1
|
Zheng X, Wang Y, Qiu X. Comprehensive analysis of MAPK genes in the prognosis, immune characteristics, and drug treatment of renal clear cell carcinoma using bioinformatic analysis and Mendelian randomization. Eur J Pharmacol 2024; 980:176840. [PMID: 39038636 DOI: 10.1016/j.ejphar.2024.176840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 07/18/2024] [Accepted: 07/19/2024] [Indexed: 07/24/2024]
Abstract
Mitogen-activated protein kinase (MAPK) signalling is vitally important in tumour development and progression. This study is the first to comprehensively analyse the role of MAPK-family genes in the progression, prognosis, immune-cell infiltration, methylation, and potential therapeutic value drug candidates in ccRCC. We identified a novel prognostic panel of six MAPK-signature genes (MAP3K12, MAP3K1, MAP3K5, MAPK1, MAPK8, MAPK9), and introduced a robust MAPK-signature risk model for predicting ccRCC prognosis. Model construction, evaluation, and external validation using datasets from the Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) database demonstrated its stability, as well as high sensitivity and specificity. Enrichment analysis suggested the participation of immune-mediated mechanism in MAPK dysregulation in ccRCC. Immune-infiltration analysis confirmed the relationship and revealed that the MAPK-signature risk model might stratify immunotherapy response in ccRCC, which was verified in drug sensitivity analysis and validated in external ccRCC immunotherapy dataset (GSE67501). Potential therapeutic drug predictions for key MAPKs using DSigDB, Network Analyst, CTD, and DGIdb were subsequently verified by molecular docking with AutoDock Vina and PyMol. Mendelian randomization further demonstrated the possibilities of the MAPK-signature genes as targets for therapeutic drugs in ccRCC. Methylation analysis using UALCAN and MethSurv revealed the participation of epigenetic modifications in dysregulation and survival difference of MAPK pathway in ccRCC. Among the key MAPKs, MAP3K12 exhibited the highest significance, indicating its independent prognostic value as single gene in ccRCC. Knockout and overexpression validation experiments in vitro and in vivo found that MAP3K12 acted as a promoter of tumour progression in RCC, suggesting a pivotal role for MAP3K12 in the proliferation, migration, and invasion of RCC cells. Our findings proposed the potential of MAPK-signature genes as biomarkers for prognosis and therapy response, as well as targets for therapeutic drugs in ccRCC.
Collapse
Affiliation(s)
- Xinyi Zheng
- Department of Pharmacy, Huashan Hospital, Fudan University, 12 Middle Urumqi Road, Shanghai, 200040, China
| | - Yiqiu Wang
- Department of Urology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China; State Key Laboratory of Oncogenes and Related Genes, Department of Urology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.
| | - Xiaoyan Qiu
- Department of Pharmacy, Huashan Hospital, Fudan University, 12 Middle Urumqi Road, Shanghai, 200040, China.
| |
Collapse
|
2
|
Gómez-Virgilio L, Velazquez-Paniagua M, Cuazozon-Ferrer L, Silva-Lucero MDC, Gutierrez-Malacara AI, Padilla-Mendoza JR, Borbolla-Vázquez J, Díaz-Hernández JA, Jiménez-Orozco FA, Cardenas-Aguayo MDC. Genetics, Pathophysiology, and Current Challenges in Von Hippel-Lindau Disease Therapeutics. Diagnostics (Basel) 2024; 14:1909. [PMID: 39272694 PMCID: PMC11393980 DOI: 10.3390/diagnostics14171909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/12/2024] [Accepted: 08/23/2024] [Indexed: 09/15/2024] Open
Abstract
This review article focuses on von Hippel-Lindau (VHL) disease, a rare genetic disorder characterized by the development of tumors and cysts throughout the body. It discusses the following aspects of the disease. GENETICS VHL disease is caused by mutations in the VHL tumor suppressor gene located on chromosome 3. These mutations can be inherited or occur spontaneously. This article details the different types of mutations and their associated clinical features. PATHOPHYSIOLOGY The underlying cause of VHL disease is the loss of function of the VHL protein (pVHL). This protein normally regulates hypoxia-inducible factors (HIFs), which are involved in cell growth and survival. When pVHL is dysfunctional, HIF levels become elevated, leading to uncontrolled cell growth and tumor formation. CLINICAL MANIFESTATIONS VHL disease can affect various organs, including the brain, spinal cord, retina, kidneys, pancreas, and adrenal glands. Symptoms depend on the location and size of the tumors. DIAGNOSIS Diagnosis of VHL disease involves a combination of clinical criteria, imaging studies, and genetic testing. TREATMENT Treatment options for VHL disease depend on the type and location of the tumors. Surgery is the mainstay of treatment, but other options like radiation therapy may also be used. CHALLENGES This article highlights the challenges in VHL disease management, including the lack of effective therapies for some tumor types and the need for better methods to monitor disease progression. In conclusion, we emphasize the importance of ongoing research to develop new and improved treatments for VHL disease.
