1
|
Bülüç H, Durhan G, Kösemehmetoğlu K, Akpınar MG, Demirkazık F. Quantitative analysis of breast lesions on contrast-enhanced mammography and comparison with histopathological results. Acta Radiol 2025:2841851251333046. [PMID: 40232227 DOI: 10.1177/02841851251333046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2025]
Abstract
BackgroundContrast-enhanced mammography (CEM) is a promising and emerging digital mammography technique that improves diagnostic performance.PurposeTo quantitatively evaluate breast lesions on CEM and to investigate the effectiveness of CEM in differentiating benign lesions from malignancies. The secondary aim was to evaluate the effectiveness in lesion characterization of quantitative parameters derived from CEM, specifically relative signal density (RSD) and relative signal change (RSC).Material and MethodsA retrospective analysis was conducted of 170 lesions in 164 female patients who underwent CEM. Lesions were grouped as benign, non-infiltrating, and infiltrating cancer. RSD between lesion and background, including fatty and glandular tissue, was measured. RSCs between former (CC) and latter (MLO) images were calculated and contrast enhancement patterns were obtained. The association between CEM values and pathological results was analyzed.ResultsRelative signal differences on both CC and MLO CEM views showed higher relative signal density in infiltrating tumors than benign ones regardless of whether glandular tissue or fat tissue was used in proportion while different infiltrating malignant subgroups showed no statistical significance according to quantitative analysis (P < 0.001). No significant differences in contrast enhancement patterns (ascending, steady, and descending) were seen either between benign and malignant groups or among malignant subtypes.ConclusionCEM can be used to distinguish between benign and malignant breast lesions, regardless of fat or glandular tissue. However, no difference was observed between benign and malignant lesions according to the contrast-enhancement patterns. Therefore, contrast enhancement patterns in CEM and breast MRI may differ.
Collapse
Affiliation(s)
- Hüseyin Bülüç
- Department of Radiology, Çanakkale Mehmet Akif Ersoy State Hospital, Çanakkale, Turkey
| | - Gamze Durhan
- Department of Radiology, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Kemal Kösemehmetoğlu
- Department of Pathology, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | | | - Figen Demirkazık
- Department of Radiology, Hacettepe University Faculty of Medicine, Ankara, Turkey
| |
Collapse
|
2
|
Barco I, González C, García-Font M, Fernández AG, Fraile M, Tarroch X, Morlius X, Vidal MC, González S, Mitru CB, Vallejo E, Molina G, Torras M, Chabrera C. Low versus null HER2 tumour expression in "HER2-negative" breast cancer: long-term outcomes based on phenotypes. Clin Transl Oncol 2025:10.1007/s12094-025-03882-5. [PMID: 40186088 DOI: 10.1007/s12094-025-03882-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Accepted: 02/19/2025] [Indexed: 04/07/2025]
Abstract
BACKGROUND Two new categories of breast cancer (BC) have been proposed among HER2-negative patients: HER2 0 + and HER2-low breast cancer. We combined these two categories with Perou's classification. We aimed to identify potential differences in clinicopathological features and prognosis using a new, unofficial classification: Luminal A HER2 0 + , Luminal A HER2-Low, Luminal B HER2 0 + , Luminal B HER2- Low, Triple Negative HER2 0 + , and Triple Negative HER2-Low. PATIENTS AND METHODS We conducted a retrospective analysis of our database from January 1, 2005, to December 31, 2018. Cox Regression served as the basis for our study. RESULTS We identified 1704 BC tumor cases from 1,639 HER2-negative patients (65 had bilateral BC). Among these, 608 cases were HER2 0 + , and 1096 were HER2-Low (aggregate). The median follow-up period was 120 months after surgery. None of the patients received anti-HER2 therapy. Case distribution was as follows: Luminal A HER2 0 + : 259. Luminal A HER2-low: 501. Luminal B HER2 0 + : 219. Luminal B HER2-low: 499. Triple-Negative HER2 0 + : 130. Triple-Negative HER2-low: 96. There was a 12.2% excess in the Triple Negative rate in the HER2 0 + group, compared with the HER2 Low group (aggregate), which was highly significant (Chisquare, p < 0.01). Although the HER2 0 + versus HER2 Low Hazard Ratio (HR) for Specific Mortality was of borderline significance:1.39 (IC 1.00-1.92, p = 0.049), the TN imbalance complicated a direct comparison between the two groups. After stratification using the noncanonical classification, the HR was highly significant, but only for the Luminal A subtype: 2.28 (IC 1.09-4.36, p = 0.028). COMMENTS In the noncanonical classification, the effect of the unbalanced Triple-Negative proportions disappeared, and a significant finding emerged: HER2 0 + status had a negative prognostic influence exclusively in Luminal A patients.
Collapse
Affiliation(s)
- Israel Barco
- Breast Unit Department of Gynecology, Research Foundation Mútua Terrassa/University of Barcelona/Hospital of Mútua Terrassa, Terrassa, Barcelona, Spain.
