison/HFSA Representative. ‖ACC/AHA Task Force on Clinical Practice Guidelines Liaison
| | - Stephen C Hammill
- Writing committee members are required to recuse themselves from voting on sections to which their specific relationships with industry may apply; see Appendix 1 for detailed information. †ACC/AHA Representative. ‡HRS Representative. §ACC/AHA Task Force on Performance Measures Liaison/HFSA Representative. ‖ACC/AHA Task Force on Clinical Practice Guidelines Liaison
| | - Mark A Hlatky
- Writing committee members are required to recuse themselves from voting on sections to which their specific relationships with industry may apply; see Appendix 1 for detailed information. †ACC/AHA Representative. ‡HRS Representative. §ACC/AHA Task Force on Performance Measures Liaison/HFSA Representative. ‖ACC/AHA Task Force on Clinical Practice Guidelines Liaison
| | - José A Joglar
- Writing committee members are required to recuse themselves from voting on sections to which their specific relationships with industry may apply; see Appendix 1 for detailed information. †ACC/AHA Representative. ‡HRS Representative. §ACC/AHA Task Force on Performance Measures Liaison/HFSA Representative. ‖ACC/AHA Task Force on Clinical Practice Guidelines Liaison
| | - G Neal Kay
- Writing committee members are required to recuse themselves from voting on sections to which their specific relationships with industry may apply; see Appendix 1 for detailed information. †ACC/AHA Representative. ‡HRS Representative. §ACC/AHA Task Force on Performance Measures Liaison/HFSA Representative. ‖ACC/AHA Task Force on Clinical Practice Guidelines Liaison
| | - Daniel D Matlock
- Writing committee members are required to recuse themselves from voting on sections to which their specific relationships with industry may apply; see Appendix 1 for detailed information. †ACC/AHA Representative. ‡HRS Representative. §ACC/AHA Task Force on Performance Measures Liaison/HFSA Representative. ‖ACC/AHA Task Force on Clinical Practice Guidelines Liaison
| | - Robert J Myerburg
- Writing committee members are required to recuse themselves from voting on sections to which their specific relationships with industry may apply; see Appendix 1 for detailed information. †ACC/AHA Representative. ‡HRS Representative. §ACC/AHA Task Force on Performance Measures Liaison/HFSA Representative. ‖ACC/AHA Task Force on Clinical Practice Guidelines Liaison
| | - Richard L Page
- Writing committee members are required to recuse themselves from voting on sections to which their specific relationships with industry may apply; see Appendix 1 for detailed information. †ACC/AHA Representative. ‡HRS Representative. §ACC/AHA Task Force on Performance Measures Liaison/HFSA Representative. ‖ACC/AHA Task Force on Clinical Practice Guidelines Liaison
| |
Collapse
|
30
|
Christian S, Somerville M, Huculak C, Atallah J. Practice Variation among an International Group of Genetic Counselors on when to Offer Predictive Genetic Testing to Children at Risk of an Inherited Arrhythmia or Cardiomyopathy. J Genet Couns 2018; 28:10.1007/s10897-018-0293-x. [PMID: 30132189 DOI: 10.1007/s10897-018-0293-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 08/08/2018] [Indexed: 12/17/2022]
Abstract
Cascade predictive genetic testing is available for many families as a means to identify individuals at risk of long QT syndrome (LQTS), catecholaminergic polymorphic ventricular tachycardia (CPVT), hypertrophic cardiomyopathy (HCM), and arrhythmogenic right ventricular cardiomyopathy (ARVC). The general issue of offering predictive genetic testing to minors has been an area of ethical debate among genetic counselors and other healthcare professionals for many years. An online questionnaire was circulated to four international genetic counseling associations to assess the views of cardiac genetic counselors regarding when to offer predictive genetic testing to children at risk of LQTS, CPVT, HCM, and ARVC. Analysis was both quantitative and qualitative. The study sample comprised 98 respondents. The majority reported that they offer predictive genetic testing before 5 years of age to children at risk of LQTS (83%) and CVPT (75%) and before 10 years of age to children at risk of HCM (66%) or ARVC (70%). Influencing factors included country of practice, clinical setting, and years of experience. The rationale provided for when to offer predictive genetic testing is encompassed by the ethical principles of beneficence, non-maleficence, autonomy, and informed consent. In conclusion, significant practice variation exists among cardiac genetic counselors regarding predictive genetic testing for children at risk of an inherited cardiomyopathy. These variations call for more research in the area to assist with the development of evidence-based guidelines.
