1
|
Li P, Ma X, Huang D, Gu X. Exploring the roles of non-coding RNAs in liver regeneration. Noncoding RNA Res 2024; 9:945-953. [PMID: 38680418 PMCID: PMC11046251 DOI: 10.1016/j.ncrna.2024.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 03/26/2024] [Accepted: 04/16/2024] [Indexed: 05/01/2024] Open
Abstract
Liver regeneration (LR) is a complex process encompassing three distinct phases: priming, proliferation phase and restoration, all influenced by various regulatory factors. After liver damage or partial resection, the liver tissue demonstrates remarkable restorative capacity, driven by cellular proliferation and repair mechanisms. The essential roles of non-coding RNAs (ncRNAs), predominantly microRNAs (miRNAs), long non-coding RNAs (lncRNAs) and circular RNA (circRNA), in regulating LR have been vastly studied. Additionally, the impact of ncRNAs on LR and their abnormal expression profiles during this process have been extensively documented. Mechanistic investigations have revealed that ncRNAs interact with genes involved in proliferation to regulate hepatocyte proliferation, apoptosis and differentiation, along with liver progenitor cell proliferation and migration. Given the significant role of ncRNAs in LR, an in-depth exploration of their involvement in the liver's self-repair capacity can reveal promising therapeutic strategies for LR and liver-related diseases. Moreover, understanding the unique regenerative potential of the adult liver and the mechanisms and regulatory factors of ncRNAs in LR are crucial for improving current treatment strategies and exploring new therapeutic approaches for various liver-related diseases. This review provides a brief overview of the LR process and the ncRNA expression profiles during this process. Furthermore, we also elaborate on the specific molecular mechanisms through which multiple key ncRNAs regulate the LR process. Finally, based on the expression characteristics of ncRNAs and their interactions with proliferation-associated genes, we explore their potential clinical application, such as developing predictive indicators reflecting liver regenerative activity and manipulating LR processes for therapeutic purposes.
Collapse
Affiliation(s)
- Penghui Li
- Department of Oncology, The First Affiliated Hospital, College of Clinical Medicine, Henan University of Science and Technology, Luoyang, 471000, Henan, China
| | - Xiao Ma
- Zhejiang University School of Medicine, Hangzhou, 310000, Zhejiang, China
| | - Di Huang
- Department of Child Health Care, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, Henan, China
| | - Xinyu Gu
- Department of Oncology, The First Affiliated Hospital, College of Clinical Medicine, Henan University of Science and Technology, Luoyang, 471000, Henan, China
| |
Collapse
|
2
|
Dou Z, Lu F, Hu J, Li B, Li X. CBX7 silencing promoted liver regeneration by interacting with BMI1 and activating the Nrf2/ARE signaling pathway. Sci Rep 2024; 14:11008. [PMID: 38744845 PMCID: PMC11094083 DOI: 10.1038/s41598-024-58248-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 03/27/2024] [Indexed: 05/16/2024] Open
Abstract
Multiple studies have shown knockdown of chromobox 7 (CBX7) promotes the regenerative capacity of various cells or tissues. We examined the effect of CBX7 on hepatocyte proliferation and liver regeneration after 2/3 hepatectomy in a mouse model. For in vitro experiments, NCTC 1469 and BNL CL.2 hepatocytes were co-transfected with siRNA-CBX7-1 (si-CBX7-1), siRNA-CBX7-2 (si-CBX7-2), pcDNA-CBX7, si-BMI1-1, si-BMI1-2, pcDNA-BMI1, or their negative control. For in vivo experiments, mice were injected intraperitoneally with lentivirus-packaged shRNA and shRNA CBX7 before hepatectomy. Our results showed that CBX7 was rapidly induced in the early stage of liver regeneration. CBX7 regulated hepatocyte proliferation, cell cycle, and apoptosis of NCTC 1469 and BNL CL.2 hepatocytes. CBX7 interacted with BMI1 and inhibited BMI1 expression in hepatocytes. Silencing BMI1 aggregated the inhibitory effect of CBX7 overexpression on hepatocyte viability and the promotion of apoptosis. Furthermore, silencing BMI1 enhanced the regulatory effect of CBX7 on Nrf2/ARE signaling in HGF-induced hepatocytes. In vivo, CBX7 silencing enhanced liver/body weight ratio in PH mice. CBX7 silencing promoted the Ki67-positive cell count and decreased the Tunel-positive cell count after hepatectomy, and also increased the expression of nuclear Nrf2, HO-1, and NQO-1. Our results suggest that CBX7 silencing may increase survival following hepatectomy by promoting liver regeneration.