Collapse
Affiliation(s)
- Laura Gómez-Virgilio
- Laboratory of Cellular Reprogramming, Department of Physiology, Facultad de Medicina, Universidad Nacional Autónoma de México, Av. Universidad No. 3000, Coyoacan CDMX 04510, Mexico
| | - Mireya Velazquez-Paniagua
- Laboratory of Cellular Reprogramming, Department of Physiology, Facultad de Medicina, Universidad Nacional Autónoma de México, Av. Universidad No. 3000, Coyoacan CDMX 04510, Mexico
| | - Lucero Cuazozon-Ferrer
- Laboratory of Cellular Reprogramming, Department of Physiology, Facultad de Medicina, Universidad Nacional Autónoma de México, Av. Universidad No. 3000, Coyoacan CDMX 04510, Mexico
- Ingenieria en Biotecnología, Universidad Politécnica de Quintana Roo, Av. Arco Bicentenario, MZ. 11, Lote 1119-33 SM 255, Cancún Quintana Roo 77500, Mexico
| | - Maria-Del-Carmen Silva-Lucero
- Laboratory of Cellular Reprogramming, Department of Physiology, Facultad de Medicina, Universidad Nacional Autónoma de México, Av. Universidad No. 3000, Coyoacan CDMX 04510, Mexico
| | - Andres-Ivan Gutierrez-Malacara
- Laboratory of Cellular Reprogramming, Department of Physiology, Facultad de Medicina, Universidad Nacional Autónoma de México, Av. Universidad No. 3000, Coyoacan CDMX 04510, Mexico
| | - Juan-Ramón Padilla-Mendoza
- Laboratory of Cellular Reprogramming, Department of Physiology, Facultad de Medicina, Universidad Nacional Autónoma de México, Av. Universidad No. 3000, Coyoacan CDMX 04510, Mexico
| | - Jessica Borbolla-Vázquez
- Ingenieria en Biotecnología, Universidad Politécnica de Quintana Roo, Av. Arco Bicentenario, MZ. 11, Lote 1119-33 SM 255, Cancún Quintana Roo 77500, Mexico
| | - Job-Alí Díaz-Hernández
- Ingenieria en Biotecnología, Universidad Politécnica de Quintana Roo, Av. Arco Bicentenario, MZ. 11, Lote 1119-33 SM 255, Cancún Quintana Roo 77500, Mexico
| | | | - Maria-Del-Carmen Cardenas-Aguayo
- Laboratory of Cellular Reprogramming, Department of Physiology, Facultad de Medicina, Universidad Nacional Autónoma de México, Av. Universidad No. 3000, Coyoacan CDMX 04510, Mexico
| |
Collapse
|
3
|
Wen L, Liu Z, Zhou L, Liu Z, Li Q, Geng B, Xia Y. Bone and Extracellular Signal-Related Kinase 5 (ERK5). Biomolecules 2024; 14:556. [PMID: 38785963 PMCID: PMC11117709 DOI: 10.3390/biom14050556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 04/17/2024] [Accepted: 05/01/2024] [Indexed: 05/25/2024] Open
Abstract
Bones are vital for anchoring muscles, tendons, and ligaments, serving as a fundamental element of the human skeletal structure. However, our understanding of bone development mechanisms and the maintenance of bone homeostasis is still limited. Extracellular signal-related kinase 5 (ERK5), a recently identified member of the mitogen-activated protein kinase (MAPK) family, plays a critical role in the pathogenesis and progression of various diseases, especially neoplasms. Recent studies have highlighted ERK5's significant role in both bone development and bone-associated pathologies. This review offers a detailed examination of the latest research on ERK5 in different tissues and diseases, with a particular focus on its implications for bone health. It also examines therapeutic strategies and future research avenues targeting ERK5.
Collapse
Affiliation(s)
- Lei Wen
- Department of Orthopedics, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730030, China; (L.W.); (Z.L.); (L.Z.); (Z.L.); (Q.L.); (B.G.)
- Orthopedic Clinical Medical Research Center and Intelligent Orthopedic Industry Technology Center of Gansu Province, Lanzhou 730030, China
- Department of Orthopedics and Trauma Surgery, Affiliated Hospital of Yunnan University, Kunming 650032, China
| | - Zirui Liu
- Department of Orthopedics, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730030, China; (L.W.); (Z.L.); (L.Z.); (Z.L.); (Q.L.); (B.G.)
- Orthopedic Clinical Medical Research Center and Intelligent Orthopedic Industry Technology Center of Gansu Province, Lanzhou 730030, China
| | - Libo Zhou
- Department of Orthopedics, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730030, China; (L.W.); (Z.L.); (L.Z.); (Z.L.); (Q.L.); (B.G.)
- Orthopedic Clinical Medical Research Center and Intelligent Orthopedic Industry Technology Center of Gansu Province, Lanzhou 730030, China
| | - Zhongcheng Liu
- Department of Orthopedics, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730030, China; (L.W.); (Z.L.); (L.Z.); (Z.L.); (Q.L.); (B.G.)
- Orthopedic Clinical Medical Research Center and Intelligent Orthopedic Industry Technology Center of Gansu Province, Lanzhou 730030, China
| | - Qingda Li
- Department of Orthopedics, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730030, China; (L.W.); (Z.L.); (L.Z.); (Z.L.); (Q.L.); (B.G.)
- Orthopedic Clinical Medical Research Center and Intelligent Orthopedic Industry Technology Center of Gansu Province, Lanzhou 730030, China
| | - Bin Geng
- Department of Orthopedics, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730030, China; (L.W.); (Z.L.); (L.Z.); (Z.L.); (Q.L.); (B.G.)
- Orthopedic Clinical Medical Research Center and Intelligent Orthopedic Industry Technology Center of Gansu Province, Lanzhou 730030, China
| | - Yayi Xia
- Department of Orthopedics, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730030, China; (L.W.); (Z.L.); (L.Z.); (Z.L.); (Q.L.); (B.G.)
