1
|
Xue Y, Ruan Y, Wang Y, Xiao P, Xu J. Signaling pathways in liver cancer: pathogenesis and targeted therapy. MOLECULAR BIOMEDICINE 2024; 5:20. [PMID: 38816668 PMCID: PMC11139849 DOI: 10.1186/s43556-024-00184-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 04/23/2024] [Indexed: 06/01/2024] Open
Abstract
Liver cancer remains one of the most prevalent malignancies worldwide with high incidence and mortality rates. Due to its subtle onset, liver cancer is commonly diagnosed at a late stage when surgical interventions are no longer feasible. This situation highlights the critical role of systemic treatments, including targeted therapies, in bettering patient outcomes. Despite numerous studies on the mechanisms underlying liver cancer, tyrosine kinase inhibitors (TKIs) are the only widely used clinical inhibitors, represented by sorafenib, whose clinical application is greatly limited by the phenomenon of drug resistance. Here we show an in-depth discussion of the signaling pathways frequently implicated in liver cancer pathogenesis and the inhibitors targeting these pathways under investigation or already in use in the management of advanced liver cancer. We elucidate the oncogenic roles of these pathways in liver cancer especially hepatocellular carcinoma (HCC), as well as the current state of research on inhibitors respectively. Given that TKIs represent the sole class of targeted therapeutics for liver cancer employed in clinical practice, we have particularly focused on TKIs and the mechanisms of the commonly encountered phenomena of its resistance during HCC treatment. This necessitates the imperative development of innovative targeted strategies and the urgency of overcoming the existing limitations. This review endeavors to shed light on the utilization of targeted therapy in advanced liver cancer, with a vision to improve the unsatisfactory prognostic outlook for those patients.
Collapse
Affiliation(s)
- Yangtao Xue
- Key Laboratory of Laparoscopic Technology of Zhejiang Province, Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
- National Engineering Research Center of Innovation and Application of Minimally Invasive Instruments, Hangzhou, 310016, China
- Zhejiang Minimal Invasive Diagnosis and Treatment Technology Research Center of Severe Hepatobiliary Disease, Zhejiang Research and Development Engineering Laboratory of Minimally Invasive Technology and Equipment, Hangzhou, 310016, China
- Zhejiang University Cancer Center, Hangzhou, 310058, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, 311121, China
| | - Yeling Ruan
- Key Laboratory of Laparoscopic Technology of Zhejiang Province, Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
- National Engineering Research Center of Innovation and Application of Minimally Invasive Instruments, Hangzhou, 310016, China
- Zhejiang Minimal Invasive Diagnosis and Treatment Technology Research Center of Severe Hepatobiliary Disease, Zhejiang Research and Development Engineering Laboratory of Minimally Invasive Technology and Equipment, Hangzhou, 310016, China
- Zhejiang University Cancer Center, Hangzhou, 310058, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, 311121, China
| | - Yali Wang
- Key Laboratory of Laparoscopic Technology of Zhejiang Province, Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
- National Engineering Research Center of Innovation and Application of Minimally Invasive Instruments, Hangzhou, 310016, China
- Zhejiang Minimal Invasive Diagnosis and Treatment Technology Research Center of Severe Hepatobiliary Disease, Zhejiang Research and Development Engineering Laboratory of Minimally Invasive Technology and Equipment, Hangzhou, 310016, China
- Zhejiang University Cancer Center, Hangzhou, 310058, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, 311121, China
| | - Peng Xiao
- Sir Run-Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China.
| | - Junjie Xu
- Key Laboratory of Laparoscopic Technology of Zhejiang Province, Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China.
- National Engineering Research Center of Innovation and Application of Minimally Invasive Instruments, Hangzhou, 310016, China.
- Zhejiang Minimal Invasive Diagnosis and Treatment Technology Research Center of Severe Hepatobiliary Disease, Zhejiang Research and Development Engineering Laboratory of Minimally Invasive Technology and Equipment, Hangzhou, 310016, China.
- Zhejiang University Cancer Center, Hangzhou, 310058, China.