| | - Clarisa González
- Department of Pathology, Research Foundation Mútua Terrassa/University of Barcelona/Hospital of Mútua Terrassa, Terrassa, Barcelona, Spain
| | | | - Antonio García Fernández
- Breast Unit Department of Gynecology, Research Foundation Mútua Terrassa/University of Barcelona/Hospital of Mútua Terrassa, Terrassa, Barcelona, Spain
| | - Manel Fraile
- Nuclear Medicine Department, University Hospital of Mútua Terrassa and University Hospital Germans Trias I Pujol, Barcelona, Spain
| | - Xavier Tarroch
- Department of Pathology, Research Foundation Mútua Terrassa/University of Barcelona/Hospital of Mútua Terrassa, Terrassa, Barcelona, Spain
| | - Xavier Morlius
- Department of Pathology, Research Foundation Mútua Terrassa/University of Barcelona/Hospital of Mútua Terrassa, Terrassa, Barcelona, Spain
| | - MCarmen Vidal
- Department of Breastfeeding, Sexual and Reproductive Health Care Program, Catalan Institute of Health, Barcelona, Spain
| | - Sonia González
- Breast Unit Department of Oncology, Research Foundation Mútua Terrassa/University of Barcelona/Hospital of Mútua Terrassa, Terrassa, Barcelona, Spain
| | - Claudia B Mitru
- Breast Unit Department of Surgery, Research Foundation Mútua Terrassa/University of Barcelona/Hospital of Mútua Terrassa, Terrassa, Barcelona, Spain
| | - Elena Vallejo
- Breast Unit Department of Gynecology, Research Foundation Mútua Terrassa/University of Barcelona/Hospital of Mútua Terrassa, Terrassa, Barcelona, Spain
| | - Gerard Molina
- Breast Unit Department of Gynecology, Research Foundation Mútua Terrassa/University of Barcelona/Hospital of Mútua Terrassa, Terrassa, Barcelona, Spain
| | - Marta Torras
- Breast Unit Department of Gynecology, Research Foundation Mútua Terrassa/University of Barcelona/Hospital of Mútua Terrassa, Terrassa, Barcelona, Spain
| | - Carolina Chabrera
- Tecnocampus, Research Group in Attention to Chronicity and Innovation in Health (GRACIS), Universitat Pompeu Fabra, Barcelona, Spain
| |
Collapse
|
3
|
Chen D, Jiang J, Zhang W, Li X, Ge Q, Liu X, Li X. Tripartite motif-containing protein 50 suppresses triple-negative breast cancer progression by regulating the epithelial-mesenchymal transition. Cancer Biol Ther 2024; 25:2427410. [PMID: 39538371 PMCID: PMC11572070 DOI: 10.1080/15384047.2024.2427410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 11/02/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND AND OBJECTIVES Tripartite motif-containing protein 50 (TRIM50) is a recently discovered E3 ubiquitin ligase that participates in tumor progression. TRIM50 is overexpressed in many cancers, although few studies focused on TRIM50's role in breast cancer. METHODS We overexpressed TRIM50 in triple-negative breast cancer cell lines using plasmid and found that TRIM50 upregulation markedly reduced breast cancer cell proliferation, clone formation, and migration, as well as promoted breast cancer cell apoptosis. Western blotting revealed that accumulated TRIM50 resulted in both mRNA and protein depletion of SNAI1, and partially attenuated the epithelial-mesenchymal transition (EMT) induced by SNAI1. RESULTS In this study, we demonstrate that TRIM50 is downregulated in human breast cancer and that its overexpression closely correlates with diminished invasion capacity in breast cancer, suggesting that TRIM50 may serve as a diagnostic marker and therapeutic target. CONCLUSION TRIM50 plays a key role in breast cancer proliferation and potentially serves as a prognostic and therapeutic target.
Collapse
Affiliation(s)
- Danxiang Chen
- Department of Oncology, Ningbo No. 2 Hospital, Ningbo, Zhejiang, PR China
- Department of Breast Surgery, Ningbo No. 2 Hospital, Ningbo, Zhejiang, China
| | - Jing Jiang
- Department of Oncology, Ningbo No. 2 Hospital, Ningbo, Zhejiang, PR China
- Department of Breast Surgery, Ningbo No. 2 Hospital, Ningbo, Zhejiang, China
| | - Wei Zhang
- Department of Oncology, Ningbo No. 2 Hospital, Ningbo, Zhejiang, PR China
- Department of Breast Surgery, Ningbo No. 2 Hospital, Ningbo, Zhejiang, China
| | - Xinlin Li
- Department of Oncology, Ningbo No. 2 Hospital, Ningbo, Zhejiang, PR China
- Department of Breast Surgery, Ningbo No. 2 Hospital, Ningbo, Zhejiang, China
| | - Qidong Ge
- Department of Oncology, Ningbo No. 2 Hospital, Ningbo, Zhejiang, PR China
- Department of Breast Surgery, Ningbo No. 2 Hospital, Ningbo, Zhejiang, China
| | - Xia Liu
- Department of Anesthesiology, Ningbo 1st Hospital, Ningbo, Zhejiang, China
| | - Xujun Li
- Department of Oncology, Ningbo No. 2 Hospital, Ningbo, Zhejiang, PR China
- Department of Breast Surgery, Ningbo No. 2 Hospital, Ningbo, Zhejiang, China
| |
Collapse
|
4
|
Xu Q, Feng X, Qin S, Hong Y, Cui R, Liang J, Xiao Z, Li Y. Research on therapeutic clinical trials including immunotherapy in triple-negative breast cancer: a bibliometric analysis. Front Oncol 2024; 14:1423924. [PMID: 39469651 PMCID: PMC11513593 DOI: 10.3389/fonc.2024.1423924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 09/03/2024] [Indexed: 10/30/2024] Open
Abstract
Background Breast cancer, particularly triple-negative (TNBC), is a leading malignancy with aggressive traits and high metastasis rates. Clinical trial is an important tool for optimizing therapeutic strategies in the evaluation of the safety and efficacy for TNBC. Our bibliometric study of TNBC clinical trials aims to assess therapeutic strategies, identify trends, and explore advancements in treatment. We focus on mapping knowledge development, including key research entities and topics, and analyzing research trends and emerging methods. This analysis intends to inform future research, especially in personalized and precision medicine for TNBC. Methods We selected publications on clinical trials for the treatment of TNBC from 1997 to 2024 in the Web of Science Core Collection (WoSCC). After an initial screening, we downloaded key data including titles, publication years, authors, countries, institutional affiliations, journals, keywords, and abstracts, and saved them in BibTex format. We then conducted a bibliometric analysis using Bibliometrix in R and VOSviewer to illustrate the prospects, highlights, and trends of TNBC treatment options. Furthermore, to emphasize the hot topics in TNBC treatment strategies, we performed a bibliometric analysis of immunotherapy using the same approach. Results 1907 publications were included, most of which were from China, Italy, and the United States. The number of annual publications has increased dramatically since 2010. The focus of TNBC clinical trial research has shifted from understanding the biology, such as breast cancer subtyping and genotyping, to novel therapeutic approaches. The major advancement in clinical trials is the switch from late-stage palliative treatment to early preoperative neoadjuvant therapy, as more TNBC cases are discovered at an early stage. Immunotherapy is also highlighted with additional alternatives for advanced or metastasized TNBC, such as targeted inhibitors with unusual mutation rates and antibody drug conjugates (ADC). Conclusions This investigation made it apparent how immunotherapy has recently made major advancements in TNBC treatment plans and how ADCs, or targeted therapies, are currently popular for TNBC. By identifying significant papers, comprehending trending topics, and collaborating across multiple disciplines, this study may accelerate research on TNBC therapy options.