- Orthopedic Clinical Medical Research Center and Intelligent Orthopedic Industry Technology Center of Gansu Province, Lanzhou 730030, China
| |
Collapse
|
4
|
Effect of Extracellular Signal-Regulated Protein Kinase 5 Inhibition in Clear Cell Renal Cell Carcinoma. Int J Mol Sci 2022; 23:ijms23158448. [PMID: 35955582 PMCID: PMC9369143 DOI: 10.3390/ijms23158448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/25/2022] [Accepted: 07/27/2022] [Indexed: 12/10/2022] Open
Abstract
(1) Background: Extracellular signal-regulating kinase 5 (ERK5) has been implicated in many cellular functions, including survival, proliferation, and vascularization. Our objectives were to examine the expression and effect of ERK5 in clear cell renal cell carcinoma (ccRCC). (2) Methods: The expressions of ERK5 and its regulating micro-RNA miR-143 were investigated using immunohistochemistry and quantitative reverse transcriptase PCR in surgical specimens of ccRCC patients. With invitro and in vivo studies, we used pharmacologic ERK5 inhibitor XMD8-92, RNA interference, pre-miR-143 transduction, Western blotting, MTS assay, apoptosis assay, and subcutaneous xenograft model. (3) Results: A strong ERK5 expression in surgical specimen was associated with high-grade (p = 0.01), high-recurrence free rate (p = 0.02), and high cancer-specific survival (p = 0.03). Expression levels of ERK5 and miR-143 expression level were correlated (p = 0.049). Pre-miR-143 transduction into ccRCC cell A498 suppressed ERK5 expression. ERK5 inhibition enhanced cyclin-dependent kinase inhibitor p21 expression and decreased anti-apoptotic molecules BCL2, resulting in decreased cell proliferation and survival both in ccRCC and endothelial cells. In the xenograft model, ERK5 inhibitor XMD8-92 suppressed tumor growth. (4) Conclusions: ERK5 is regulated by miR-143, and ERK5 inhibition is a promising target for ccRCC treatment.
Collapse
|
5
|
Iacovelli R, Arduini D, Ciccarese C, Pierconti F, Strusi A, Piro G, Carbone C, Foschi N, Daniele G, Tortora G. Targeting hypoxia-inducible factor pathways in sporadic and Von Hippel-Lindau syndrome-related kidney cancers. Crit Rev Oncol Hematol 2022; 176:103750. [PMID: 35728738 DOI: 10.1016/j.critrevonc.2022.103750] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 06/16/2022] [Accepted: 06/16/2022] [Indexed: 10/18/2022] Open
Abstract
Hereditary and sporadic renal cell carcinomas (RCCs) are often associated with Von Hippel-Lindau (VHL)-gene inactivation. Patients with VHL disease have an increased risk of RCC, leading to bilateral nephrectomy and dialysis. In patients with advanced RCC, no standard second-lines are available after progression to immune checkpoint inhibitors (ICIs), and new agents are required to manage progression. HIFs have emerged as a promising target for metastatic RCC patients who have progressed to ICI-based combinations, as well as for those with RCC and VHL syndrome where the goal is to delay surgery and/or and preserve kidney function and avoid dialysis. This review describes the available evidence supporting the use of the small-molecule HIF-2 alpha inhibitor, belzutifan (MK-6482), as well as other new anti-HIF molecules that have demonstrated significant efficacy in VHL disease-related RCCs as well as for sporadic RCC that has progressed after the use of ICI-based combinations.
Collapse
Affiliation(s)
- Roberto Iacovelli
- Medical Oncology Unit, Fondazione Policlinico Universitario A. Gemelli, IRCCS, Rome, Italy
| | - Daniela Arduini
- Medical Oncology Unit, Fondazione Policlinico Universitario A. Gemelli, IRCCS, Rome, Italy
| | - Chiara Ciccarese
- Medical Oncology Unit, Fondazione Policlinico Universitario A. Gemelli, IRCCS, Rome, Italy
| | - Francesco Pierconti
- Unit of Pathology, Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario A. Gemelli, IRCCS, Rome, Italy; Faculty of Medicine, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Alessandro Strusi
- Medical Oncology Unit, Fondazione Policlinico Universitario A. Gemelli, IRCCS, Rome, Italy
| | - Geny Piro
- Medical Oncology Unit, Fondazione Policlinico Universitario A. Gemelli, IRCCS, Rome, Italy
| | - Carmine Carbone
- Medical Oncology Unit, Fondazione Policlinico Universitario A. Gemelli, IRCCS, Rome, Italy
| | - Nazario Foschi
- Department of Urology, Fondazione Policlinico Universitario A. Gemelli, IRCCS, Rome, Italy
| | - Gennaro Daniele
- Phase 1 Unit, Fondazione Policlinico Universitario Agostino Gemelli, IRCCS, Rome, Italy
| | - Giampaolo Tortora
- Medical Oncology Unit, Fondazione Policlinico Universitario A. Gemelli, IRCCS, Rome, Italy; Faculty of Medicine, Università Cattolica del Sacro Cuore, Rome, Italy
| |
Collapse
|
6
|
Lin PH, Huang CY, Yu KJ, Kan HC, Liu CY, Chuang CK, Lu YC, Chang YH, Shao IH, Pang ST. Genomic characterization of clear cell renal cell carcinoma using targeted gene sequencing. Oncol Lett 2021; 21:169. [PMID: 33456545 PMCID: PMC7802514 DOI: 10.3892/ol.2021.12430] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 11/10/2020] [Indexed: 01/04/2023] Open
Abstract
Kidney cancer is one of the most lethal cancer types worldwide. The most common subtype of kidney cancer is clear cell renal cell carcinoma (ccRCC), and the somatic mutations of ccRCC have been identified through the development of large databases. The present study aimed to validate the status of the associated gene mutations in a Taiwanese cohort. Targeted sequencing was used to validate the mutation status of genes related to ccRCC in Taiwanese patients who had nephrectomy for kidney cancer. The top eight mutated genes in the Catalogue Of Somatic Mutations In Cancer (COSMIC) were selected. These genes were VHL, protein polybromo-1 (PBRM1), histone-lysine N-methyltransferase SETD2, BRCA1-associated protein-1 (BAP1), lysine-specific demethylase 5C (KDM5C), TP53, MTOR and PTEN. The association between the gene mutation status of VHL, PBRM1, SETD2 and BAP1 was validated with clinicopathological parameters as well as overall survival time. Tumor cells from 96 patients with ccRCC were target sequenced. The order of mutation rate of the eight aforementioned genes was similar to that reported within COSMIC. The present Taiwanese cohort exhibited lower PBRM1 and BAP1 mutation rates compared with average, with increased mutation rates for SETD2 and KDM5C. BAP1 mutation was associated with the tumor and cancerous stage. None of these four genes were positively associated with the overall survival of patients. The PBRM1 and SETD2 mutations were mutually exclusive to BAP1 mutation. Overall, the present study provided data confirming gene alteration in Taiwanese patients with ccRCC and showed some differences when compared with Western countries. Further comprehensive genomic and epigenomic studies, as well as downstream validation, are necessary to evaluate the impact of these differences.