Collapse
Affiliation(s)
- Zhimin Dou
- The First School of Clinical Medicine, Lanzhou University, No. 199, Donggang West Road, Chengguan District, Lanzhou, 730000, Gansu, China
- Department of Critical Care Medicine, The First Hospital of Lanzhou University, Lanzhou, 730000, China
| | - Fei Lu
- The First School of Clinical Medicine, Lanzhou University, No. 199, Donggang West Road, Chengguan District, Lanzhou, 730000, Gansu, China
| | - Jinjing Hu
- Key Laboratory of Biotherapy and Regenerative Medicine of Gansu Province, No. 1 Donggang West Road, Chengguan District, Lanzhou, 730000, Gansu, China
| | - Bin Li
- Department of Critical Care Medicine, The First Hospital of Lanzhou University, Lanzhou, 730000, China
| | - Xun Li
- The First School of Clinical Medicine, Lanzhou University, No. 199, Donggang West Road, Chengguan District, Lanzhou, 730000, Gansu, China.
- Key Laboratory of Biotherapy and Regenerative Medicine of Gansu Province, No. 1 Donggang West Road, Chengguan District, Lanzhou, 730000, Gansu, China.
- Department of General Surgery, The First Hospital of Lanzhou University, No. 1 Donggang West Road, Chengguan District, Lanzhou, 730000, Gansu, China.
| |
Collapse
|
3
|
Wei H, Li F, Xue T, Wang H, Ju E, Li M, Tao Y. MicroRNA-122-functionalized DNA tetrahedron stimulate hepatic differentiation of human mesenchymal stem cells for acute liver failure therapy. Bioact Mater 2023; 28:50-60. [PMID: 37214257 PMCID: PMC10199164 DOI: 10.1016/j.bioactmat.2023.04.024] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/26/2023] [Accepted: 04/26/2023] [Indexed: 05/24/2023] Open
Abstract
As the most abundant liver-specific microRNA, microRNA-122 (miR122) played a crucial role in the differentiation of stem cells into hepatocytes. However, highly efficient miR122 delivery still confronts challenges including poor cellular uptake and easy biodegradation. Herein, we for the first time demonstrated that the tetrahedral DNA (TDN) nanoplatform had great potential in inducing the differentiation of human mesenchymal stem cells (hMSCs) into functional hepatocyte-like cells (HLCs) by transferring the liver-specific miR122 to hMSCs efficiently without any extrinsic factors. As compared with miR122, miR122-functionalized TDN (TDN-miR122) could significantly up-regulate the protein expression levels of mature hepatocyte markers and hepatocyte-specific marker genes in hMSCs, indicating that TDN-miR122 could particularly activate the hepatocyte-specific properties of hMSCs for developing cell-based therapies in vitro. The transcriptomic analysis further indicated the potential mechanism that TDN-miR122 assisted hMSCs differentiated into functional HLCs. The TDN-miR122-hMSCs exhibited hepatic cell morphology phenotype, significantly up-regulated specific hepatocyte genes and hepatic biofunctions in comparison with the undifferentiated MSCs. Preclinical in vivo transplantation appeared that TDN-miR122-hMSCs in combination with or without TDN could efficiently rescue acute liver failure injury through hepatocyte function supplement, anti-apoptosis, cellular proliferation promotion, and anti-inflammatory. Collectively, our findings may provide a new and facile approach for hepatic differentiation of hMSCs for acute liver failure therapy. Further large animal model explorations are needed to study their potential in clinical translation in the future.