Collapse
Affiliation(s)
- S Christian
- Department of Medical Genetic, University of Alberta, 826 Medical Sciences Building, Edmonton, AB, T6G 2H7, Canada.
| | - M Somerville
- Department of Medical Genetic, University of Alberta, 826 Medical Sciences Building, Edmonton, AB, T6G 2H7, Canada
| | - C Huculak
- Department of Medical Genetics, Alberta Health Services, Calgary, AB, Canada
| | - J Atallah
- Department of Pediatrics, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
31
|
Al-Khatib SM, Stevenson WG, Ackerman MJ, Bryant WJ, Callans DJ, Curtis AB, Deal BJ, Dickfeld T, Field ME, Fonarow GC, Gillis AM, Granger CB, Hammill SC, Hlatky MA, Joglar JA, Kay GN, Matlock DD, Myerburg RJ, Page RL. 2017 AHA/ACC/HRS Guideline for Management of Patients With Ventricular Arrhythmias and the Prevention of Sudden Cardiac Death: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines and the Heart Rhythm Society. J Am Coll Cardiol 2018; 72:e91-e220. [PMID: 29097296 DOI: 10.1016/j.jacc.2017.10.054] [Citation(s) in RCA: 784] [Impact Index Per Article: 112.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
32
|
Girolami F, Frisso G, Benelli M, Crotti L, Iascone M, Mango R, Mazzaccara C, Pilichou K, Arbustini E, Tomberli B, Limongelli G, Basso C, Olivotto I. Contemporary genetic testing in inherited cardiac disease: tools, ethical issues, and clinical applications. J Cardiovasc Med (Hagerstown) 2018; 19:1-11. [PMID: 29176389 PMCID: PMC5732648 DOI: 10.2459/jcm.0000000000000589] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Inherited cardiac diseases comprise a wide and heterogeneous spectrum of diseases of the heart, including the cardiomyopathies and the arrhythmic diseases in structurally normal hearts, that is, channelopathies. With a combined estimated prevalence of 3% in the general population, these conditions represent a relevant epidemiological entity worldwide, and are a major cause of cardiac morbidity and mortality in the young. The extraordinary progress achieved in molecular genetics over the last three decades has unveiled the complex molecular basis of many familial cardiac conditions, paving the way for routine use of gene testing in clinical practice. In current practice, genetic testing can be used in a clinically affected patient to confirm diagnosis, or to formulate a differential diagnosis among overlapping phenotypes or between hereditary and acquired (nongenetic) forms of disease. Although genotype–phenotype correlations are generally unpredictable, a precise molecular diagnosis can help predict prognosis in specific patient subsets and may guide management. In clinically unaffected relatives, genetic cascade testing is recommended, after the initial identification of a pathogenic variation, with the aim of identifying asymptomatic relatives who might be at risk of disease-related complications, including unexpected sudden cardiac death. Future implications include the identification of novel therapeutic targets and development of tailored treatments including gene therapy. This document reflects the multidisciplinary, ‘real-world’ experience required when implementing genetic testing in cardiomyopathies and arrhythmic syndromes, along the recommendations of various guidelines.