Collapse
Affiliation(s)
- Po-Hung Lin
- Division of Urology, Department of Surgery, Chang Gung Memorial Hospital at Linkou, Taoyuan 333, Taiwan, R.O.C.,Graduate Institute of Clinical Medical Science, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan, R.O.C
| | - Chao-Yuan Huang
- Department of Urology, National Taiwan University Hospital, Taipei 10022, Taiwan, R.O.C
| | - Kai-Jie Yu
- Division of Urology, Department of Surgery, Chang Gung Memorial Hospital at Linkou, Taoyuan 333, Taiwan, R.O.C
| | - Hung-Cheng Kan
- Division of Urology, Department of Surgery, Chang Gung Memorial Hospital at Linkou, Taoyuan 333, Taiwan, R.O.C
| | - Chung-Yi Liu
- Division of Urology, Department of Surgery, Chang Gung Memorial Hospital at Linkou, Taoyuan 333, Taiwan, R.O.C
| | - Cheng-Keng Chuang
- Division of Urology, Department of Surgery, Chang Gung Memorial Hospital at Linkou, Taoyuan 333, Taiwan, R.O.C
| | - Yu-Chuan Lu
- Department of Urology, National Taiwan University Hospital, Taipei 10022, Taiwan, R.O.C.,Institute of Biomedical Engineering, National Taiwan University, Taipei 10022, Taiwan, R.O.C
| | - Ying-Hsu Chang
- Division of Urology, Department of Surgery, Chang Gung Memorial Hospital at Linkou, Taoyuan 333, Taiwan, R.O.C
| | - I-Hung Shao
- Division of Urology, Department of Surgery, Chang Gung Memorial Hospital at Linkou, Taoyuan 333, Taiwan, R.O.C
| | - See-Tong Pang
- Division of Urology, Department of Surgery, Chang Gung Memorial Hospital at Linkou, Taoyuan 333, Taiwan, R.O.C
| |
Collapse
|
7
|
Yang M, Zhu M, Song K, Wuren T, Yan J, Ge RL, Ji L, Cui S. VHL gene methylation contributes to excessive erythrocytosis in chronic mountain sickness rat model by upregulating the HIF-2α/EPO pathway. Life Sci 2020; 266:118873. [PMID: 33309718 DOI: 10.1016/j.lfs.2020.118873] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 11/24/2020] [Accepted: 11/30/2020] [Indexed: 12/15/2022]
Abstract
AIMS Hypoxia-inducible factors (HIFs) play important roles in the pathogenesis of erythrocytosis in chronic mountain sickness (CMS). von Hippel-Lindau (VHL) is a key regulator of hypoxia that can direct the poly-ubiquitylation and degradation of HIFs. Epigenetic mechanisms are believed to contribute toward adaption to chronic hypoxia. Here, we investigated the contribution and mechanism of VHL methylation in rats with erythrocytosis in CMS. MAIN METHODS The methylation status of VHL was measured via bisulfite sequencing PCR, while VHL, DNMT1, DNMT3α, and DNMT3β expression were assessed using real-time reverse transcription PCR and western blotting. HIF-2α and EPO expression levels in bone marrow were determined via immunohistochemical staining, and erythroid hyperplasia in bone marrow sections were observed with hematoxylin and eosin staining. KEY FINDINGS We found that chronic hypoxia triggered erythroid hyperplasia in the bone marrow and increased the quantity of peripheral red blood cells in CMS rats. Chronic hypoxia significantly induced methylation at the CpG site in the VHL promoter, decreased VHL expression, and increased HIF-2α and EPO expression. Chronic hypoxia increased DNMT3α and DNMT3β expression, consistent with the decrease in VHL expression. The DNA methyltransferase inhibitor 5-azacytidine reduced chronic hypoxia-induced erythroid proliferation in the bone marrow of rats with CMS by suppressing VHL methylation and DNMTs expression. SIGNIFICANCE Our study suggests that VHL methylation contributes toward excessive erythrocytosis in CMS by upregulating the HIF-2α/EPO pathway in the bone marrow of rats. We demonstrated that the DNMT inhibitor 5-azacytidine can attenuate erythroid hyperplasia in the bone marrow by demethylating the VHL promoter.