Collapse
Affiliation(s)
- Qi Xu
- The First Clinical College and Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Xiaoyu Feng
- The First Clinical College and Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Siyuan Qin
- The First Clinical College and Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Yu Hong
- The First Clinical College and Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Rui Cui
- The First Clinical College and Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Jia Liang
- The First Clinical College and Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Zhuya Xiao
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Yuan Li
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China
| |
Collapse
|
5
|
Jézéquel P, Lasla H, Gouraud W, Basseville A, Michel B, Frenel JS, Juin PP, Ben Azzouz F, Campone M. Mesenchymal-like immune-altered is the fourth robust triple-negative breast cancer molecular subtype. Breast Cancer 2024; 31:825-840. [PMID: 38777987 DOI: 10.1007/s12282-024-01597-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 05/16/2024] [Indexed: 05/25/2024]
Abstract
BACKGROUND Robust molecular subtyping of triple-negative breast cancer (TNBC) is a prerequisite for the success of precision medicine. Today, there is a clear consensus on three TNBC molecular subtypes: luminal androgen receptor (LAR), basal-like immune-activated (BLIA), and basal-like immune-suppressed (BLIS). However, the debate about the robustness of other subtypes is still open. METHODS An unprecedented number (n = 1942) of TNBC patient data was collected. Microarray- and RNAseq-based cohorts were independently investigated. Unsupervised analyses were conducted using k-means consensus clustering. Clusters of patients were then functionally annotated using different approaches. Prediction of response to chemotherapy and targeted therapies, immune checkpoint blockade, and radiotherapy were also screened for each TNBC subtype. RESULTS Four TNBC subtypes were identified in the cohort: LAR (19.36%); mesenchymal stem-like (MSL/MES) (17.35%); BLIA (31.06%); and BLIS (32.23%). Regarding the MSL/MES subtype, we suggest renaming it to mesenchymal-like immune-altered (MLIA) to emphasize its specific histological background and nature of immune response. Treatment response prediction results show, among other things, that despite immune activation, immune checkpoint blockade is probably less or completely ineffective in MLIA, possibly caused by mesenchymal background and/or an enrichment in dysfunctional cytotoxic T lymphocytes. TNBC subtyping results were included in the bc-GenExMiner v5.0 webtool ( http://bcgenex.ico.unicancer.fr ). CONCLUSION The mesenchymal TNBC subtype is characterized by an exhausted and altered immune response, and resistance to immune checkpoint inhibitors. Consensus for molecular classification of TNBC subtyping and prediction of cancer treatment responses helps usher in the era of precision medicine for TNBC patients.
Collapse
Affiliation(s)
- Pascal Jézéquel
- Institut de Cancérologie de l'Ouest, 44805, Saint Herblain, France.
- Nantes Université, Univ Angers, INSERM, CNRS, CRCI2NA, 44000, Nantes, France.
- Équipe Labellisée LIGUE Contre Le Cancer CRCI2NA, 44000, Nantes, France.
| | - Hamza Lasla
- Institut de Cancérologie de l'Ouest, 44805, Saint Herblain, France
| | - Wilfried Gouraud
- Institut de Cancérologie de l'Ouest, 44805, Saint Herblain, France
| | - Agnès Basseville
- Institut de Cancérologie de l'Ouest, 44805, Saint Herblain, France
| | - Bertrand Michel
- Nantes Université, École Centrale Nantes, CNRS, Laboratoire de Mathématiques Jean Leray, LMJL, UMR 6629, 44000, Nantes, France
| | - Jean-Sébastien Frenel
- Institut de Cancérologie de l'Ouest, 44805, Saint Herblain, France
- Nantes Université, Univ Angers, INSERM, CNRS, CRCI2NA, 44000, Nantes, France
- Équipe Labellisée LIGUE Contre Le Cancer CRCI2NA, 44000, Nantes, France
| | - Philippe P Juin
- Nantes Université, Univ Angers, INSERM, CNRS, CRCI2NA, 44000, Nantes, France
- Équipe Labellisée LIGUE Contre Le Cancer CRCI2NA, 44000, Nantes, France
| | | | - Mario Campone
- Institut de Cancérologie de l'Ouest, 44805, Saint Herblain, France
- Nantes Université, Univ Angers, INSERM, CNRS, CRCI2NA, 44000, Nantes, France
- Équipe Labellisée LIGUE Contre Le Cancer CRCI2NA, 44000, Nantes, France
- Université d'Angers, 49000, Angers, France
| |
Collapse
|
6
|
Liskova V, Chovancova B, Galvankova K, Klena L, Matyasova K, Babula P, Grman M, Rezuchova I, Bartosova M, Krizanova O. Slow Sulfide Donor GYY4137 Increased the Sensitivity of Two Breast Cancer Cell Lines to Paclitaxel by Different Mechanisms. Biomolecules 2024; 14:651. [PMID: 38927055 PMCID: PMC11202087 DOI: 10.3390/biom14060651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/22/2024] [Accepted: 05/29/2024] [Indexed: 06/28/2024] Open
Abstract
Paclitaxel (PTX) is a chemotherapeutic agent affecting microtubule polymerization. The efficacy of PTX depends on the type of tumor, and its improvement would be beneficial in patients' treatment. Therefore, we tested the effect of slow sulfide donor GYY4137 on paclitaxel sensitivity in two different breast cancer cell lines, MDA-MB-231, derived from a triple negative cell line, and JIMT1, which overexpresses HER2 and is resistant to trastuzumab. In JIMT1 and MDA-MB-231 cells, we compared IC50 and some metabolic (apoptosis induction, lactate/pyruvate conversion, production of reactive oxygen species, etc.), morphologic (changes in cytoskeleton), and functional (migration, angiogenesis) parameters for PTX and PTX/GYY4137, aiming to determine the mechanism of the sensitization of PTX. We observed improved sensitivity to paclitaxel in the presence of GYY4137 in both cell lines, but also some differences in apoptosis induction and pyruvate/lactate conversion between these cells. In MDA-MB-231 cells, GYY4137 increased apoptosis without affecting the IP3R1 protein, changing the morphology of the cytoskeleton. A mechanism of PTX sensitization by GYY4137 in JIMT1 cells is distinct from MDA-MB-231, and remains to be further elucidated. We suggest different mechanisms of action for H2S on the paclitaxel treatment of MDA-MB-231 and JIMT1 breast cancer cell lines.