Collapse
Affiliation(s)
- Francesca Girolami
- Genetic Diagnostic Unit, Cardiomyopathies Unit, Careggi University Hospital, Florence
| | - Giulia Frisso
- Department Molecular Medicine and Medical Biotechnologies, University Federico II, Naples & CEINGE-Advanced Biotechnologies, Naples, Italy
| | - Matteo Benelli
- Bioinformatics Unit, Istituto Toscano Tumori, Hospital of Prato, Prato
| | - Lia Crotti
- Department of Cardiovascular, Neural and Metabolic Sciences, Center for Cardiac Arrhythmias of Genetic Origin and Laboratory of Cardiovascular Genetics, IRCCS Istituto Auxologico Italiano, San Luca Hospital, Milan
| | - Maria Iascone
- USSD Laboratorio Genetica Medica, ASST Papa Giovanni XXIII, Bergamo
| | - Ruggiero Mango
- Division of Cardiology, Department of Emergency Medicine, Tor Vergata University of Rome, Rome
| | - Cristina Mazzaccara
- Department Molecular Medicine and Medical Biotechnologies, University Federico II, Naples & CEINGE-Advanced Biotechnologies, Naples, Italy
| | - Kalliope Pilichou
- Cardiovascular Pathology Unit, Department of Cardiac, Thoracic and Vascular Sciences, University of Padua, Padua
| | - Eloisa Arbustini
- Centre for Inherited Cardiovascular Diseases, IRCCS Foundation Policlinico San Matteo, Pavia
| | | | - Giuseppe Limongelli
- Department of Cardiothoracic Sciences, Campania University Luigi Vanvitelli, Caserta, Italy
| | - Cristina Basso
- Cardiovascular Pathology Unit, Department of Cardiac, Thoracic and Vascular Sciences, University of Padua, Padua
| | - Iacopo Olivotto
- Cardiomyopathies Unit, Careggi University Hospital, Florence
| |
Collapse
|
33
|
Calcagnino M, Crocamo A, Ardissino D. Genetic testing in predicting the risk of sudden death. J Cardiovasc Med (Hagerstown) 2018; 18 Suppl 1:e64-e66. [PMID: 28009642 DOI: 10.2459/jcm.0000000000000477] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
34
|
Abstract
INTRODUCTION Brugada syndrome (BrS) is an inherited cardiac arrhythmia syndrome characterized by ST-segment elevation in right precordial ECG leads and associated with sudden cardiac death in young adults. The ECG manifestations of BrS are often concealed but can be unmasked by sodium channel blockers and fever. Areas covered: Implantation of a cardioverter defibrillator (ICD) is first-line therapy for BrS patients presenting with prior cardiac arrest or documented VT. A pharmacological approach to therapy is recommended in cases of electrical storm, as an adjunct to ICD and as preventative therapy. The goal of pharmacological therapy is to produce an inward shift to counter the genetically-induced outward shift of ion channel current flowing during the early phases of the ventricular epicardial action potential. This is accomplished by augmentation of ICa using □□adrenergic agents or phosphodiesterase III inhibitors or via inhibition of Ito. Radiofrequency ablation of the right ventricular outward flow tract epicardium is effective in suppressing arrhythmogenesis in BrS patients experiencing frequent appropriate ICD-shocks. Expert commentary: Understanding of the pathophysiology and approach to therapy of BrS has advanced considerably in recent years, but there remains an urgent need for development of cardio-selective and ion-channel-specific Ito blockers for treatment of BrS.
Collapse
Affiliation(s)
- Mariana Argenziano
- a Cardiovascular Research , Lankenau Institute for Medical Research , Wynnewood , PA , USA
| | - Charles Antzelevitch
- a Cardiovascular Research , Lankenau Institute for Medical Research , Wynnewood , PA , USA.,b Cardiovascular Research , Lankenau Heart Institute , Wynnewood , PA , USA.,c Department of Medicine and Pharmacology and Experimental Therapeutics , Sidney Kimmel Medical College of Thomas Jefferson University , Philadelphia , PA , USA
| |
Collapse
|
35
|
Campuzano O, Sanchez-Molero O, Fernandez A, Iglesias A, Brugada R. Muerte súbita cardiaca de origen arrítmico: valor del análisis genético post mortem. REVISTA ESPAÑOLA DE MEDICINA LEGAL 2018; 44:32-37. [DOI: 10.1016/j.reml.2017.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/13/2023]
|
36
|
Roston TM, Dewar L, Franciosi S, Hathaway J, Bartels K, Cunningham T, Gibbs KA, Sheps S, Laksman ZWM, Sanatani S, Krahn AD. The accessibility and utilization of genetic testing for inherited heart rhythm disorders: a Canadian cross-sectional survey study. J Community Genet 2017; 9:257-262. [PMID: 29170972 DOI: 10.1007/s12687-017-0348-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 11/08/2017] [Indexed: 01/01/2023] Open
Abstract
The genetic basis of many sudden death-related conditions has been elucidated. These include inherited arrhythmias and arrhythmogenic cardiomyopathies, termed inherited heart rhythm disorders (IHRD). Advising on and interpreting genetic testing is challenging for the general cardiologist. This has led to the development of interdisciplinary clinics for IHRD in varying stages of establishment in Canada. We sought the viewpoints and patterns of practice of Canadian IHRD experts, and assessed their ability to access genetic testing for IHRD using a national cross-sectional survey. Of 56 participants, most were physicians (68%) or genetic counselors (19%). Despite working collaboratively, most genetic counselors (59%) were either not satisfied or only somewhat satisfied with their relationships with physicians. Ninety percent of participants were involved in offering genetic evaluation, including 80% who felt that testing was usually/always accessible. Most offered genetic testing to confirm clinical diagnosis and/or direct family screening. Post-mortem genetic analysis was sought by 69% of respondents; however, a lack of retained tissue and/or poor tissue preparation hindered this process. Family screening was usually recommended in the setting of a pathogenic/likely pathogenic variant. The most commonly perceived barrier to genetic testing was cost to the healthcare system. More than a quarter of patients waited ≥ 6 months for funding. An ability to engage at-risk relatives was rated as limited/poor by 34% of participants. Despite the establishment of several interdisciplinary clinics, timely access to affordable testing, supported by strong team communication, continues to be a barrier to genetic testing in Canada.