Collapse
Affiliation(s)
- Min Yang
- Research Center for High Altitude Medicine, Qinghai University, Xining 810001, China; Key Laboratory of Application and Foundation for High Altitude Medicine Research in Qinghai Province, Xining 810001, China
| | - Mingming Zhu
- Research Center for High Altitude Medicine, Qinghai University, Xining 810001, China; Key Laboratory of Application and Foundation for High Altitude Medicine Research in Qinghai Province, Xining 810001, China; Affiliated Hospital of Qinghai University, Xining 810001, China
| | - Kang Song
- Research Center for High Altitude Medicine, Qinghai University, Xining 810001, China; Key Laboratory of Application and Foundation for High Altitude Medicine Research in Qinghai Province, Xining 810001, China; Qinghai Provincial People's Hospital, Xining 810001, China
| | - Tanna Wuren
- Research Center for High Altitude Medicine, Qinghai University, Xining 810001, China; Key Laboratory of Application and Foundation for High Altitude Medicine Research in Qinghai Province, Xining 810001, China
| | - Jun Yan
- Research Center for High Altitude Medicine, Qinghai University, Xining 810001, China; Key Laboratory of Application and Foundation for High Altitude Medicine Research in Qinghai Province, Xining 810001, China
| | - Ri-Li Ge
- Research Center for High Altitude Medicine, Qinghai University, Xining 810001, China; Key Laboratory of Application and Foundation for High Altitude Medicine Research in Qinghai Province, Xining 810001, China
| | - Linhua Ji
- Research Center for High Altitude Medicine, Qinghai University, Xining 810001, China; Key Laboratory of Application and Foundation for High Altitude Medicine Research in Qinghai Province, Xining 810001, China; Huadu District People's Hospital of Guangzhou, Guangzhou 510800, China.
| | - Sen Cui
- Research Center for High Altitude Medicine, Qinghai University, Xining 810001, China; Key Laboratory of Application and Foundation for High Altitude Medicine Research in Qinghai Province, Xining 810001, China; Affiliated Hospital of Qinghai University, Xining 810001, China.
| |
Collapse
|
8
|
Cao J, Sun X, Zhang X, Chen D. 6PGD Upregulation is Associated with Chemo- and Immuno-Resistance of Renal Cell Carcinoma via AMPK Signaling-Dependent NADPH-Mediated Metabolic Reprograming. Am J Med Sci 2020; 360:279-286. [PMID: 32829780 DOI: 10.1016/j.amjms.2020.06.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 04/25/2020] [Accepted: 06/12/2020] [Indexed: 12/11/2022]
Abstract
BACKGROUND The essential role of 6-phosphogluconate dehydrogenase (6PGD), the enzyme catalyzing the oxidative pentose phosphate pathway, in tumor growth and metabolism has garnered attention in recent years. In this work, we are the first to demonstrate that aberrant activation of 6PGD is a feature in renal cell carcinoma (RCC) and is critically involved in renal carcinogenesis and chemo- and immuno-resistance. MATERIALS AND METHODS 6PGD expression and activity were systematically analyzed in normal and malignant renal cells and tissues. The roles of 6PGD and its downstream mechanism were investigated using gain-of-function and loss-of-function approaches. RESULTS 6PGD expression and enzyme activity were increased in RCC cells and patients' samples. Activation of 6PGD via gain-of-function approach promoted growth of normal kidney but not RCC cells, and alleviated the efficacy of chemotherapeutic (e.g., 5-FU) and immunotherapeutic (e.g., IFN-α) agents. In contrast, 6PGD inhibition using siRNA knockdown and pharmacological inhibitor physcion augmented the inhibitory effects of 5-FU and IFN-α in RCC. Mechanistic studies demonstrated that 6PGD inhibition activated AMPK signaling, leading to ACC1 enzyme inhibition and reduction of lipid synthesis. In addition, 6PGD inhibition disrupted NADPH and NADH homeostasis in RCC cells as shown by the decreased level of NADPH and NADH, and suppressed SIRT-1 activity. AMPK inhibition by siRNA knockdown reversed the inhibitory effects of physcion, demonstrating that the effect of 6PGD inhibition is AMPK activation dependent. CONCLUSIONS Our work provides preclinical evidence that 6PGD inhibition may represent a potential therapeutic strategy to augment the efficacy of RCC standard of care drugs.
Collapse
Affiliation(s)
- Jun Cao
- Department of Urology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei 441021, People's Republic of China
| | - Xiaosong Sun
- Department of Urology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei 441021, People's Republic of China
| | - Xuejun Zhang
- Department of Urology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei 441021, People's Republic of China
| | - Dehong Chen
- Department of Urology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei 441021, People's Republic of China.