Collapse
Affiliation(s)
- Veronika Liskova
- Institute of Clinical and Translational Research, Biomedical Research Center, Slovak Academy of Sciences, Dubravska Cesta 9, 845 05 Bratislava, Slovakia; (V.L.); (K.G.); (L.K.); (M.G.)
| | - Barbora Chovancova
- Institute of Clinical and Translational Research, Biomedical Research Center, Slovak Academy of Sciences, Dubravska Cesta 9, 845 05 Bratislava, Slovakia; (V.L.); (K.G.); (L.K.); (M.G.)
| | - Kristina Galvankova
- Institute of Clinical and Translational Research, Biomedical Research Center, Slovak Academy of Sciences, Dubravska Cesta 9, 845 05 Bratislava, Slovakia; (V.L.); (K.G.); (L.K.); (M.G.)
| | - Ladislav Klena
- Institute of Clinical and Translational Research, Biomedical Research Center, Slovak Academy of Sciences, Dubravska Cesta 9, 845 05 Bratislava, Slovakia; (V.L.); (K.G.); (L.K.); (M.G.)
| | - Katarina Matyasova
- Institute of Clinical and Translational Research, Biomedical Research Center, Slovak Academy of Sciences, Dubravska Cesta 9, 845 05 Bratislava, Slovakia; (V.L.); (K.G.); (L.K.); (M.G.)
| | - Petr Babula
- Department of Physiology, Faculty of Medicine, Masaryk University, Kamenice 753/5, 625 00 Brno, Czech Republic;
| | - Marian Grman
- Institute of Clinical and Translational Research, Biomedical Research Center, Slovak Academy of Sciences, Dubravska Cesta 9, 845 05 Bratislava, Slovakia; (V.L.); (K.G.); (L.K.); (M.G.)
| | - Ingeborg Rezuchova
- Institute of Virology, Biomedical Research Center, Slovak Academy of Sciences, Dubravska Cesta 9, 84505 Bratislava, Slovakia; (I.R.); (M.B.)
| | - Maria Bartosova
- Institute of Virology, Biomedical Research Center, Slovak Academy of Sciences, Dubravska Cesta 9, 84505 Bratislava, Slovakia; (I.R.); (M.B.)
| | - Olga Krizanova
- Institute of Clinical and Translational Research, Biomedical Research Center, Slovak Academy of Sciences, Dubravska Cesta 9, 845 05 Bratislava, Slovakia; (V.L.); (K.G.); (L.K.); (M.G.)
- Department of Physiology, Faculty of Medicine, Masaryk University, Kamenice 753/5, 625 00 Brno, Czech Republic;
| |
Collapse
|
7
|
Wood SJ, Gao Y, Lee JH, Chen J, Wang Q, Meisel JL, Li X. High tumor infiltrating lymphocytes are significantly associated with pathological complete response in triple negative breast cancer treated with neoadjuvant KEYNOTE-522 chemoimmunotherapy. Breast Cancer Res Treat 2024; 205:193-199. [PMID: 38286889 DOI: 10.1007/s10549-023-07233-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 12/14/2023] [Indexed: 01/31/2024]
Abstract
INTRODUCTION For patients with locally advanced triple negative breast cancer (TNBC), the standard of care is to administer the KEYNOTE-522 (K522) regimen, including chemotherapy and immunotherapy (pembrolizumab) given in the neoadjuvant setting. Pathological complete response (pCR) is more likely in patients who receive the K522 regimen than in patients who receive standard chemotherapy. Studies have shown that pCR is a strong predictor of long-term disease-free survival. However, factors predicting pCR to K522 are not well understood and require further study in real-world populations. METHODS We evaluated 76 patients who were treated with the K522 regimen at our institution. Twenty-nine pre-treatment biopsy slides were available for pathology review. Nuclear grade, Nottingham histologic grade, Ki-67, lymphovascular invasion, and tumor infiltrating lymphocytes (TIL) were evaluated in these 29 cases. For the cases that did not have available slides for review from pre-treatment biopsies, these variables were retrieved from available pathology reports. In addition, clinical staging, race, and BMI at the time of biopsy were retrieved from all 76 patients' charts. Binary logistic regression models were used to correlate these variables with pCR. RESULTS At the current time, 64 of 76 patients have undergone surgery at our institution following completion of K522 and 31 (48.4%) of these achieved pCR. In univariate analysis, only TIL was significantly associated with pCR (p = 0.014) and this finding was also confirmed in multivariate analysis, whereas other variables including age, race, nuclear grade, Nottingham grade, Ki-67, lymphovascular invasion, BMI, pre-treatment tumor size, and lymph node status were not associated with pCR (p > 0.1). CONCLUSION Our real-world data demonstrates high TIL is significantly associated with pCR rate in the K522 regimen and may potentially serve as a biomarker to select optimal treatment. The pCR rate of 48.4% in our study is lower than that reported in K522, potentially due to the smaller size of our study; however, this may also indicate differences between real-world data and clinical trial results. Larger studies are warranted to further investigate the role of immune cells in TNBC response to K522 and other treatment regimens.
