1
|
Zhao QC, Chen L, Ma S, Liu ZP. Data-driven discovery of Pt single atom embedded germanosilicate MFI zeolite catalysts for propane dehydrogenation. Nat Commun 2025; 16:3720. [PMID: 40253443 PMCID: PMC12009424 DOI: 10.1038/s41467-025-58960-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Accepted: 04/04/2025] [Indexed: 04/21/2025] Open
Abstract
Zeolite-confined metal is an important class of heterogeneous catalysts, demonstrating exceptional catalytic performance in many reactions, but the identification of a stable metal-zeolite combination with a simple synthetic method remains a top challenge. Here artificial intelligence methods, particularly global neural network potential based large-scale atomic simulation, are utilized to design Pt-containing zeolite frameworks for propane-to-propene conversion. We show that out of the zeolite database (>220 structure framework) and more than 100,000 Pt/Ge differently distributed configurations, there are only three Ge-containing zeolites, germanosilicate (MFI, IWW and SAO) that are predicted to be capable of stabilizing Pt single atom embedded in zeolite skeleton and at the meantime allowing propane fast diffusion. Among, the Pt1@Ge-MFI catalyst is successfully synthesized via a simple one-pot synthesis without a lengthy post-treatment procedure, and characterized by high-resolution experimental techniques. We demonstrate that the catalyst features an in-situ formed [GePtO3H2] active site under the reductive reaction condition that can achieve long-term (>750 h) high activity and selectivity (98%) for propane dehydrogenation. Our simple catalyst synthesis holds promise for scale-up industrial applications that can now be rooted in first principles via data-driven catalyst design.
Collapse
Affiliation(s)
- Qian-Cheng Zhao
- State Key Laboratory of Porous Materials for Separation and Conversion, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Key Laboratory of Computational Physical Science, Department of Chemistry, Fudan University, Shanghai, 200433, China
| | - Lin Chen
- State Key Laboratory of Porous Materials for Separation and Conversion, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Key Laboratory of Computational Physical Science, Department of Chemistry, Fudan University, Shanghai, 200433, China
| | - Sicong Ma
- State Key Laboratory of Metal Organic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 200032, China.
| | - Zhi-Pan Liu
- State Key Laboratory of Porous Materials for Separation and Conversion, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Key Laboratory of Computational Physical Science, Department of Chemistry, Fudan University, Shanghai, 200433, China.
- State Key Laboratory of Metal Organic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 200032, China.
| |
Collapse
|
2
|
Werghi B, Wu L, Ebrahim AM, Chi M, Ni H, Cargnello M, Bare SR. Selective Catalytic Behavior Induced by Crystal-Phase Transformation in Well-Defined Bimetallic Pt-Sn Nanocrystals. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2207956. [PMID: 36807838 DOI: 10.1002/smll.202207956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 02/03/2023] [Indexed: 05/18/2023]
Abstract
The Pt-Sn bimetallic system is a much studied and commercially used catalyst for propane dehydrogenation. The traditionally prepared catalyst, however, suffers from inhomogeneity and phase separation of the active Pt-Sn phase. Colloidal chemistry offers a route for the synthesis of Pt-Sn bimetallic nanoparticles (NPs) in a systematic, well-defined, tailored fashion over conventional methods. Here, the successful synthesis of well-defined ≈2 nm Pt, PtSn, and Pt3 Sn nanocrystals with distinct crystallographic phases is reported; hexagonal close packing (hcp) PtSn and fcc Pt3 Sn show different activity and stability depending on the hydrogen-rich or poor environment in the feed. Moreover, face centred cubic (fcc) Pt3 Sn/Al2 O3 , which exhibited the highest stability compared to hcp PtSn, shows a unique phase transformation from an fcc phase to an L12 -ordered superlattice. Contrary to PtSn, H2 cofeeding has no effect on the Pt3 Sn deactivation rate. The results reveal structural dependency of the probe reaction, propane dehydrogenation, and provide a fundamental understanding of the structure-performance relationship on emerging bimetallic systems.
Collapse
Affiliation(s)
- Baraa Werghi
- Stanford Synchrotron Radiation Lightsource SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA, 94025, USA
- Department of Chemical Engineering, Stanford University, Stanford, CA, 94305, USA
- SUNCAT Center for Interface Science and Catalysis, SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA
| | - Liheng Wu
- Stanford Synchrotron Radiation Lightsource SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA, 94025, USA
- Department of Chemical Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Amani M Ebrahim
- Stanford Synchrotron Radiation Lightsource SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA, 94025, USA
| | - Miaofang Chi
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, 5200, 1 Bethel Valley Rd, Oak Ridge, TN, 37830, USA
| | - Haoyang Ni
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, 5200, 1 Bethel Valley Rd, Oak Ridge, TN, 37830, USA
| | - Matteo Cargnello
- Department of Chemical Engineering, Stanford University, Stanford, CA, 94305, USA
- SUNCAT Center for Interface Science and Catalysis, SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA
| | - Simon R Bare
- Stanford Synchrotron Radiation Lightsource SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA, 94025, USA
- SUNCAT Center for Interface Science and Catalysis, SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA
| |
Collapse
|
3
|
Choi YS, Kim JR, Hwang JH, Roh HS, Koh HL. Effect of reduction temperature on the activity of Pt-Sn/Al2O3 catalysts for propane dehydrogenation. Catal Today 2022. [DOI: 10.1016/j.cattod.2022.11.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
4
|
Yang F, Zhang J, Shi Z, Chen J, Wang G, He J, Zhao J, Zhuo R, Wang R. Advanced design and development of catalysts in propane dehydrogenation. NANOSCALE 2022; 14:9963-9988. [PMID: 35815671 DOI: 10.1039/d2nr02208g] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Propane dehydrogenation (PDH) is an industrial technology for direct propylene production, which has received extensive attention and realized large-scale application. At present, the commercial Pt/Cr-based catalysts suffer from fast deactivation and inferior stability resulting from active species sintering and coke depositing. To overcome the above problems, several strategies such as the modification of the support and the introduction of additives have been proposed to strengthen the catalytic performance and prolong the robust stability of Pt/Cr-based catalysts. This review firstly gives a brief description of the development of PDH and PDH catalysts. Then, the advanced research progress of supported noble metals and non-noble metals together with metal-free materials for PDH is systematically summarized along with the material design and active origin as well as the existing problems in the development of PDH catalysts. Furthermore, the review also emphasizes advanced synthetic strategies based on novel design of PDH catalysts with improved dehydrogenation activity and stability. Finally, the future challenges and directions of PDH catalysts are provided for the development of their further industrial application.
Collapse
Affiliation(s)
- Fuwen Yang
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, China.
| | - Jie Zhang
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, China.
| | - Zongbo Shi
- REZEL Catalysts Corporation, Shanghai 200120, China
| | - Jinwei Chen
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, China.
- Engineering Research Center of Alternative Energy Materials & Devices, Ministry of Education, Sichuan University, Chengdu 610065, China
| | - Gang Wang
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, China.
| | - Junjie He
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, China.
| | - Junyu Zhao
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, China.
| | | | - Ruilin Wang
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, China.
- Engineering Research Center of Alternative Energy Materials & Devices, Ministry of Education, Sichuan University, Chengdu 610065, China
| |
Collapse
|