| |
Collapse
|
9
|
Jiang W, Cai F, Xu H, Lu Y, Chen J, Liu J, Cao N, Zhang X, Chen X, Huang Q, Zhuang H, Hua ZC. Extracellular signal regulated kinase 5 promotes cell migration, invasion and lung metastasis in a FAK-dependent manner. Protein Cell 2020; 11:825-845. [PMID: 32144580 PMCID: PMC7647985 DOI: 10.1007/s13238-020-00701-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 02/09/2020] [Indexed: 12/12/2022] Open
Abstract
This study was designed to evaluate ERK5 expression in lung cancer and malignant melanoma progression and to ascertain the involvement of ERK5 signaling in lung cancer and melanoma. We show that ERK5 expression is abundant in human lung cancer samples, and elevated ERK5 expression in lung cancer was linked to the acquisition of increased metastatic and invasive potential. Importantly, we observed a significant correlation between ERK5 activity and FAK expression and its phosphorylation at the Ser910 site. Mechanistically, ERK5 increased the expression of the transcription factor USF1, which could transcriptionally upregulate FAK expression, resulting in FAK signaling activation to promote cell migration. We also provided evidence that the phosphorylation of FAK at Ser910 was due to ERK5 but not ERK1/2, and we then suggested a role for Ser910 in the control of cell motility. In addition, ERK5 had targets in addition to FAK that regulate epithelial-to-mesenchymal transition and cell motility in cancer cells. Taken together, our findings uncover a cancer metastasis-promoting role for ERK5 and provide the rationale for targeting ERK5 as a potential therapeutic approach.
Collapse
Affiliation(s)
- Weiwei Jiang
- The State Key Laboratory of Pharmaceutical Biotechnology, College of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Fangfang Cai
- The State Key Laboratory of Pharmaceutical Biotechnology, College of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Huangru Xu
- The State Key Laboratory of Pharmaceutical Biotechnology, College of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Yanyan Lu
- The State Key Laboratory of Pharmaceutical Biotechnology, College of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Jia Chen
- The State Key Laboratory of Pharmaceutical Biotechnology, College of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Jia Liu
- The State Key Laboratory of Pharmaceutical Biotechnology, College of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Nini Cao
- The State Key Laboratory of Pharmaceutical Biotechnology, College of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Xiangyu Zhang
- The State Key Laboratory of Pharmaceutical Biotechnology, College of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Xiao Chen
- The State Key Laboratory of Pharmaceutical Biotechnology, College of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Qilai Huang
- The State Key Laboratory of Pharmaceutical Biotechnology, College of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Hongqin Zhuang
- The State Key Laboratory of Pharmaceutical Biotechnology, College of Life Sciences, Nanjing University, Nanjing, 210023, China.
| | - Zi-Chun Hua
- The State Key Laboratory of Pharmaceutical Biotechnology, College of Life Sciences, Nanjing University, Nanjing, 210023, China. .,Changzhou High-Tech Research Institute of Nanjing University and Jiangsu TargetPharma Laboratories Inc., Changzhou, 213164, China.
| |
Collapse
|
10
|
Aurilio G, Santoni M, Cimadamore A, Massari F, Scarpelli M, Lopez-Beltran A, Cheng L, Battelli N, Nolé F, Montironi R. Renal Cell Carcinoma: genomic landscape and clinical implications. EXPERT REVIEW OF PRECISION MEDICINE AND DRUG DEVELOPMENT 2020. [DOI: 10.1080/23808993.2020.1733407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Gaetano Aurilio
- Medical Oncology Division of Urogenital and Head and Neck Tumours, IEO, European Institute of Oncology IRCCS, Milan, Italy
| | | | - Alessia Cimadamore
- Section of Pathological Anatomy, Polytechnic University of the Marche Region, School of Medicine, Ancona, Italy
| | | | - Marina Scarpelli
- Section of Pathological Anatomy, Polytechnic University of the Marche Region, School of Medicine, Ancona, Italy
| | | | - Liang Cheng
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | | | - Franco Nolé
- Medical Oncology Division of Urogenital and Head and Neck Tumours, IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Rodolfo Montironi
- Section of Pathological Anatomy, Polytechnic University of the Marche Region, School of Medicine, Ancona, Italy
| |
Collapse
|
11
|
Effect of CXCL12 and Its Receptors on Unpredictable Renal Cell Carcinoma. Clin Genitourin Cancer 2019; 18:e337-e342. [PMID: 31882334 DOI: 10.1016/j.clgc.2019.11.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 11/27/2019] [Accepted: 11/27/2019] [Indexed: 01/10/2023]
Abstract
Chemokines are chemotactic cytokines that participate in numerous cell functions during hematopoiesis, morphogenesis, inflammation, neovascularization, and autoimmune diseases and cancer. They achieve their functions on binding to their G protein-coupled receptors. CXCL12, or stromal cell-derived factor-1, is a homeostatic chemokine secreted by fibroblasts, macrophages, and endothelial cells. It binds to CXC receptor 4 (CXCR4), also known as fusin (CD184), and alternate CXC receptor 7 (CXCR7), also known as atypical chemokine receptor 3. The CXCL12/CXCR4 axis participates in homing of hematopoietic stem cells and the development and production of B and T lymphocytes, plasmacytoid dendritic cells, and natural killer cells. It has been examined in > 20 different malignancies. CXCL12 plays an important role in tumor metastasis because it mediates the migration of tumor cells through the endothelial vessel wall and extracellular matrix. Its expression has been highest in common metastatic sites such as the brain, bone marrow, lymph nodes, and liver. CXCR4 is expressed by tumor cells in prostate, breast, lung, and other malignancies. Numerous studies have shown its correlation with a poor prognosis, recurrence-free survival, and poor overall survival. The present review has addressed the structure and function of CXCL12 and its receptors and the effect CXCL12/CXCR4 axis has on the pathogenesis and clinical development of renal cell carcinoma, one of the most aggressive cancers in urology, with limited therapeutic options.