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, 311121, China.
| |
Collapse
|
2
|
Kobatake K, Ikeda K, Teishima J, Sekino Y, Babasaki T, Kohada Y, Tasaka R, Takemoto K, Fukushima T, Miyamoto S, Kitano H, Goto K, Hieda K, Hayashi T, Hinata N. Complexity in radiological morphology predicts worse prognosis and is associated with an increase in proteasome component levels in clear cell renal cell carcinoma. Front Oncol 2022; 12:1039383. [PMID: 36568232 PMCID: PMC9773190 DOI: 10.3389/fonc.2022.1039383] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 11/16/2022] [Indexed: 12/13/2022] Open
Abstract
Background We previously reported preoperative radiological morphology (RM) as an independent predictor for pathological upstaging after partial nephrectomy in patients with T1 renal cell carcinoma (RCC). Purpose To investigate the prognostic importance of RM in all stages and the molecular characteristics underlying the differences between each type of RM in patients with clear cell RCC (ccRCC). Design setting and participants The Cancer Imaging Archive datasets (TCIA), comprising CT images and RNA-sequencing data, were used (n = 163). Specimens from 63 patients with ccRCC at our institution and their CT images were used. All images were divided into three types according to RM classification. Outcome measurements and statistical analysis Relationships with outcome were analyzed using Cox regression analysis and log-rank test. Results and limitations The irregular type was a significant independent predictor of worse disease-free survival (odds ratio: 2.22, p = 0.037) compared to round and lobular types in TCIA datasets. The irregular type showed a significant increase in both mRNA and protein expression of proteasome components, PSMB1 and PSMB3. Moreover, high expression of their coding genes shortened the progression-free survival of the patients with ccRCC who received sunitinib or avelumab plus axitinib therapy. The study limitations include the qualitative classification of RM and the need for novel radiomics and texture analysis techniques. Conclusions Investigating RM on pre-treatment CT scans can effectively predict worse prognosis. Increased RM complexity may indirectly predict drug sensitivity via increased expression of PSMB1 and PSMB3 in patients with ccRCC. Specific targeting of the ubiquitin-proteasome system might be a novel treatment strategy for ccRCC with increased RM complexity. Patient summary The clinical and morphological characteristics of patients with ccRCC vary greatly according to cancer staging. In this study, we built upon our prior findings of the prognostic importance of RM in T1 RCC and expanded it to encompass all stages of RCC, using a series of patients from a Japanese hospital.
Collapse
Affiliation(s)
- Kohei Kobatake
- Department of Urology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Kenichiro Ikeda
- Department of Urology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan,*Correspondence: Kenichiro Ikeda,
| | - Jun Teishima
- Department of Urology, Kobe City Hospital Organization Kobe City Medical Center West Hospital, Kobe, Japan
| | - Yohei Sekino
- Department of Urology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Takashi Babasaki
- Department of Urology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Yuki Kohada
- Department of Urology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Ryo Tasaka
- Department of Urology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Kenshiro Takemoto
- Department of Urology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Takafumi Fukushima
- Department of Urology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Shunsuke Miyamoto
- Department of Urology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Hiroyuki Kitano
- Department of Urology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Keisuke Goto
- Department of Urology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Keisuke Hieda
- Department of Urology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Tetsutaro Hayashi
- Department of Urology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Nobuyuki Hinata
- Department of Urology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
3
|
Dell’Atti L, Bianchi N, Aguiari G. New Therapeutic Interventions for Kidney Carcinoma: Looking to the Future. Cancers (Basel) 2022; 14:cancers14153616. [PMID: 35892875 PMCID: PMC9332391 DOI: 10.3390/cancers14153616] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/20/2022] [Accepted: 07/22/2022] [Indexed: 12/18/2022] Open
Abstract