Collapse
Affiliation(s)
- Thomas M Roston
- BC Inherited Arrhythmia Program, Vancouver, BC, Canada.,Heart Rhythm Vancouver, Division of Cardiology, University of British Columbia, Vancouver, BC, Canada.,University of Alberta, Edmonton, AB, Canada
| | - Laura Dewar
- Simon Fraser University, Burnaby, BC, Canada
| | - Sonia Franciosi
- Children's Heart Centre, BC Children's Hospital, Vancouver, BC, Canada
| | | | | | - Taylor Cunningham
- Children's Heart Centre, BC Children's Hospital, Vancouver, BC, Canada
| | - Karen A Gibbs
- BC Inherited Arrhythmia Program, Vancouver, BC, Canada
| | - Sam Sheps
- University of British Columbia, Vancouver, BC, Canada
| | - Zachary W M Laksman
- BC Inherited Arrhythmia Program, Vancouver, BC, Canada.,Heart Rhythm Vancouver, Division of Cardiology, University of British Columbia, Vancouver, BC, Canada
| | - Shubhayan Sanatani
- BC Inherited Arrhythmia Program, Vancouver, BC, Canada.,Heart Rhythm Vancouver, Division of Cardiology, University of British Columbia, Vancouver, BC, Canada.,Children's Heart Centre, BC Children's Hospital, Vancouver, BC, Canada
| | - Andrew D Krahn
- BC Inherited Arrhythmia Program, Vancouver, BC, Canada. .,Heart Rhythm Vancouver, Division of Cardiology, University of British Columbia, Vancouver, BC, Canada. .,Heart Rhythm Vancouver, 211-1033 Davie St, Vancouver, BC, V6E 1M7, Canada.
| |
Collapse
|
37
|
Abstract
PURPOSE OF REVIEW The modern field of clinical genetics has advanced beyond the traditional teachings familiar to most practicing cardiologists. Increased understanding of the roles of genetic testing may improve uptake and appropriateness of use. RECENT FINDINGS Clinical genetics has become integral to the management of patients with hereditary arrhythmia and cardiomyopathy diagnoses. Depending on the condition, genetic testing may be useful for diagnosis, prognosis, treatment, family screening, and reproductive planning. However, genetic testing is a powerful tool with potential for underuse, overuse, and misuse. In the absence of a substantial body of literature on how these guidelines are applied in clinical practice, we use a case-based approach to highlight key lessons and pitfalls. Importantly, in many scenarios genetic testing has become the standard of care supported by numerous class I recommendations; genetic counselors can improve accessibility to and appropriate use and application of testing. SUMMARY Optimal management of hereditary arrhythmias and cardiomyopathies incorporates genetic testing, applied as per consensus guidelines, with involvement of a multidisciplinary team.
Collapse
|
38
|
Care M, Chauhan V, Spears D. Genetic Testing in Inherited Heart Diseases: Practical Considerations for Clinicians. Curr Cardiol Rep 2017; 19:88. [PMID: 28812208 DOI: 10.1007/s11886-017-0885-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
PURPOSE OF REVIEW Genetic testing has become an important element in the care of patients with inherited cardiac conditions (ICCs). The purpose of this review is to provide clinicians with insights into the utility of genetic testing as well as challenges associated with interpreting results. RECENT FINDINGS Genetic testing may be indicated for individuals who are affected with or who have family histories of various ICCs. Various testing options are available and determining the most appropriate test for any given clinical scenario is key when interpreting results. Newly published guidelines as well as various publicly accessible tools are available to clinicians to help with interpretation of genetic findings; however the subjectivity with respect to variant classification can make accurate assessment challenging. Genetic information can provide highly useful and relevant information for patients, their family members, and their healthcare providers. Given the potential ramifications of variant misclassification, expertise in both clinical phenotyping and molecular genetics is imperative in order to provide accurate diagnosis, management recommendations, and family risk assessment for this patient population.