Collapse
|
12
|
Hu F, Zeng W, Liu X. A Gene Signature of Survival Prediction for Kidney Renal Cell Carcinoma by Multi-Omic Data Analysis. Int J Mol Sci 2019; 20:ijms20225720. [PMID: 31739630 PMCID: PMC6888680 DOI: 10.3390/ijms20225720] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 11/09/2019] [Accepted: 11/13/2019] [Indexed: 02/07/2023] Open
Abstract
Kidney renal cell carcinoma (KIRC), which is the most common subtype of kidney cancer, has a poor prognosis and a high mortality rate. In this study, a multi-omics analysis is performed to build a multi-gene prognosis signature for KIRC. A combination of a DNA methylation analysis and a gene expression data analysis revealed 863 methylated differentially expressed genes (MDEGs). Seven MDEGs (BID, CCNF, DLX4, FAM72D, PYCR1, RUNX1, and TRIP13) were further screened using LASSO Cox regression and integrated into a prognostic risk score model. Then, KIRC patients were divided into high- and low-risk groups. A univariate cox regression analysis revealed a significant association between the high-risk group and a poor prognosis. The time-dependent receiver operating characteristic (ROC) curve shows that the risk group performs well in predicting overall survival. Furthermore, the risk group is contained in the best multivariate model that was obtained by a multivariate stepwise analysis, which further confirms that the risk group can be used as a potential prognostic biomarker. In addition, a nomogram was established for the best multivariate model and shown to perform well in predicting the survival of KIRC patients. In summary, a seven-MDEG signature is a powerful prognosis factor for KIRC patients and may provide useful suggestions for their personalized therapy.
Collapse
Affiliation(s)
- Fuyan Hu
- Department of Statistics, Faculty of Science, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China;
| | - Wenying Zeng
- Department of Water Resources and Hydro-elctricity Engineering, College of Water Resources and Architectural Engineering, Northwest A&F University, No.3 Taicheng Road, Yangling 712100, China;
| | - Xiaoping Liu
- School of Mathematics and Statistics, Shandong University at Weihai, Weihai 264209, China
- Correspondence: ; Tel.: +86-631-5688523
| |
Collapse
|
13
|
SIX4 activates Akt and promotes tumor angiogenesis. Exp Cell Res 2019; 383:111495. [PMID: 31301290 DOI: 10.1016/j.yexcr.2019.111495] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 07/08/2019] [Accepted: 07/09/2019] [Indexed: 02/06/2023]
Abstract
Angiogenesis plays important roles in solid tumors progression. Growth factors such as vascular endothelial growth factors (VEGFs) can induce angiogenesis and hypoxia promotes the expression of VEGFs through activating hypoxia-inducible factor 1 (HIF-1α). However, the regulation of HIF-1α still not been fully understood. Here, we demonstrate that the Sine Oculis Homeobox Homolog 4 (SIX4) is up-regulated in colorectal cancer (CRC) and high expression of SIX4 predicts a poor prognosis. Overexpression of SIX4 enhances tumor growth and angiogenesis in vitro and in vivo, while knockdown of SIX4 inhibits tumor growth and angiogenesis. Furthermore, we show that SIX4 increases the expression of VEGF-A by coordinating with the HIF-1α. Mechanically, we explore that SIX4 up-regulates the expression of HIF-1α depending on Akt activation. Collectively, we demonstrate that SIX4 is functional in regulating tumor angiogenesis and SIX4 might be used as anti-angiogenic therapy in CRC.
Collapse
|
14
|
The Prognostic Significance of Protein Expression of CASZ1 in Clear Cell Renal Cell Carcinoma. DISEASE MARKERS 2019; 2019:1342161. [PMID: 31481981 PMCID: PMC6701416 DOI: 10.1155/2019/1342161] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 07/11/2019] [Accepted: 07/17/2019] [Indexed: 12/24/2022]
Abstract
Backgrounds Clear cell renal cell carcinoma (ccRCC) is the most common histologic subtype of renal cell carcinoma (RCC) and shows a relatively poor prognosis among RCCs. Castor zinc finger 1 (CASZ1) is a transcription factor, prominently known for its tumor suppression role in neuroblastoma and other cancers. However, there has been no research about the prognostic significance of CASZ1 in ccRCC. In this study, we investigated CASZ1 expression in ccRCC and analyzed its prognostic implications. Methods A total of 896 ccRCC patients, who underwent surgical resection from 1995 to 2008, were included. We prepared tissue microarray blocks, evaluated CASZ1 nuclear expression by immunohistochemistry, and classified the cases into low or high expression categories. Results A low expression of CASZ1 was observed in 320 cases (35.7%) and was significantly associated with large tumor size, high World Health Organization/International Society of Urological Pathology (WHO/ISUP) grade, and high T category and M category. In survival analysis, a low expression of CASZ1 was significantly correlated with unfavorable progression-free survival (PFS) (p < 0.001), overall survival (OS) (p < 0.001), and cancer-specific survival (CSS) (p < 0.001) and was an independent prognostic factor for PFS and CSS in multivariate analysis adjusted for tumor size, WHO/ISUP grade, T category, N category, and M category. Conclusions Our study is the first to show the prognostic significance of CASZ1 expression in ccRCC. Our results revealed that low expression of CASZ1 is associated with poor prognosis and may serve as a new prognostic indicator.