Collapse
Affiliation(s)
- Sarah J Wood
- Department of Hematology and Medical Oncology, Emory University, Atlanta, GA, USA
| | - Yuan Gao
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA, USA
| | - Ji-Hoon Lee
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA, USA
- The Parker H. Petit Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA
| | - Jessica Chen
- Emory College of Arts and Sciences, Emory University, Atlanta, GA, USA
| | - Qun Wang
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA, USA
| | - Jane L Meisel
- Department of Hematology and Medical Oncology, Emory University, Atlanta, GA, USA.
| | - Xiaoxian Li
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA, USA.
| |
Collapse
|
8
|
Almeida-Ferreira C, Marto CM, Carmo C, Almeida-Ferreira J, Frutuoso C, Carvalho MJ, Botelho MF, Laranjo M. Efficacy of Cold Atmospheric Plasma vs. Chemotherapy in Triple-Negative Breast Cancer: A Systematic Review. Int J Mol Sci 2024; 25:3254. [PMID: 38542225 PMCID: PMC10970295 DOI: 10.3390/ijms25063254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/05/2024] [Accepted: 03/06/2024] [Indexed: 04/09/2024] Open
Abstract
Breast cancer is a growing disease, with a high worldwide incidence and mortality rate among women. Among the various types, the treatment of triple-negative breast cancer (TNBC) remains a challenge. Considering the recent advances in cold atmospheric plasma (CAP) cancer research, our goal was to evaluate efficacy data from studies based on chemotherapy and CAP in TNBC cell lines and animal models. A search of the literature was carried out in the PubMed, Web of Science, Cochrane Library, and Embase databases. Of the 10,999 studies, there were fifty-four in vitro studies, three in vivo studies, and two in vitro and in vivo studies included. MDA-MB-231 cells were the most used. MTT, MTS, SRB, annexin-V/propidium iodide, trypan blue, and clonogenic assay were performed to assess efficacy in vitro, increasing the reliability and comprehensiveness of the data. There was found to be a decrease in cell proliferation after both chemotherapy and CAP; however, different protocol settings, including an extensive range of drug doses and CAP exposure times, were reported. For both therapies, a considerable reduction in tumor volume was observed in vivo compared with that of the untreated group. The treatment of TNBC cell lines with CAP proved successful, with apoptosis emerging as the predominant type of cellular death. This systematic review presents a comprehensive overview of the treatment landscape in chemotherapy and CAP regarding their efficacy in TNBC cell lines.
Collapse
Affiliation(s)
- Catarina Almeida-Ferreira
- Institute for Clinical and Biomedical Research (iCBR), Area of Environment Genetics and Oncobiology (CIMAGO), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; (C.A.-F.); (C.M.M.); (C.C.); (C.F.); (M.J.C.); (M.F.B.)
- Institute of Biophysics, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), 3000-548 Coimbra, Portugal
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Carlos Miguel Marto
- Institute for Clinical and Biomedical Research (iCBR), Area of Environment Genetics and Oncobiology (CIMAGO), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; (C.A.-F.); (C.M.M.); (C.C.); (C.F.); (M.J.C.); (M.F.B.)
- Institute of Biophysics, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), 3000-548 Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), University of Coimbra, 3000-354 Coimbra, Portugal
- Institute of Integrated Clinical Practice, Faculty of Medicine, University of Coimbra, 3000-354 Coimbra, Portugal
- Laboratory for Evidence-Based Sciences and Precision Dentistry, Faculty of Medicine, University of Coimbra, 3000-075 Coimbra, Portugal
- Institute of Experimental Pathology, Faculty of Medicine, University of Coimbra, 3000-354 Coimbra, Portugal
| | - Chrislaura Carmo
- Institute for Clinical and Biomedical Research (iCBR), Area of Environment Genetics and Oncobiology (CIMAGO), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; (C.A.-F.); (C.M.M.); (C.C.); (C.F.); (M.J.C.); (M.F.B.)
- Institute of Biophysics, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
- Coimbra Chemistry Center (CQC), Department of Chemistry, Faculty of Sciences and Technology, University of Coimbra, 3004-535 Coimbra, Portugal
| | | | - Cristina Frutuoso
- Institute for Clinical and Biomedical Research (iCBR), Area of Environment Genetics and Oncobiology (CIMAGO), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; (C.A.-F.); (C.M.M.); (C.C.); (C.F.); (M.J.C.); (M.F.B.)
- Institute of Biophysics, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
- Gynecology Service, Coimbra Hospital and University Centre, Coimbra Health Local Unit, 3004-561 Coimbra, Portugal
| | - Maria João Carvalho
- Institute for Clinical and Biomedical Research (iCBR), Area of Environment Genetics and Oncobiology (CIMAGO), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; (C.A.-F.); (C.M.M.); (C.C.); (C.F.); (M.J.C.); (M.F.B.)
- Institute of Biophysics, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), 3000-548 Coimbra, Portugal
- Gynecology Service, Coimbra Hospital and University Centre, Coimbra Health Local Unit, 3004-561 Coimbra, Portugal
- Universitary Clinic of Gynecology, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Maria Filomena Botelho
- Institute for Clinical and Biomedical Research (iCBR), Area of Environment Genetics and Oncobiology (CIMAGO), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; (C.A.-F.); (C.M.M.); (C.C.); (C.F.); (M.J.C.); (M.F.B.)
- Institute of Biophysics, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), 3000-548 Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), University of Coimbra, 3000-354 Coimbra, Portugal
| | - Mafalda Laranjo
- Institute for Clinical and Biomedical Research (iCBR), Area of Environment Genetics and Oncobiology (CIMAGO), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; (C.A.-F.); (C.M.M.); (C.C.); (C.F.); (M.J.C.); (M.F.B.)