Simple Summary Renal cell carcinoma (RCC) in metastatic form is a lethal pathology difficult to treat; therefore, the research of new therapeutic options for the treatment of metastatic patients is crucial to improve quality of life and overall survival. Recently, new signaling pathways and biological processes involved in cancer development and progression by scientific research community have been identified. These components including factors affecting angiogenesis, cell migration and invasion, autophagy and ferroptosis that are dysregulated in kidney cancer represent novel possible target molecules. In this work, we discuss current and new therapies for kidney cancer treatment; in particular, agents targeting new molecules involved in renal carcinogenesis that in future might become more powerful drugs for the cure of metastatic RCC. Abstract Patients suffering from metastatic renal cell carcinoma (mRCC) show an overall survival rate of lower than 10% after 5 years from diagnosis. Currently, the first-line treatment for mRCC patients is based on antiangiogenic drugs that are able to inhibit tyrosine kinase receptors (TKI) in combination with immuno-oncology (IO) therapy or IO-IO treatments. Second-line therapy involves the use of other TKIs, immunotherapeutic drugs, and mTOR inhibitors. Nevertheless, many patients treated with mTOR and TK inhibitors acquire drug resistance, making the therapy ineffective. Therefore, the research of new therapeutic targets is crucial for improving the overall survival and quality of life of mRCC patients. The investigation of the molecular basis of RCC, especially in clear cell renal cell carcinoma (ccRCC), has led to the identification of different signaling pathways that are involved in renal carcinogenesis. Most of ccRCCs are associated with mutation in VHL gene, which mediates the degradation of hypoxia-inducible factors (HIFs), that, in turn, regulate the pathways related to tumorigenesis, including angiogenesis and invasion. Renal tumorigenesis is also associated with the activation of tyrosine kinases that modulate the PI3K-Akt-mTOR pathway, promoting cell proliferation and survival. In ccRCC, the abnormal activity of mTOR activates the MDM2 protein, which leads to the degradation of tumor suppressor p53 via proteasome machinery. In addition, p53 may be degraded by autophagy in a mechanism involving the enzyme transglutaminase 2 (TG2). Suppression of wild-type p53 promotes cell growth, invasion, and drug resistance. Finally, the activation of ferroptosis appears to inhibit cancer progression in RCC. In conclusion, these pathways might represent new therapeutic targets for mRCC.
Collapse
Affiliation(s)
- Lucio Dell’Atti
- Division of Urology, Ospedali Riuniti University Hospital, 60126 Ancona, Italy;
| | - Nicoletta Bianchi
- Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy;
| | - Gianluca Aguiari
- Department of Neuroscience and Rehabilitation, University of Ferrara, 44121 Ferrara, Italy
- Correspondence:
| |
Collapse
|
4
|
Li J, Pohl L, Schüler J, Korzeniewski N, Reimold P, Kaczorowski A, Hou W, Zschäbitz S, Nientiedt C, Jäger D, Hohenfellner M, Duensing A, Duensing S. Targeting the Proteasome in Advanced Renal Cell Carcinoma: Complexity and Limitations of Patient-Individualized Preclinical Drug Discovery. Biomedicines 2021; 9:biomedicines9060627. [PMID: 34072926 PMCID: PMC8227814 DOI: 10.3390/biomedicines9060627] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 05/25/2021] [Accepted: 05/26/2021] [Indexed: 01/26/2023] Open
Abstract
Background: Systemic treatment options for metastatic renal cell carcinoma (RCC) have significantly expanded in recent years. However, patients refractory to tyrosine kinase and immune checkpoint inhibitors still have limited treatment options and patient-individualized approaches are largely missing. Patients and Methods: In vitro drug screening of tumor-derived short-term cultures obtained from seven patients with clear cell RCC was performed. For one patient, a patient-derived xenograft (PDX) mouse model was established for in vivo validation experiments. Drug effects were further investigated in established RCC cell lines. Results: The proteasome inhibitor carfilzomib was among the top hits identified in three of four patients in which an in vitro drug screening could be performed successfully. Carfilzomib also showed significant acute and long-term cytotoxicity in established RCC cell lines. The in vivo antitumoral activity of carfilzomib was confirmed in a same-patient PDX model. The cytotoxicity of carfilzomib was found to correlate with the level of accumulation of ubiquitinated proteins. Conclusions: In this proof-of-concept study, we show that patient-individualized in vitro drug screening and preclinical validation is feasible. However, the fact that carfilzomib failed to deliver a clinical benefit in RCC patients in a recent phase II trial unrelated to the present study underscores the complexities and limitations of this strategy.