Collapse
Affiliation(s)
- Melanie Care
- Division of Cardiology, Department of Medicine, Peter Munk Cardiac Centre, Toronto General Hospital, University Health Network, 200 Elizabeth St., Toronto, ON, M5G 2C4, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Vijay Chauhan
- Division of Cardiology, Department of Medicine, Peter Munk Cardiac Centre, Toronto General Hospital, University Health Network, 200 Elizabeth St., Toronto, ON, M5G 2C4, Canada.,Department of Medicine, University of Toronto, Toronto, ON, Canada
| | - Danna Spears
- Division of Cardiology, Department of Medicine, Peter Munk Cardiac Centre, Toronto General Hospital, University Health Network, 200 Elizabeth St., Toronto, ON, M5G 2C4, Canada. .,Department of Medicine, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
39
|
Uptake of Predictive Genetic Testing and Cardiac Evaluation for Children at Risk for an Inherited Arrhythmia or Cardiomyopathy. J Genet Couns 2017; 27:124-130. [PMID: 28699125 DOI: 10.1007/s10897-017-0129-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 07/05/2017] [Indexed: 01/01/2023]
Abstract
Predictive genetic testing in minors should be considered when clinical intervention is available. Children who carry a pathogenic variant for an inherited arrhythmia or cardiomyopathy require regular cardiac screening and may be prescribed medication and/or be told to modify their physical activity. Medical genetics and pediatric cardiology charts were reviewed to identify factors associated with uptake of genetic testing and cardiac evaluation for children at risk for long QT syndrome, hypertrophic cardiomyopathy or arrhythmogenic right ventricular cardiomyopathy. The data collected included genetic diagnosis, clinical symptoms in the carrier parent, number of children under 18 years of age, age of children, family history of sudden cardiac arrest/death, uptake of cardiac evaluation and if evaluated, phenotype for each child. We identified 97 at risk children from 58 families found to carry a pathogenic variant for one of these conditions. Sixty six percent of the families pursued genetic testing and 73% underwent cardiac screening when it was recommended. Declining predictive genetic testing was significantly associated with genetic specialist recommendation (p < 0.001) and having an asymptomatic carrier father (p = 0.006). Cardiac evaluation was significantly associated with uptake of genetic testing (p = 0.007). This study provides a greater understanding of factors associated with uptake of genetic testing and cardiac evaluation in children at risk of an inherited arrhythmia or cardiomyopathy. It also identifies a need to educate families about the importance of cardiac evaluation even in the absence of genetic testing.
Collapse
|
40
|
At the Heart of the Pregnancy: What Prenatal and Cardiovascular Genetic Counselors Need to Know about Maternal Heart Disease. J Genet Couns 2017; 26:669-688. [DOI: 10.1007/s10897-017-0081-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Accepted: 02/14/2017] [Indexed: 01/25/2023]
|
41
|
Sudden cardiac death in the young: The emerging role of molecular autopsy. Hellenic J Cardiol 2017; 58:151-152. [DOI: 10.1016/j.hjc.2016.09.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2015] [Accepted: 09/19/2016] [Indexed: 12/19/2022] Open
|
42
|
Abstract
The molecular millennium has bestowed clinicians and researchers with the essential tools to identify the underlying genetic substrates for thousands of genetic disorders, most of which are rare and follow Mendelian inheritance patterns. The genetic basis of potentially lethal and heritable cardiomyopathies and cardiac channelopathies has been identified and are now better understood. Genetic testing for several of these heritable conditions has made its transition from discovery through translation and have been commercially available clinical tests for over a decade. Now that clinical genetic testing is available more readily and delivers a disease-specific impact across the triad of medicine - diagnostic, prognostic, and therapeutic - it is important for the community of cardiologists to not only be familiar with the language of genomic medicine but to also be wiser users and even wiser interpreters of genetic testing so that wise decisions can be rendered for those patients and their families being evaluated with respect to the presence or absence of one of these potentially lethal yet highly treatable genetic disorders. The purpose of this review is to provide the reader with a foundational understanding of genetic testing in clinical cardiology. Here, we will present some benefits of genetic testing: indications for either post-mortem genetic testing for the major cardiomyopathies and channelopathies or pre-mortem genetic testing among the decedent's surviving relatives; the need for careful interpretation of genetic testing results; the importance of genetic counselling; and some points on the ethical and societal implications of genetic testing.