- Institute of Biophysics, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), 3000-548 Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), University of Coimbra, 3000-354 Coimbra, Portugal
| |
Collapse
|
9
|
Franchina M, Pizzimenti C, Fiorentino V, Martini M, Ricciardi GRR, Silvestris N, Ieni A, Tuccari G. Low and Ultra-Low HER2 in Human Breast Cancer: An Effort to Define New Neoplastic Subtypes. Int J Mol Sci 2023; 24:12795. [PMID: 37628975 PMCID: PMC10454084 DOI: 10.3390/ijms241612795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/09/2023] [Accepted: 08/13/2023] [Indexed: 08/27/2023] Open
Abstract
HER2-low and ultra-low breast cancer (BC) have been recently proposed as new subcategories of HER2 BC, supporting a re-consideration of immunohistochemical negative scores of 0, 1+ and the 2+/in situ hybridization (ISH) negative phenotype. In the present review, we outline the criteria needed to exactly distinguish HER2-low and ultra-low BC. Recent clinical trials have demonstrated significant clinical benefits of novel HER2 directing antibody-drug conjugates (ADCs) in treating these groups of tumors. In particular, trastuzumab-deruxtecan (T-Dxd), a HER2-directing ADC, has been recently approved by the US Food and Drug Administration as the first targeted therapy to treat HER2-low BC. Furthermore, ongoing trials, such as the DESTINY-Breast06 trial, are currently evaluating ADCs in patients with HER2-ultra low BC. Finally, we hope that new guidelines may help to codify HER2-low and ultra-low BC, increasing our knowledge of tumor biology and improving a targetable new therapeutical treatment.
Collapse
Affiliation(s)
- Mariausilia Franchina
- Department of Human Pathology in Adult and Developmental Age “Gaetano Barresi”, Section of Pathology, University of Messina, 98125 Messina, Italy; (M.F.); (V.F.); (M.M.); (N.S.); (A.I.)
| | - Cristina Pizzimenti
- Department of Biomedical, Dental, Morphological and Functional Imaging Sciences, University of Messina, 98125 Messina, Italy;
| | - Vincenzo Fiorentino
- Department of Human Pathology in Adult and Developmental Age “Gaetano Barresi”, Section of Pathology, University of Messina, 98125 Messina, Italy; (M.F.); (V.F.); (M.M.); (N.S.); (A.I.)
| | - Maurizio Martini
- Department of Human Pathology in Adult and Developmental Age “Gaetano Barresi”, Section of Pathology, University of Messina, 98125 Messina, Italy; (M.F.); (V.F.); (M.M.); (N.S.); (A.I.)
| | | | - Nicola Silvestris
- Department of Human Pathology in Adult and Developmental Age “Gaetano Barresi”, Section of Pathology, University of Messina, 98125 Messina, Italy; (M.F.); (V.F.); (M.M.); (N.S.); (A.I.)
| | - Antonio Ieni
- Department of Human Pathology in Adult and Developmental Age “Gaetano Barresi”, Section of Pathology, University of Messina, 98125 Messina, Italy; (M.F.); (V.F.); (M.M.); (N.S.); (A.I.)
| | - Giovanni Tuccari
- Department of Human Pathology in Adult and Developmental Age “Gaetano Barresi”, Section of Pathology, University of Messina, 98125 Messina, Italy; (M.F.); (V.F.); (M.M.); (N.S.); (A.I.)
| |
Collapse
|
10
|
Li G, Hu J, Cho C, Cui J, Li A, Ren P, Zhou J, Wei W, Zhang T, Liu X. Everolimus combined with PD-1 blockade inhibits progression of triple-negative breast cancer. Cell Signal 2023:110729. [PMID: 37257766 DOI: 10.1016/j.cellsig.2023.110729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 04/27/2023] [Accepted: 05/20/2023] [Indexed: 06/02/2023]
Abstract
Triple-negative breast cancer (TNBC) is an aggressive subtype of breast cancer. Due to rapid progression and a lack of targetable receptors, TNBC is exceptionally difficult to treat. Available treatment options are nonspecific cytotoxic agents, which have had modest success; thus, there is a need for novel therapies for TNBC. The mammalian/mechanistic target of rapamycin (mTOR) signaling pathway is aberrantly activated in TNBC, and this pathway has been shown to promote cancer cell survival and chemoresistance. As such, mTOR inhibition has been considered a potential therapeutic strategy for TNBC. The mTOR inhibitor everolimus (EVE) has been approved for the treatment of estrogen positive breast cancer; however, its efficacy in TNBC is still undetermined. In this study, we evaluated the effects of EVE monotherapy and the mechanism of EVE resistance in the 4 T1 model of TNBC. Whereas EVE monotherapy inhibited mTOR signaling activity, it did not attenuate tumor progression. Additionally, tumors from EVE-treated mice had abnormal vasculature characterized by disorganized architecture and hyperpermeability. We also found that treatment with EVE increased PD-L1 expression in intratumoral vascular endothelial cells, and this increase in endothelial cell-associated PD-L1 corresponded to reduced CD8 + T cell tumor infiltration. Importantly, combination treatment with anti-PD-1 antibody and EVE normalized the tumor vasculature, rescued CD8 + T cell tumor infiltration, and reduced tumor growth. Taken together, our findings improve our current understanding of mechanisms underlying mTOR inhibition resistance in TNBC and identify a novel combination treatment strategy in the treatment of mTOR resistant tumors.
Collapse
Affiliation(s)
- Guangxin Li
- Department of Breast and Thyroid Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong Province, China
| | - Jiajia Hu
- Department of Nuclear Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Christina Cho
- Department of Immunobiology, Yale University, New Haven, CT, USA
| | - Junwei Cui
- Department of Breast and Thyroid Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong Province, China
| | - Ao Li
- Department of Pharmacology and Vascular Biology and Therapeutic Program, Yale University School of Medicine, New Haven, CT, USA
| | - Pengwei Ren
- Department of Surgery, Yale University School of Medicine, New Haven, CT, USA
| | - Jichun Zhou
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Wei Wei
- Department of Breast and Thyroid Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong Province, China
| | - Tianxiang Zhang
- Department of Immunobiology, Yale University, New Haven, CT, USA.
| | - Xiaoling Liu
- Department of Breast and Thyroid Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong Province, China.
