1
|
Chaudhary S, Pan Q, Wu Y, Bibi Z, Li X, Jia Q, Sun Y. The Efficient and Environmentally Friendly Chlorination of Arene, Alcohol, Halobenzene, and Peroxide Catalyzed by Fe-Ba Binary Oxides Using Hydrochloric Acid as Chlorine Source and Aqueous H 2O 2 as Oxidant. Molecules 2024; 29:5451. [PMID: 39598840 PMCID: PMC11597577 DOI: 10.3390/molecules29225451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 11/10/2024] [Accepted: 11/16/2024] [Indexed: 11/29/2024] Open
Abstract
A series of Fe-Ba mixed oxides, including a pure Fe-containing sample as a reference, have been synthesized via a sol-gel process using Fe3+ or Fe2+ salts and BaSO4 as raw materials, with Pluronic P123 serving as a template. These oxides have been thoroughly characterized and subsequently utilized as catalysts for the chlorination of various organic molecules. Commercial hydrochloric acid, known for its relative safety, and environmentally friendly aqueous hydrogen peroxide were employed as the chlorine source and oxidant, respectively. The pure Fe-containing catalyst displays excellent thermal stability between 600 and 800 °C and exhibited moderate to high conversions in the chlorination of toluene, benzene, and tert-butyl hydroperoxide, with remarkable ortho-selectivity in chlorination of toluene. The combination of Fe3+ salt with BaSO4 in the sol-gel process results in a Fe-Ba mixed oxide catalyst composed of BaO2, BaFe4O7, and Fe2O3, significantly enhancing the chlorination activity compared to that displayed by the pure Fe catalyst. Notably, the chlorination of tert-butyl hydroperoxide (TBHP) does not require additional oxidants such as H2O2, and involves both electrophilic substitution and nucleophilic addition. Notably, the chlorination of bromobenzene yields chlorobenzene as the sole product, a transformation that has not been previously reported. Overall, this catalytic chlorination system holds promise for advancing the chlorination industry and enhancing pharmaceutical production.
Collapse
Affiliation(s)
- Sidra Chaudhary
- Department of Applied Chemistry, School of Chemistry, Xi’an Jiaotong University, No. 28, Xianning West Road, Xi’an 710049, China; (S.C.); (Q.P.); (Y.W.); (Z.B.); (X.L.); (Q.J.)
| | - Qin Pan
- Department of Applied Chemistry, School of Chemistry, Xi’an Jiaotong University, No. 28, Xianning West Road, Xi’an 710049, China; (S.C.); (Q.P.); (Y.W.); (Z.B.); (X.L.); (Q.J.)
| | - Yong Wu
- Department of Applied Chemistry, School of Chemistry, Xi’an Jiaotong University, No. 28, Xianning West Road, Xi’an 710049, China; (S.C.); (Q.P.); (Y.W.); (Z.B.); (X.L.); (Q.J.)
- Xi’an Biomass Green Catalysis and Advanced Valorization International Science and Technology Cooperation Base, No. 28, Xianning West Road, Xi’an 710049, China
| | - Zainab Bibi
- Department of Applied Chemistry, School of Chemistry, Xi’an Jiaotong University, No. 28, Xianning West Road, Xi’an 710049, China; (S.C.); (Q.P.); (Y.W.); (Z.B.); (X.L.); (Q.J.)
| | - Xiaoyong Li
- Department of Applied Chemistry, School of Chemistry, Xi’an Jiaotong University, No. 28, Xianning West Road, Xi’an 710049, China; (S.C.); (Q.P.); (Y.W.); (Z.B.); (X.L.); (Q.J.)
- Xi’an Biomass Green Catalysis and Advanced Valorization International Science and Technology Cooperation Base, No. 28, Xianning West Road, Xi’an 710049, China
| | - Qinxiang Jia
- Department of Applied Chemistry, School of Chemistry, Xi’an Jiaotong University, No. 28, Xianning West Road, Xi’an 710049, China; (S.C.); (Q.P.); (Y.W.); (Z.B.); (X.L.); (Q.J.)
- Xi’an Biomass Green Catalysis and Advanced Valorization International Science and Technology Cooperation Base, No. 28, Xianning West Road, Xi’an 710049, China
| | - Yang Sun
- Department of Applied Chemistry, School of Chemistry, Xi’an Jiaotong University, No. 28, Xianning West Road, Xi’an 710049, China; (S.C.); (Q.P.); (Y.W.); (Z.B.); (X.L.); (Q.J.)