Collapse
|
43
|
Genetic Insurance Discrimination in Sudden Arrhythmia Death Syndromes. ACTA ACUST UNITED AC 2017; 10:CIRCGENETICS.116.001442. [DOI: 10.1161/circgenetics.116.001442] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 11/02/2016] [Indexed: 12/12/2022]
Abstract
Background—
There is virtually no information assessing the insurability of families affected with Sudden Arrhythmia Death Syndromes (SADS) for the determination of the nonclinical implications of genetic screening. It is important to identify the barriers and challenges faced by families as a result of genetic screening for SADS to enable equitable access to insurance coverage.
Methods and Results—
To explore the insurance coverage experiences of SADS-affected families, we administered a cross-sectional online survey across North America from April 28, 2012 to November 13, 2013. Participants included individuals with a SADS diagnosis and their relatives who have applied for insurance (health, life, travel, and disability) or have existing insurance coverage. Of 202 participants, 92% had a SADS diagnosis (92%) as either a proband (50%) or an affected relative (42%); 8% of participants were unaffected family members of a proband; and genetic confirmation was reported by 73%. Of the 54% of SADS respondents who applied for insurance, 60% were rejected by insurers. The preexisting SADS diagnosis was the major reason reported for rejection (57%). Most respondents (80%) had insurance coverage through a spouse/parent plan at the time of diagnosis; 14% experienced a subsequent negative effect on coverage. Thirty-nine percent of affected SADS respondents reported an increase in insurance premium rates.
Conclusions—
Increased genetic testing has negatively impacted insurability for SADS patients and affected family members. The challenges in obtaining life and health insurance are mainly because of the preexisting condition, even in the presence of protective laws in the United States.
Collapse
|
44
|
Cost Analysis of Patients Referred for Inherited Heart Rhythm Disorder Evaluation. Can J Cardiol 2016; 33:814-821. [PMID: 28347582 DOI: 10.1016/j.cjca.2016.12.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 12/02/2016] [Accepted: 12/06/2016] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND Inherited heart rhythm disorders (IHRDs) are complex and uncommon arrhythmogenic conditions that can lead to sudden unexpected death in seemingly healthy individuals. Multidisciplinary programs can assist in the diagnostic testing of potentially affected individuals and their family members. METHODS Patients evaluated in a specialized adult and pediatric IHRD clinic between April 2013 and February 2015 were characterized. The total costs per evaluation and diagnosis were calculated. Patients were divided according to referral indication (primary referral or family member). RESULTS A total of 618 patients were evaluated (age 36 ± 21 years; 52% male), of which 274 (44%) were primary referrals and 344 (56%) were family members referred for cascade screening. Overall, 47% had at least 1 follow-up visit. Patients had a median of 3 tests; primary referrals required more tests (4 vs 2; P < 0.01). The median cost per patient was $1340 CAD. Evaluation of the primary referrals was costlier than family members ($3096 vs $983; P < 0.01). A definite or probable diagnosis was determined in 464 patients (77%), with no difference according to patient type (P = 0.18). The total cost per diagnosis was $4021 in primary referrals compared with $1277 in family members (P < 0.01). CONCLUSIONS Clinical evaluation of patients with suspected IHRD results in a high diagnostic yield and costs aligned with other complex disorders involving multidisciplinary clinics. Evaluation costs are expectedly higher in primary referrals compared with targeted family screening.