Collapse
Affiliation(s)
- Hongyan Wei
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
- Guangdong Provincial Key Laboratory of Liver Disease Research, Guangzhou, 510630, China
| | - Fenfang Li
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
- Guangdong Provincial Key Laboratory of Liver Disease Research, Guangzhou, 510630, China
| | - Tiantian Xue
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
| | - Haixia Wang
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
| | - Enguo Ju
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
| | - Mingqiang Li
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
- Guangdong Provincial Key Laboratory of Liver Disease Research, Guangzhou, 510630, China
| | - Yu Tao
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
- Guangdong Provincial Key Laboratory of Liver Disease Research, Guangzhou, 510630, China
| |
Collapse
|
4
|
Wang Q, Long Z, Zhu F, Li H, Xiang Z, Liang H, Wu Y, Dai X, Zhu Z. Integrated analysis of lncRNA/circRNA-miRNA-mRNA in the proliferative phase of liver regeneration in mice with liver fibrosis. BMC Genomics 2023; 24:417. [PMID: 37488484 PMCID: PMC10364436 DOI: 10.1186/s12864-023-09478-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 06/22/2023] [Indexed: 07/26/2023] Open
Abstract
BACKGROUND Non-coding RNAs play important roles in liver regeneration; however, their functions and mechanisms of action in the regeneration of fibrotic liver have not been elucidated. We aimed to clarify the expression patterns and regulatory functions of lncRNAs, circRNAs, miRNAs, and mRNAs in the proliferative phase of fibrotic liver regeneration. METHODS Based on a mouse model of liver fibrosis with 70% hepatectomy, whole-transcriptome profiling was performed using high-throughput sequencing on samples collected at 0, 12, 24, 48, and 72 h after hepatectomy. Hub genes were selected by weighted gene co-expression network analysis and subjected to enrichment analysis. Integrated analysis was performed to reveal the interactions of differentially expressed (DE) lncRNAs, circRNAs, miRNAs, and mRNAs, and to construct lncRNA-mRNA cis- and trans-regulatory networks and lncRNA/circRNA-miRNA-mRNA ceRNA regulatory networks. Real-Time quantitative PCR was used to validate part of the ceRNA network. RESULTS A total of 1,329 lncRNAs, 48 circRNAs, 167 miRNAs, and 6,458 mRNAs were differentially expressed, including 812 hub genes. Based on these DE RNAs, we examined several mechanisms of ncRNA regulatory networks, including lncRNA cis and trans interactions, circRNA parental genes, and ceRNA pathways. We constructed a cis-regulatory core network consisting of 64 lncRNA-mRNA pairs (53 DE lncRNAs and 58 hub genes), a trans-regulatory core network consisting of 103 lncRNA-mRNA pairs (18 DE lncRNAs and 85 hub genes), a lncRNA-miRNA-mRNA ceRNA core regulatory network (20 DE lncRNAs, 12 DE miRNAs, and 33 mRNAs), and a circRNA-miRNA-mRNA ceRNA core regulatory network (5 DE circRNAs, 5 DE miRNAs, and 39 mRNAs). CONCLUSIONS These results reveal the expression patterns of lncRNAs, circRNAs, miRNAs, and mRNAs in the proliferative phase of fibrotic liver regeneration, as well as core regulatory networks of mRNAs and non-coding RNAs underlying liver regeneration. The findings provide insights into molecular mechanisms that may be useful in developing new therapeutic approaches to ameliorate diseases that are characterized by liver fibrosis, which would be beneficial for the prevention of liver failure and treatment of liver cancer.