| |
Collapse
|
11
|
Jusino S, Rivera-Rivera Y, Chardón-Colón C, Rodríguez-Rodríguez PC, Román-González J, Juliá-Hernández VS, Isidro A, Mo Q, Saavedra HI. Sustained Shugoshin 1 downregulation reduces tumor growth and metastasis in a mouse xenograft tumor model of triple-negative breast cancer. Cell Div 2023; 18:6. [PMID: 37122033 PMCID: PMC10150544 DOI: 10.1186/s13008-023-00088-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 04/11/2023] [Indexed: 05/02/2023] Open
Abstract
BACKGROUND Triple-negative breast cancer (TBNC) is an aggressive breast cancer subtype with a poor prognosis. Shugoshin-1 (SGO1) protects chromatids from early separation. Previous studies from our group have demonstrated that transient SGO1 downregulation suppresses early stages of metastasis (the epithelial-to-mesenchymal transition, or EMT, cell invasion, and cell migration) in TNBC cells. Thus, the inhibition of SGO1 activity may represent a potential therapeutic intervention against cancers that progress to metastasis. Therefore, we aimed to investigate the effects of sustained shRNA-mediated SGO1 downregulation on tumor growth and metastasis in TBNC. To that end, female NOD-SCID Gamma (NSG) mice were injected with 2.5 × 106 shRNA Control (n = 10) or shRNA SGO1 (n = 10) MDA-MB-231 cells. After eight weeks, the number of mice with metastasis to the lymph nodes was calculated. Primary and metastatic tumors, as well as lung and liver tissue, were harvested, measured, sectioned, and stained with hematoxylin and eosin (H&E) stain. RESULTS Tumor growth and metastasis to the lymph nodes and lungs were significantly reduced in the shRNA SGO1-treated mice group, while metastasis to the liver tends to be lower in cells with downregulated SGO1, but it did not reach statistical significance. Furthermore, sustained SGO1 downregulation significantly reduced cell proliferation, cell migration, and invasion which correlated with lower levels of Snail, Slug, MMP2, MMP3, and MMP9. CONCLUSION The supression of SGO1 activity in TNBC harboring dysregulated expression of SGO1 may be a potential target for preventing breast cancer growth and metastasis.
Collapse
Affiliation(s)
- Shirley Jusino
- Department of Basic Sciences, Ponce Health Sciences University-Ponce Research Institute, 395 Zona Industrial Reparada 2, Ponce, Puerto Rico, 00716-2348, USA
| | - Yainyrette Rivera-Rivera
- Department of Basic Sciences, Ponce Health Sciences University-Ponce Research Institute, 395 Zona Industrial Reparada 2, Ponce, Puerto Rico, 00716-2348, USA
| | - Camille Chardón-Colón
- Department of Basic Sciences, Ponce Health Sciences University-Ponce Research Institute, 395 Zona Industrial Reparada 2, Ponce, Puerto Rico, 00716-2348, USA
| | - Patricia C Rodríguez-Rodríguez
- Department of Biology, University of Puerto Rico-Ponce, 2151 Avenida Santiago de los Caballeros, Ponce, Puerto Rico, 00716, USA
| | - Janeishly Román-González
- Department of Basic Sciences, Ponce Health Sciences University-Ponce Research Institute, 395 Zona Industrial Reparada 2, Ponce, Puerto Rico, 00716-2348, USA
| | - Valeria S Juliá-Hernández
- Department of Basic Sciences, Ponce Health Sciences University-Ponce Research Institute, 395 Zona Industrial Reparada 2, Ponce, Puerto Rico, 00716-2348, USA
| | - Angel Isidro
- Department of Basic Sciences, Division of Physiology, Ponce Health Sciences University-Ponce Research Institute, 395 Zona Industrial Reparada 2, Ponce, Puerto Rico, 00716-2348, USA
| | - Qianxing Mo
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center, 12902 USF Magnolia Drive, Tampa, Florida, 33612, USA
| | - Harold I Saavedra
- Department of Basic Sciences, Ponce Health Sciences University-Ponce Research Institute, 395 Zona Industrial Reparada 2, Ponce, Puerto Rico, 00716-2348, USA.
- Department of Basic Sciences, Division of Pharmacology and Cancer Biology, Ponce Health Sciences University-Ponce Research Institute, 7004, Ponce, Puerto Rico, 00732-7004, USA.
| |
Collapse
|
12
|
Lu B, Natarajan E, Balaji Raghavendran HR, Markandan UD. Molecular Classification, Treatment, and Genetic Biomarkers in Triple-Negative Breast Cancer: A Review. Technol Cancer Res Treat 2023; 22:15330338221145246. [PMID: 36601658 PMCID: PMC9829998 DOI: 10.1177/15330338221145246] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Breast cancer is the most common malignancy and the second most common cause of cancer-related mortality in women. Triple-negative breast cancers do not express estrogen receptors, progesterone receptors, or human epidermal growth factor receptor 2 and have a higher recurrence rate, greater metastatic potential, and lower overall survival rate than those of other breast cancers. Treatment of triple-negative breast cancer is challenging; molecular-targeted therapies are largely ineffective and there is no standard treatment. In this review, we evaluate current attempts to classify triple-negative breast cancers based on their molecular features. We also describe promising treatment methods with different advantages and discuss genetic biomarkers and other prediction tools. Accurate molecular classification of triple-negative breast cancers is critical for patient risk categorization, treatment decisions, and surveillance. This review offers new ideas for more effective treatment of triple-negative breast cancer and identifies novel targets for drug development.