Collapse
|
45
|
Rivard L, Roux A, Nault I, Champagne J, Roux JF, Tadros R, Talajic M, Cadrin-Tourigny J, Shohoudi A, Mondésert B, Roy D, Macle L, Andrade J, Dyrda K, Dubuc M, Guerra PG, Sarrazin JF, Thibault B, Khairy P. Predictors of Ventricular Arrhythmias and Sudden Death in a Québec Cohort With Brugada Syndrome. Can J Cardiol 2016; 32:1355.e1-1355.e7. [DOI: 10.1016/j.cjca.2016.03.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 02/23/2016] [Accepted: 03/03/2016] [Indexed: 10/22/2022] Open
|
46
|
Roberts JD, Marcus GM. Ablatogenomics: can genotype guide catheter ablation for cardiac arrhythmias? Pharmacogenomics 2016; 17:1931-1940. [PMID: 27790939 DOI: 10.2217/pgs-2016-0114] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Previously confined to the management of rare inherited arrhythmia syndromes, a role for genetics within cardiac electrophysiology has begun to emerge for more common arrhythmias, including atrial fibrillation (AF). Catheter ablation for AF is an invasive procedure effective for restoring normal rhythm, however, fails in up to 40% of those undergoing their first procedure and carries a risk for serious adverse events. Recent studies have suggested that a common genetic variant within chromosome 4q25 may be a powerful predictor of procedural success, highlighting the potential of an 'ablatogenomic' strategy. Although still in its infancy, an ablatogenomic approach for AF may facilitate delivery of ablation to those most likely to benefit, while sparing those prone to fail from its risks.
Collapse
Affiliation(s)
- Jason D Roberts
- Section of Cardiac Electrophysiology, Division of Cardiology, Department of Medicine, Western University, London, ON N6A 4A5, Canada
| | - Gregory M Marcus
- Section of Cardiac Electrophysiology, Division of Cardiology, Department of Medicine, University of California San Francisco, San Francisco, CA 94143-1354, USA
| |
Collapse
|
47
|
Bennett M, Parkash R, Nery P, Sénéchal M, Mondesert B, Birnie D, Sterns LD, Rinne C, Exner D, Philippon F, Campbell D, Cox J, Dorian P, Essebag V, Krahn A, Manlucu J, Molin F, Slawnych M, Talajic M. Canadian Cardiovascular Society/Canadian Heart Rhythm Society 2016 Implantable Cardioverter-Defibrillator Guidelines. Can J Cardiol 2016; 33:174-188. [PMID: 28034580 DOI: 10.1016/j.cjca.2016.09.009] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2016] [Revised: 09/25/2016] [Accepted: 09/26/2016] [Indexed: 11/26/2022] Open
Abstract
Sudden cardiac death is a major public health issue in Canada. However, despite the overwhelming evidence to support the use of implantable cardioverter defibrillators (ICDs) in the prevention of cardiac death there remains significant variability in implantation rates across Canada. Since the most recent Canadian Cardiovascular Society position statement on ICD use in Canada in 2005, there has been a plethora of new scientific information to assist physicians in their discussions with patients considered for ICD implantation to prevent sudden cardiac death due to ventricular arrhythmias. We have reviewed, critically appraised, and synthesized the pertinent evidence to develop recommendations regarding: (1) ICD implantation in the primary and secondary prevention of sudden cardiac death in patients with and without ischemic heart disease; (2) when it is reasonable to withhold ICD implantation on the basis of comorbidities; (3) ICD implantation in patients listed for heart transplantation; (4) implantation of a single- vs dual-chamber ICD; (5) implantation of single- vs dual-coil ICD leads; (6) the role of subcutaneous ICDs; and (7) ICD implantation infection prevention strategies. We expect that this document, in combination with the companion article that addresses the implementation of these guidelines, will assist all medical professionals with the care of patients who have had or at risk of sudden cardiac death.
Collapse
Affiliation(s)
- Matthew Bennett
- University of British Columbia, Vancouver, British Columbia, Canada
| | - Ratika Parkash
- Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Pablo Nery
- Ottawa Heart Institute, University of Ottawa, Ottawa, Ontario, Canada
| | - Mario Sénéchal
- Quebec Heart and Lung Institute, Laval University, Quebec, Quebec, Canada
| | - Blandine Mondesert
- Montreal Heart Institute, University of Montreal, Montreal, Quebec, Canada
| | - David Birnie
- Ottawa Heart Institute, University of Ottawa, Ottawa, Ontario, Canada
| | - Laurence D Sterns
- Island Medical Program, University of British Columbia, Vancouver, British Columbia, Canada
| | - Claus Rinne
- St Mary's General Hospital, Kitchener, Ontario, Canada
| | - Derek Exner
- Libin Cardiovascular Institute of Alberta, University of Calgary, Calgary, Alberta, Canada
| | - François Philippon
- Quebec Heart and Lung Institute, Laval University, Quebec, Quebec, Canada.