Collapse
Affiliation(s)
- Jielin Li
- Molecular Urooncology, Department of Urology, University Hospital Heidelberg, Im Neuenheimer Feld 517, D-69120 Heidelberg, Germany; (J.L.); (L.P.); (N.K.); (A.K.); (W.H.)
| | - Laura Pohl
- Molecular Urooncology, Department of Urology, University Hospital Heidelberg, Im Neuenheimer Feld 517, D-69120 Heidelberg, Germany; (J.L.); (L.P.); (N.K.); (A.K.); (W.H.)
| | - Julia Schüler
- Charles River Laboratories, Am Flughafen 12, D-79108 Freiburg, Germany;
| | - Nina Korzeniewski
- Molecular Urooncology, Department of Urology, University Hospital Heidelberg, Im Neuenheimer Feld 517, D-69120 Heidelberg, Germany; (J.L.); (L.P.); (N.K.); (A.K.); (W.H.)
| | - Philipp Reimold
- Department of Urology, National Center for Tumor Diseases (NCT), University Hospital Heidelberg, Im Neuenheimer Feld 420, D-69120 Heidelberg, Germany; (P.R.); (M.H.)
| | - Adam Kaczorowski
- Molecular Urooncology, Department of Urology, University Hospital Heidelberg, Im Neuenheimer Feld 517, D-69120 Heidelberg, Germany; (J.L.); (L.P.); (N.K.); (A.K.); (W.H.)
| | - Weibin Hou
- Molecular Urooncology, Department of Urology, University Hospital Heidelberg, Im Neuenheimer Feld 517, D-69120 Heidelberg, Germany; (J.L.); (L.P.); (N.K.); (A.K.); (W.H.)
| | - Stefanie Zschäbitz
- Department of Medical Oncology, National Center for Tumor Diseases (NCT), Heidelberg University Hospital, Im Neuenheimer Feld 460, D-69120 Heidelberg, Germany; (S.Z.); (C.N.); (D.J.)
| | - Cathleen Nientiedt
- Department of Medical Oncology, National Center for Tumor Diseases (NCT), Heidelberg University Hospital, Im Neuenheimer Feld 460, D-69120 Heidelberg, Germany; (S.Z.); (C.N.); (D.J.)
| | - Dirk Jäger
- Department of Medical Oncology, National Center for Tumor Diseases (NCT), Heidelberg University Hospital, Im Neuenheimer Feld 460, D-69120 Heidelberg, Germany; (S.Z.); (C.N.); (D.J.)
| | - Markus Hohenfellner
- Department of Urology, National Center for Tumor Diseases (NCT), University Hospital Heidelberg, Im Neuenheimer Feld 420, D-69120 Heidelberg, Germany; (P.R.); (M.H.)
| | - Anette Duensing
- Precision Oncology of Urological Malignancies, Department of Urology, University Hospital Heidelberg, Im Neuenheimer Feld 517, D-69120 Heidelberg, Germany;
- Cancer Therapeutics Program, UPMC Hillman Cancer Center, 5117 Centre Avenue, Pittsburgh, PA 15213, USA
- Department of Pathology, University of Pittsburgh School of Medicine, 200 Lothrop Street, Pittsburgh, PA 15213, USA
| | - Stefan Duensing
- Molecular Urooncology, Department of Urology, University Hospital Heidelberg, Im Neuenheimer Feld 517, D-69120 Heidelberg, Germany; (J.L.); (L.P.); (N.K.); (A.K.); (W.H.)
- Department of Urology, National Center for Tumor Diseases (NCT), University Hospital Heidelberg, Im Neuenheimer Feld 420, D-69120 Heidelberg, Germany; (P.R.); (M.H.)