Collapse
Affiliation(s)
- Qian Wang
- The First Affiliated Hospital, Department of Reproductive Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Zhangtao Long
- The First Affiliated Hospital, Department of Hepatobiliary Surgery, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Fengfeng Zhu
- The First Affiliated Hospital, Department of Hepatobiliary Surgery, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Huajian Li
- The First Affiliated Hospital, Department of Hepatobiliary Surgery, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Zhiqiang Xiang
- The First Affiliated Hospital, Department of Hepatobiliary Surgery, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Hao Liang
- The First Affiliated Hospital, Department of Hepatobiliary Surgery, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Yachen Wu
- The First Affiliated Hospital, Department of Hepatobiliary Surgery, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Xiaoming Dai
- The First Affiliated Hospital, Department of Hepatobiliary Surgery, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
| | - Zhu Zhu
- The First Affiliated Hospital, Department of Hepatobiliary Surgery, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
- The First Affiliated Hospital, Department of Education and Training, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
| |
Collapse
|
5
|
Satilmis B, Akbulut S, Sahin TT, Dalda Y, Tuncer A, Kucukakcali Z, Ogut Z, Yilmaz S. Assessment of Liver Regeneration in Patients Who Have Undergone Living Donor Hepatectomy for Living Donor Liver Transplantation. Vaccines (Basel) 2023; 11:244. [PMID: 36851123 PMCID: PMC9962137 DOI: 10.3390/vaccines11020244] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 01/17/2023] [Accepted: 01/19/2023] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND Inflammation and the associated immune pathways are among the most important factors in liver regeneration after living donor hepatectomy. Various biomarkers, especially liver function tests, are used to show liver regeneration. The aim of this study was to evaluate the course of liver regeneration following donor hepatectomy (LDH) by routine and regeneration-related biomarkers. METHOD Data from 63 living liver donors (LLDs) who underwent LDH in Inonu University Liver Transplant Institute were prospectively analyzed. Serum samples were obtained on the preoperative day and postoperative days (POD) 1, 3, 5, 10, and 21. Regenerative markers including alfa-fetoprotein (AFP), des carboxy prothrombin (DCP), ornithine decarboxylase (ODC), retinol-binding protein 4 (RBP4), and angiotensin-converting enzyme isotype II (ACEII) and liver function tests including alanine aminotransferase (ALT), aspartate aminotransferase (AST), gamma-glutamyl transferase (GGT), alkaline phosphatase (ALP) and total bilirubin levels were all analyzed. RESULTS The median age of the LLDs was 29.7 years and 28 LLDs were female. Eight LLDs developed postoperative complications requiring relaparotomy. The routine laboratory parameters including AST (<0.001), ALT (<0.001), ALP (<0.001), and total bilirubin (<0.001) showed a significant increase over time until postoperative day (POD) 3. For the regeneration-related parameters, except for the RBP4, all parameters including ACEII (p = 0.006), AFP (p = 0.002), DCP (p = 0.007), and ODC (p = 0.002) showed a significant increase in POD3. The regeneration parameters showed a different pattern of change. In right-lobe liver grafts, ACEII (p = 0.002), AFP (p = 0.035), and ODC (p = 0.001) showed a significant increase over time. DCP (p = 0.129) and RBP4 (p = 0.335) showed no significant changes in right-lobe liver grafts. CONCLUSIONS Regenerative markers are increased in a sustained fashion following LDH. This is more prominent following right-lobe grafts which are indicative of progenitor-associated liver regeneration.
Collapse
Affiliation(s)
- Basri Satilmis
- Department of Surgery and Liver Transplant Institute, Inonu University Faculty of Medicine, Malatya 244280, Turkey
- Department of Biochemistry, Inonu University Faculty of Pharmacy, Malatya 244280, Turkey
| | - Sami Akbulut
- Department of Surgery and Liver Transplant Institute, Inonu University Faculty of Medicine, Malatya 244280, Turkey
- Department of Biostatistics, and Medical Informatics, Inonu University Faculty of Medicine, Malatya 44280, Turkey
| | - Tevfik Tolga Sahin
- Department of Surgery and Liver Transplant Institute, Inonu University Faculty of Medicine, Malatya 244280, Turkey
| | - Yasin Dalda
- Department of Surgery and Liver Transplant Institute, Inonu University Faculty of Medicine, Malatya 244280, Turkey
| | - Adem Tuncer
- Department of Surgery and Liver Transplant Institute, Inonu University Faculty of Medicine, Malatya 244280, Turkey
| | - Zeynep Kucukakcali
- Department of Biostatistics, and Medical Informatics, Inonu University Faculty of Medicine, Malatya 44280, Turkey
| | - Zeki Ogut
- Department of Surgery and Liver Transplant Institute, Inonu University Faculty of Medicine, Malatya 244280, Turkey
| | - Sezai Yilmaz