| | | | - Jafna Cox
- Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Paul Dorian
- St Michael's Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Vidal Essebag
- McGill University Health Centre, Montréal, Quebec, Canada
| | - Andrew Krahn
- University of British Columbia, Vancouver, British Columbia, Canada
| | - Jaimie Manlucu
- London Cardiac Institute, University of Western Ontario, London, Ontario, Canada
| | - Franck Molin
- Quebec Heart and Lung Institute, Laval University, Quebec, Quebec, Canada
| | - Michael Slawnych
- Libin Cardiovascular Institute of Alberta, University of Calgary, Calgary, Alberta, Canada
| | - Mario Talajic
- Montreal Heart Institute, University of Montreal, Montreal, Quebec, Canada
| |
Collapse
|
48
|
Horie M. Molecular genetics have opened a new era for arrhythmia research, but also Pandora׳s box? J Arrhythm 2016; 32:313-314. [PMID: 27761154 PMCID: PMC5063257 DOI: 10.1016/j.joa.2016.07.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Affiliation(s)
- Minoru Horie
- Department of Cardiovascular Medicine, Shiga University of Medical Science, Ohtsu 520-2192, Japan
| |
Collapse
|
49
|
Steinberg C, Padfield GJ, Champagne J, Sanatani S, Angaran P, Andrade JG, Roberts JD, Healey JS, Chauhan VS, Birnie DH, Janzen M, Gerull B, Klein GJ, Leather R, Simpson CS, Seifer C, Talajic M, Gardner M, Krahn AD. Cardiac Abnormalities in First-Degree Relatives of Unexplained Cardiac Arrest Victims. Circ Arrhythm Electrophysiol 2016; 9:CIRCEP.115.004274. [DOI: 10.1161/circep.115.004274] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Accepted: 08/02/2016] [Indexed: 01/06/2023]
Abstract
Background—
Unexplained cardiac arrest (UCA) may be explained by inherited arrhythmia syndromes. The Cardiac Arrest Survivors With Preserved Ejection Fraction Registry prospectively assessed first-degree relatives of UCA or sudden unexplained death victims to screen for cardiac abnormalities.
Methods and Results—
Around 398 first-degree family members (186 UCA, 212 sudden unexplained death victims’ relatives; mean age, 44±17 years) underwent extensive cardiac workup, including ECG, signal averaged ECG, exercise testing, cardiac imaging, Holter-monitoring, and selective provocative drug testing with epinephrine or procainamide. Genetic testing was performed when a mutation was identified in the UCA survivor or when the diagnostic workup revealed a phenotype suggestive of a specific inherited arrhythmia syndrome. The diagnostic strength was classified as definite, probable, or possible based on previously published definitions. Cardiac abnormalities were detected in 120 of 398 patients (30.2%) with 67 of 398 having a definite or probable diagnosis (17%), including Long-QT syndrome (13%), catecholaminergic polymorphic ventricular tachycardia (4%), arrhythmogenic right ventricular cardiomyopathy (4%), and Brugada syndrome (3%). The detection yield was similar for family members of UCA and sudden unexplained death victims (31% versus 27%;
P
=0.59). Genetic testing was performed more often in family members of UCA patients (29% versus 20%;
P
=0.03). Disease-causing mutations were identified in 20 of 398 relatives (5%). The most common pathogenic mutations were RyR2 (2%), SCN5A (1%), and KNCQ1 (0.8%).
Conclusions—
Cardiac screening revealed abnormalities in 30% of first-degree relatives of UCA or sudden unexplained death victims, with a clear working diagnosis in 17%. Long-QT, arrhythmogenic right ventricular cardiomyopathy, and catecholaminergic polymorphic ventricular tachycardia were the most common diagnoses. Systematic cascade screening and genetic testing in asymptomatic individuals will lead to preventive lifestyle and medical interventions with potential to prevent sudden cardiac death.
Clinical Trial Registration—
URL:
http://www.clinicaltrials.gov
. Unique identifier: NCT00292032.
Collapse
Affiliation(s)
| | | | | | | | - Paul Angaran
- For the author affiliations, please see the Appendix
| | | | | | | | | | | | - Mikyla Janzen
- For the author affiliations, please see the Appendix
| | - Brenda Gerull
- For the author affiliations, please see the Appendix
| | | | | | | | | | - Mario Talajic
- For the author affiliations, please see the Appendix
| | | | | |
Collapse
|
50
|
|