Collapse
Affiliation(s)
- Boya Lu
- Department of Mechanical Engineering, Faculty of Engineering,
Technology and Built Environment, UCSI University,
Kuala Lumpur, Malaysia,Boya Lu, MD, Department of Mechanical
Engineering, Faculty of Engineering, Technology and Built Environment, UCSI
University, No 1, Jalan Menara Gading, UCSI Heights (Taman Connaught), Cheras,
56000, Kuala Lumpur, Malaysia.
| | - Elango Natarajan
- Department of Mechanical Engineering, Faculty of Engineering,
Technology and Built Environment, UCSI University,
Kuala Lumpur, Malaysia
| | - Hanumantha Rao Balaji Raghavendran
- Faculty of Clinical Research, Central Research Facility, Sri
Ramachandra Institute of Higher Education and Research, Chennai, Tamil Nadu,
India
| | | |
Collapse
|
13
|
Expression and Function of StAR in Cancerous and Non-Cancerous Human and Mouse Breast Tissues: New Insights into Diagnosis and Treatment of Hormone-Sensitive Breast Cancer. Int J Mol Sci 2023; 24:ijms24010758. [PMID: 36614200 PMCID: PMC9820903 DOI: 10.3390/ijms24010758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/21/2022] [Accepted: 12/29/2022] [Indexed: 01/04/2023] Open
Abstract
Breast cancer (BC) is primarily triggered by estrogens, especially 17β-estradiol (E2), which are synthesized by the aromatase enzyme. While all steroid hormones are derived from cholesterol, the rate-limiting step in steroid biosynthesis is mediated by the steroidogenic acute regulatory (StAR) protein. Herein, we demonstrate that StAR mRNA expression was aberrantly high in human hormone-dependent BC (MCF7, MDA-MB-361, and T-47D), modest in hormone-independent triple negative BC (TNBC; MDA-MB-468, BT-549, and MDA-MB-231), and had little to none in non-cancerous mammary epithelial (HMEC, MCF10A, and MCF12F) cells. In contrast, these cell lines showed abundant expression of aromatase (CYP19A1) mRNA. Immunofluorescence displayed qualitatively similar patterns of both StAR and aromatase expression in various breast cells. Additionally, three different transgenic (Tg) mouse models of spontaneous breast tumors, i.e., MMTV-Neu, MMTV-HRAS, and MMTV-PyMT, demonstrated markedly higher expression of StAR mRNA/protein in breast tumors than in normal mammary tissue. While breast tumors in these mouse models exhibited higher expression of ERα, ERβ, and PR mRNAs, their levels were undetected in TNBC tumors. Accumulation of E2 in plasma and breast tissues, from MMTV-PyMT and non-cancerous Tg mice, correlated with StAR, but not with aromatase, signifying the importance of StAR in governing E2 biosynthesis in mammary tissue. Treatment with a variety of histone deacetylase inhibitors (HDACIs) in primary cultures of enriched breast tumor epithelial cells, from MMTV-PyMT mice, resulted in suppression of StAR and E2 levels. Importantly, inhibition of StAR, concomitant with E2 synthesis, by various HDACIs, at clinical and preclinical doses, in MCF7 cells, indicated therapeutic relevance of StAR in hormone-dependent BCs. These findings provide insights into the molecular events underlying the differential expression of StAR in human and mouse cancerous and non-cancerous breast cells/tissues, highlighting StAR could serve not only as a novel diagnostic maker but also as a therapeutic target for the most prevalent hormone-sensitive BCs.
Collapse
|
14
|
Zhang H, Peng Y. Current Biological, Pathological and Clinical Landscape of HER2-Low Breast Cancer. Cancers (Basel) 2022; 15:126. [PMID: 36612123 PMCID: PMC9817919 DOI: 10.3390/cancers15010126] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/21/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022] Open
Abstract
HER2-low breast cancer (BC) is a newly defined subset of HER2-negative BC that has HER2 immunohistochemical (IHC) score of 1+ or score of 2+/in situ hybridization (ISH) negative phenotype. Recent clinical trials have demonstrated significant clinical benefits of novel HER2 directing antibody-drug conjugates (ADCs) in treating this group of tumors. Trastuzumab-deruxtecan (T-Dxd), a HER2-directing ADC was recently approved by the U.S. Food and Drug Administration as the first targeted therapy to treat HER2-low BC. However, HER2-low BC is still not well characterized clinically and pathologically. This review aims to update the current biological, pathological and clinical landscape of HER2-low BC based on the English literature published in the past two years and to propose the future directions on clinical management, pathology practice, and translational research in this subset of BC. We hope it would help better understand the tumor biology of HER2-low BC and the current efforts for identifying and treating this newly recognized targetable group of BC.
Collapse
Affiliation(s)
- Huina Zhang
- Department of Pathology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Yan Peng
- Department of Pathology and Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
15
|
Zhang Y, Mao C, Zhan Y, Zhao Y, Chen Y, Lin Y. Albumin-Coated Framework Nucleic Acids as Bionic Delivery System for Triple-Negative Breast Cancer Therapy. ACS APPLIED MATERIALS & INTERFACES 2022; 14:39819-39829. [PMID: 36001395 DOI: 10.1021/acsami.2c10612] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Triple-negative breast cancer (TNBC) is a subtype of breast cancer, and it has aggressive and more frequent tissue metastases than other breast cancer subtypes. Because the proliferation of TNBC tumor cells does not depend on estrogen receptor (ER), progesterone receptor (PR), and Erb-B2 receptor tyrosine kinase 2 (HER2) and lacks accurate drug targets, conventional chemotherapy is challenging to be effective, and adverse reactions are severe. At present, the treatment strategy for TNBC generally depends on a combination of surgery, radiotherapy, and chemotherapy. Conventional administration methods have minimal effects on TNBC and cause severe damage to normal tissues. Therefore, it is an urgent task to develop an efficient and practical way of drug delivery and open up a new horizon of targeted therapy for TNBC. In our work, bovine serum albumin (BSA) acted as the protective film to prolong the circulation time of the tetrahedral framework nucleic acid (tFNA) delivery system and resist immune clearance in vivo. tFNA was used as a carrier loaded with DOX and AS1411 aptamers for the targeted treatment of triple-negative breast cancer. Compared with existing approaches, this optimized system exhibits stronger tumor-targeting so that tFNAs can be more concentrated around the tumor tissue, reducing DOX toxicity to other organs. This bionic delivery system exhibited effective tumor growth inhibition in the TNBC mice model, offering the clinical potential to promote the treatment of TNBC with great potential for clinical translation.
Collapse
Affiliation(s)
- Yuxin Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Chenchen Mao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Yuxi Zhan
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Yuxuan Zhao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Ye Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Yunfeng Lin
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| |
Collapse
|
16
|
Crabtree JS, Miele L. Precision diagnostics in cancer: Predict, prevent, and personalize. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2022; 190:39-56. [DOI: 10.1016/bs.pmbts.2022.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|