- Department of Surgery and Liver Transplant Institute, Inonu University Faculty of Medicine, Malatya 244280, Turkey
| |
Collapse
|
6
|
Kiseleva YV, Antonyan SZ, Zharikova TS, Tupikin KA, Kalinin DV, Zharikov YO. Molecular pathways of liver regeneration: A comprehensive review. World J Hepatol 2021; 13:270-290. [PMID: 33815672 PMCID: PMC8006075 DOI: 10.4254/wjh.v13.i3.270] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 01/20/2021] [Accepted: 03/12/2021] [Indexed: 02/06/2023] Open
Abstract
The liver is a unique parenchymal organ with a regenerative capacity allowing it to restore up to 70% of its volume. Although knowledge of this phenomenon dates back to Greek mythology (the story of Prometheus), many aspects of liver regeneration are still not understood. A variety of different factors, including inflammatory cytokines, growth factors, and bile acids, promote liver regeneration and control the final size of the organ during typical regeneration, which is performed by mature hepatocytes, and during alternative regeneration, which is performed by recently identified resident stem cells called "hepatic progenitor cells". Hepatic progenitor cells drive liver regeneration when hepatocytes are unable to restore the liver mass, such as in cases of chronic injury or excessive acute injury. In liver maintenance, the body mass ratio is essential for homeostasis because the liver has numerous functions; therefore, a greater understanding of this process will lead to better control of liver injuries, improved transplantation of small grafts and the discovery of new methods for the treatment of liver diseases. The current review sheds light on the key molecular pathways and cells involved in typical and progenitor-dependent liver mass regeneration after various acute or chronic injuries. Subsequent studies and a better understanding of liver regeneration will lead to the development of new therapeutic methods for liver diseases.
Collapse
Affiliation(s)
- Yana V Kiseleva
- International School "Medicine of the Future", I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow 119435, Russia
| | - Sevak Z Antonyan
- Department of Emergency Surgical Gastroenterology, N. V. Sklifosovsky Research Institute for Emergency Medicine, Moscow 129010, Russia
| | - Tatyana S Zharikova
- Department of Human Anatomy, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow 119048, Russia
| | - Kirill A Tupikin
- Laboratory of Minimally Invasive Surgery, A.I. Evdokimov Moscow State University of Medicine and Dentistry, Moscow 127473, Russia
| | - Dmitry V Kalinin
- Pathology Department, A.V. Vishnevsky National Medical Research Center of Surgery of the Russian Ministry of Healthcare, Moscow 117997, Russia
| | - Yuri O Zharikov
- Department of Human Anatomy, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow 119048, Russia.
| |
Collapse
|
7
|
Wang T, Wang N, Zhang R, Huang S, Qiu H, Long F, Wang M, Mao D. Jie-Du-Hua-Yu Granules Promote Liver Regeneration in Rat Models of Acute Liver Failure: miRNA-mRNA Expression Analysis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2020; 2020:8180959. [PMID: 33456491 PMCID: PMC7787748 DOI: 10.1155/2020/8180959] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 11/26/2020] [Accepted: 12/10/2020] [Indexed: 12/29/2022]
Abstract
PURPOSE Jie-Du-Hua-Yu (JDHY) granules are a traditional Chinese medicine with known therapeutic effects for the treatment of acute liver failure (ALF). This study explored the potential molecular mechanism(s) of JDHY granules in promoting liver regeneration and preventing ALF. METHODS Rat models of ALF were constructed through administration of D-galactosamine (D-GalN) (600 mg/kg) and lipopolysaccharides (LPS) (20 μg/kg). Rats were gavaged with JDHY granules, and serum and liver samples were collected at 12 h post-D-GalN/LPS administration. The degree of liver injury was evaluated through hepatic pathology and alanine/aspartate aminotransferase (ALT/AST) activity. miRNA chips were used to detect the miRNA expression profiles of rat models. Bioinformatics analysis was used to identify the biological processes and cell signaling pathways mediating the therapeutic effects of JDHY. Real-time PCR (RT-PCR) and western blotting were used to validate the data. RESULTS JDHY granules could effectively decrease the levels of ALT and AST, relieve D-GalN/LPS-induced liver injury, and improve hepatic function. JDHY granules were found to regulate the expression of 20 miRNAs and 19 mRNAs, which influenced 21 biological processes and 9 signaling pathways. Upon analysis of the therapeutic mechanism(s) governing the effects of JDHY granules on liver regeneration, enhanced DNA replication and an improved cholesterol metabolic ratio were identified. JDHY granules were also found to increase the expression of MCM3, CDK4, and TC, confirming the involvement of these pathways. Moreover, JDHY granules were found to promote hepatocyte mitosis and inhibit the progression of ALF. CONCLUSION JDHY granules protect against D-GalN/LPS-induced ALF in rats by promoting liver regeneration through enhanced DNA replication and an improved cholesterol metabolic ratio.