- Xi’an Biomass Green Catalysis and Advanced Valorization International Science and Technology Cooperation Base, No. 28, Xianning West Road, Xi’an 710049, China
| |
Collapse
|
2
|
Feng L, Zhang Q, Su J, Ma B, Wan Y, Zhong R, Zou R. Graphene-Oxide-Modified Metal-Organic Frameworks Embedded in Mixed-Matrix Membranes for Highly Efficient CO 2/N 2 Separation. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 14:24. [PMID: 38202479 PMCID: PMC10780323 DOI: 10.3390/nano14010024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 12/05/2023] [Accepted: 12/12/2023] [Indexed: 01/12/2024]
Abstract
MOF-74 (metal-organic framework) is utilized as a filler in mixed-matrix membranes (MMMs) to improve gas selectivity due to its unique one-dimensional hexagonal channels and high-density open metal sites (OMSs), which exhibit a strong affinity for CO2 molecules. Reducing the agglomeration of nanoparticles and improving the compatibility with the matrix can effectively avoid the existence of non-selective voids to improve the gas separation efficiency. We propose a novel, layer-by-layer modification strategy for MOF-74 with graphene oxide. Two-dimensional graphene oxide nanosheets as a supporting skeleton creatively improve the dispersion uniformity of MOFs in MMMs, enhance their interfacial compatibility, and thus optimize the selective gas permeability. Additionally, they extended the gas diffusion paths, thereby augmenting the dissolution selectivity. Compared with doping with a single component, the use of a GO skeleton to disperse MOF-74 into Pebax®1657 (Polyether Block Amide) achieved a significant improvement in terms of the gas separation effect. The CO2/N2 selectivity of Pebax®1657-MOF-74 (Ni)@GO membrane with a filler concentration of 10 wt% was 76.96, 197.2% higher than the pristine commercial membrane Pebax®1657. Our results highlight an effective way to improve the selective gas separation performance of MMMs by functionalizing the MOF supported by layered GO. As an efficient strategy for developing porous MOF-based gas separation membranes, this method holds particular promise for manufacturing advanced carbon dioxide separation membranes and also concentrates on improving CO2 capture with new membrane technologies, a key step in reducing greenhouse gas emissions through carbon capture and storage.
Collapse
Affiliation(s)
- Long Feng
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, No. 18 Fuxue Road, Changping District, Beijing 102249, China (J.S.)
| | - Qiuning Zhang
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, No. 18 Fuxue Road, Changping District, Beijing 102249, China (J.S.)
| | - Jianwen Su
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, No. 18 Fuxue Road, Changping District, Beijing 102249, China (J.S.)
| | - Bing Ma
- Beijing Key Laboratory for Theory and Technology of Advanced Battery Materials, School of Materials Science and Engineering, Peking University, No. 5 Yiheyuan Road, Haidian District, Beijing 100871, China
| | - Yinji Wan
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, No. 18 Fuxue Road, Changping District, Beijing 102249, China (J.S.)
| | - Ruiqin Zhong
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, No. 18 Fuxue Road, Changping District, Beijing 102249, China (J.S.)
| | - Ruqiang Zou
- Beijing Key Laboratory for Theory and Technology of Advanced Battery Materials, School of Materials Science and Engineering, Peking University, No. 5 Yiheyuan Road, Haidian District, Beijing 100871, China
| |
Collapse
|
3
|
Hassanzadeh H, Abedini R, Ghorbani M. CO 2 Separation over N 2 and CH 4 Light Gases in Sorbitol-Modified Poly(ether- block-amide) (Pebax 2533) Membrane. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c02760] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Hossein Hassanzadeh
- Enhanced Oil Recovery (EOR) and Gas Processing Research Lab, Faculty of Chemical Engineering, Babol Noshirvani University of Technology, 4714873113 Babol, Iran
| | - Reza Abedini
- Enhanced Oil Recovery (EOR) and Gas Processing Research Lab, Faculty of Chemical Engineering, Babol Noshirvani University of Technology, 4714873113 Babol, Iran
| | - Mohsen Ghorbani
- Polymer Research Lab, Faculty of Chemical Engineering, Babol Noshirvani University of Technology, 4714873113 Babol, Iran
| |
Collapse
|