Collapse
|
15
|
Kim HS, Kim JH, Jang HJ, Han B, Zang DY. Clinicopathologic Significance of VHL Gene Alteration in Clear-Cell Renal Cell Carcinoma: An Updated Meta-Analysis and Review. Int J Mol Sci 2018; 19:ijms19092529. [PMID: 30149673 PMCID: PMC6165550 DOI: 10.3390/ijms19092529] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 08/18/2018] [Accepted: 08/24/2018] [Indexed: 01/10/2023] Open
Abstract
The von Hippel-Lindau (VHL) gene is inactivated frequently in sporadic clear-cell renal cell carcinomas (ccRCCs) by genetic alteration (mutation, loss of heterozygosity, or promoter hypermethylation). However, the pathological or prognostic significance of VHL gene alteration has not been well defined. We conducted this meta-analysis to evaluate the association between VHL alteration and clinopathologic findings in ccRCCs. We performed a systematic computerized search of online databases, including PubMed, EMBASE, Web of Science, and Google Scholar (up to July 2018). From ten studies, 1,082 patients were included in the pooled analyses of odds ratios (ORs) with 95% confidence intervals (CIs) for pathological features (nuclear grade and disease stage) or hazard ratios (HRs) with 95% CIs for overall survival (OS). VHL alteration was not significantly associated with nuclear grade (OR = 0.79, 95% CI: 0.59–1.06, p = 0.12) or disease stage (OR = 1.07, 95% CI: 0.79–1.46, p = 0.65). There was also no significant correlation between VHL alteration and OS (HR = 0.75, 95% CI: 0.43–1.29, p = 0.30). When we pooled HRs for OS according to the VHL alteration types, the combined HRs were 0.72 (95% CI: 0.47–1.11, p = 0.14) for VHL mutations and 1.32 (95% CI: 0.70–2.47, p = 0.39) for methylation. In conclusion, this meta-analysis indicates that VHL gene alteration is not significantly associated with the pathological features and survival in patients with ccRCC.
Collapse
Affiliation(s)
- Hyeong Su Kim
- Department of Internal Medicine, Hallym University Medical Center, Hallym University College of Medicine, Seoul 07441, Korea.
| | - Jung Han Kim
- Department of Internal Medicine, Hallym University Medical Center, Hallym University College of Medicine, Seoul 07441, Korea.
| | - Hyun Joo Jang
- Department of Internal Medicine, Hallym University Medical Center, Hallym University College of Medicine, Seoul 07441, Korea.
| | - Boram Han
- Department of Internal Medicine, Hallym University Medical Center, Hallym University College of Medicine, Seoul 07441, Korea.
| | - Dae Young Zang
- Department of Internal Medicine, Hallym University Medical Center, Hallym University College of Medicine, Seoul 07441, Korea.
| |
Collapse
|
16
|
Sun X, Zhang T, Deng Q, Zhou Q, Sun X, Li E, Yu D, Zhong C. Benzidine Induces Epithelial-Mesenchymal Transition of Human Bladder Cancer Cells through Activation of ERK5 Pathway. Mol Cells 2018; 41:188-197. [PMID: 29463068 PMCID: PMC5881092 DOI: 10.14348/molcells.2018.2113] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2017] [Revised: 11/24/2017] [Accepted: 12/20/2017] [Indexed: 12/17/2022] Open
Abstract
Benzidine, a known carcinogen, is closely associated with the development of bladder cancer (BC). Epithelial-mesenchymal transition (EMT) is a critical pathophysiological process in BC progression. The underlying molecular mechanisms of mitogen-activated protein kinase (MAPK) pathway, especially extracellular regulated protein kinases 5 (ERK5), in regulating benzidine-induced EMT remains unclarified. Hence, two human bladder cell lines, T24 and EJ, were utilized in our study. Briefly, cell migration was assessed by wound healing assay, and cell invasion was determined by Transwell assay. Quantitative PCR and western blot were utilized to determine both gene expressions as well as protein levels of EMT and MAPK, respectively. Small interfering RNA (siRNA) was transfected to further determine ERK5 function. As a result, the migration and invasion abilities were enhanced, epithelial marker expression was decreased while mesenchymal marker expression was increased in human BC cell lines. Meanwhile, benzidine administration led to activation of ERK5 and activator protein 1 (AP-1) proteins, without effective stimulation of the Jun N-terminal kinase (JNK) or p38 pathways. Moreover, Benzidine-induced EMT and ERK5 activation were completely suppressed by XMD8-92 and siRNAs specific to ERK5. Of note, ERK1/2 was activated in benzidine-treated T24 cells, while benzidine-induced EMT could not be reversed by U0126, an ERK1/2 inhibitor, as indicated by further study. Collectively, our findings revealed that ERK5-mediated EMT was critically involved in benzidine-correlated BC progression, indicating the therapeutic significance of ERK5 in benzidine-related BC.
Collapse
Affiliation(s)
- Xin Sun
- Department of Urology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230032,
PR China
| | - Tao Zhang
- Department of Urology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230032,
PR China
| | - Qifei Deng
- Second Department of Urology, Anhui Provincial Children’s Hospital, Hefei, Anhui 230032,
PR China
| | - Qirui Zhou
- Department of Otolaryngology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230032,
PR China
| | - Xianchao Sun
- Department of Urology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230032,
PR China
| | - Enlai Li
- Department of Urology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230032,
PR China
| | - Dexin Yu
- Department of Urology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230032,
PR China
| | - Caiyun Zhong
- Department of Nutrition and Food Safety, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166,
PR China
| |
Collapse
|
17
|
Ouyang P, Lin B, Du J, Pan H, Yu H, He R, Huang Z. Global gene expression analysis of knockdown Triosephosphate isomerase (TPI) gene in human gastric cancer cell line MGC-803. Gene 2018; 647:61-72. [DOI: 10.1016/j.gene.2018.01.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 12/09/2017] [Accepted: 01/03/2018] [Indexed: 02/07/2023]
|