Collapse
Affiliation(s)
- Tingshuai Wang
- School of Chinese Medicine, Hunan University of Traditional Chinese Medicine, Changsha, Hunan 410208, China
| | - Na Wang
- Department of Hepatology, The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning, Guangxi 530023, China
| | - Rongzhen Zhang
- School of Chinese Medicine, Hunan University of Traditional Chinese Medicine, Changsha, Hunan 410208, China
- Department of Hepatology, The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning, Guangxi 530023, China
| | - Shaodong Huang
- Department of Hepatology, The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning, Guangxi 530023, China
| | - Hua Qiu
- Department of Hepatology, The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning, Guangxi 530023, China
| | - Fuli Long
- Department of Hepatology, The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning, Guangxi 530023, China
| | - Minggang Wang
- Department of Scientific Research, The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning, Guangxi 530023, China
| | - Dewen Mao
- Department of Hepatology, The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning, Guangxi 530023, China
| |
Collapse
|
8
|
Wang X, Sun M, Yang X, Gao L, Weng M, Yang D, Li H, Zhou X, Li J, Qin S, Zhou D, Wu X, Tang S, Zeng W. Value of Liver Regeneration in Predicting Short-Term Prognosis for Patients with Hepatitis B-Related Acute-on-Chronic Liver Failure. BIOMED RESEARCH INTERNATIONAL 2020; 2020:5062873. [PMID: 32832550 PMCID: PMC7428825 DOI: 10.1155/2020/5062873] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 06/21/2020] [Accepted: 07/14/2020] [Indexed: 12/30/2022]
Abstract
BACKGROUND AND AIMS The value of hepatocyte regeneration in predicting the outcomes of hepatitis B-related acute-on-chronic liver failure (HBV-ACLF) is not fully assessed. The present study was aimed at establishing a novel scoring system to predict patients' outcomes within 3 months by applying serological indicators of hepatic regeneration and liver injury. METHODS Patients with chronic hepatitis B who had a rapid deterioration were investigated. Patients were observed for 90 days, and the endpoint of follow-up was death or liver transplantation. Serum parameters were estimated on the diagnosis of acute-on-chronic liver failure (ACLF). Cox proportional hazard regression was used to identify independent prognostic factors and create a novel prognostic scoring system, and a receiver operating characteristic (ROC) curve was used to analyze the performance of the model. RESULTS A total of 308 patients with HBV-ACLF were incorporated and divided into the training cohort (n = 206) and testing cohort (n = 102) randomly. Creatine (Cre), age, total bilirubin (TBil), alpha-fetoprotein (AFP), and international normalized ratio (INR) were found to be independent prognostic factors. According to the results of Cox regression analysis, a new prognostic model (we named it the TACIA score) was calculated. The areas under ROC (AUROC) for the new model were 0.861 and 0.763 in the training and testing cohorts, respectively, and patients with lower TACIA scores (<4.34) would survive longer (P < 0.001). CONCLUSIONS A pertinent prognostic scoring system for patients with HBV-ACLF was established in our study, and the novel model could predict patients' short-term survival effectively.
Collapse
Affiliation(s)
- Xiaoping Wang
- Department of Gastroenterology, The General Hospital of Western Theater Command, Chengdu, Sichuan, China 610083
- Department of Gastroenterology, Suining Central Hospital, Suining, Sichuan, China 629000
| | - Mengying Sun
- Department of Gastroenterology, The General Hospital of Western Theater Command, Chengdu, Sichuan, China 610083
- College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan, China 610003
| | - Xianjun Yang
- Western Military Command Disease Prevention and Control Center, Chengdu, Sichuan, China 610021
| | - Liucun Gao
- Clinical Research Center, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China 100045
| | - Min Weng
- Department of Gastroenterology, The General Hospital of Western Theater Command, Chengdu, Sichuan, China 610083
| | - Dehui Yang
- Department of Gastroenterology, The General Hospital of Western Theater Command, Chengdu, Sichuan, China 610083
| | - Hongyong Li
- Department of Gastroenterology, The General Hospital of Western Theater Command, Chengdu, Sichuan, China 610083
| | - Xiaolei Zhou
- Department of Gastroenterology, The General Hospital of Western Theater Command, Chengdu, Sichuan, China 610083
| | - Jiani Li
- Department of Gastroenterology, The General Hospital of Western Theater Command, Chengdu, Sichuan, China 610083
- College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan, China 610003
| | - Sen Qin
- Department of Gastroenterology, The General Hospital of Western Theater Command, Chengdu, Sichuan, China 610083
- College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan, China 610003
| | - Dejiang Zhou
- Department of Gastroenterology, The General Hospital of Western Theater Command, Chengdu, Sichuan, China 610083
| | - Xiaoling Wu
- Department of Gastroenterology, The General Hospital of Western Theater Command, Chengdu, Sichuan, China 610083
| | - Shanhong Tang
- Department of Gastroenterology, The General Hospital of Western Theater Command, Chengdu, Sichuan, China 610083
- College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan, China 610003
| | - Weizheng Zeng
- Department of Gastroenterology, The General Hospital of Western Theater Command, Chengdu, Sichuan, China 610083
| |
Collapse
|
9
|
Cheng W, Liu G, Kong D, Huang W, Sun Y, Zhao D. Downregulation of miR‐1224 protects against oxidative stress‐induced acute liver injury by regulating hepatocyte growth factor. J Cell Biochem 2019; 120:12369-12375. [PMID: 30848506 DOI: 10.1002/jcb.28502] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 12/12/2018] [Accepted: 12/13/2018] [Indexed: 12/11/2022]
Affiliation(s)
- Wenting Cheng
- Department of Clinical Laboratory Nanjing Gaochun People's Hospital Nanjing Jiangsu China
| | - Guo‐pan Liu
- Department of Clinical Laboratory Nanjing Gaochun People's Hospital Nanjing Jiangsu China
| | - Dehua Kong
- Department of Clinical Laboratory Nanjing Gaochun People's Hospital Nanjing Jiangsu China
| | - Wei Huang
- Department of Clinical Laboratory Nanjing Gaochun People's Hospital Nanjing Jiangsu China
| | - Ying Sun
- Department of Clinical Laboratory Nanjing Gaochun People's Hospital Nanjing Jiangsu China
| | - Danmei Zhao
- Department of Clinical Laboratory Nanjing Gaochun People's Hospital Nanjing Jiangsu China
| |
Collapse
|
10
|
Cell cycle-dependent phosphorylation and regulation of cellular differentiation. Biochem Soc Trans 2018; 46:1083-1091. [PMID: 30242121 DOI: 10.1042/bst20180276] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 08/02/2018] [Accepted: 08/03/2018] [Indexed: 02/07/2023]
Abstract
Embryogenesis requires an exquisite regulation of cell proliferation, cell cycle withdrawal and differentiation into a massively diverse range of cells at the correct time and place. Stem cells also remain to varying extents in different adult tissues, acting in tissue homeostasis and repair. Therefore, regulated proliferation and subsequent differentiation of stem and progenitor cells remains pivotal throughout life. Recent advances have characterised the cell cycle dynamics, epigenetics, transcriptome and proteome accompanying the transition from proliferation to differentiation, revealing multiple bidirectional interactions between the cell cycle machinery and factors driving differentiation. Here, we focus on a direct mechanistic link involving phosphorylation of differentiation-associated transcription factors by cell cycle-associated Cyclin-dependent kinases. We discuss examples from the three embryonic germ layers to illustrate this regulatory mechanism that co-ordinates the balance between cell proliferation and differentiation.
Collapse
|