- Correspondence: ; Tel.: +49-6621-566255; Fax: +49-6221-567659
| |
Collapse
|
5
|
Clinical and Pathological Characteristics of Metastatic Renal Cell Carcinoma Patients Needing a Second-Line Therapy: A Systematic Review. Cancers (Basel) 2020; 12:cancers12123634. [PMID: 33291600 PMCID: PMC7761871 DOI: 10.3390/cancers12123634] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 11/21/2020] [Accepted: 12/02/2020] [Indexed: 01/01/2023] Open
Abstract
Simple Summary The management of metastatic renal cell carcinoma (mRCC) represents a clinical challenge. Progression or toxicity may occur during first-line treatments and many patients require a second-line option. Given the expanding options for second-line therapies clinicians are faced with the challenge to individualize treatment. We performed a systematic review in order to summarize available evidences about the clinicopathological profile of mRCC patients who receive a second-line therapy. We identified twenty-nine studies enrolling 7650 patients. Discontinuation of first-line therapy was due to progression in the majority of patients with 77.8% patients harboring ≥2 metastatic sites. Most patients had a good performance status, their age ranged from 55 to 70 years and their prognostic profile revealed a good or intermediate disease in most cases. Tailoring of second-line treatment strategies based on these features is strongly advocated. Abstract A high percentage of patients with metastatic renal cell carcinoma (mRCC) require a second-line option. We aimed to summarize available evidences about the clinicopathological profile of mRCC patients who receive a second-line therapy. A systematic review was performed in August 2020. We included papers that met the following criteria: original research; English language; human studies; enrolling mRCC patients entering a second-line therapy. Twenty-nine studies enrolling 7650 patients (73.5% male, mean age: 55 to 70 years) were included. Clear cell histology was reported in 74.4% to 100% of cases. Tyrosine kinase inhibitors, immunotherapy, bevacizumab, mTOR inhibitors, and chemotherapy were adopted as first line option in 68.5%, 29.2%, 2.9%, 0.6%, and 0.2% of patients, respectively. Discontinuation of first-line therapy was due to progression and toxicity in 18.4% to 100% and in 17% to 48.8% of patients, respectively. Eastern Cooperative Oncology Group performance status score was 0 or 1 in most cases. Most prevalent prognostic categories according to the International Metastatic RCC Database Consortium and Memorial Sloan–Kettering Cancer Centre score were intermediate and good. About 77.8% of patients harboured ≥2 metastatic sites. In conclusion, patients who enter a second-line therapy are heterogeneous in terms of a clinical-pathological profile. Tailoring of second-line treatment strategies is strongly advocated.
Collapse
|
6
|
Antao AM, Tyagi A, Kim KS, Ramakrishna S. Advances in Deubiquitinating Enzyme Inhibition and Applications in Cancer Therapeutics. Cancers (Basel) 2020; 12:E1579. [PMID: 32549302 PMCID: PMC7352412 DOI: 10.3390/cancers12061579] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 06/07/2020] [Accepted: 06/11/2020] [Indexed: 12/11/2022] Open
Abstract
Since the discovery of the ubiquitin proteasome system (UPS), the roles of ubiquitinating and deubiquitinating enzymes (DUBs) have been widely elucidated. The ubiquitination of proteins regulates many aspects of cellular functions such as protein degradation and localization, and also modifies protein-protein interactions. DUBs cleave the attached ubiquitin moieties from substrates and thereby reverse the process of ubiquitination. The dysregulation of these two paramount pathways has been implicated in numerous diseases, including cancer. Attempts are being made to identify inhibitors of ubiquitin E3 ligases and DUBs that potentially have clinical implications in cancer, making them an important target in the pharmaceutical industry. Therefore, studies in medicine are currently focused on the pharmacological disruption of DUB activity as a rationale to specifically target cancer-causing protein aberrations. Here, we briefly discuss the pathophysiological and physiological roles of DUBs in key cancer-related pathways. We also discuss the clinical applications of promising DUB inhibitors that may contribute to the development of DUBs as key therapeutic targets in the future.
Collapse
Affiliation(s)
- Ainsley Mike Antao
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul 04763, Korea; (A.M.A.); (A.T.)
| | - Apoorvi Tyagi
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul 04763, Korea; (A.M.A.); (A.T.)
| | - Kye-Seong Kim
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul 04763, Korea; (A.M.A.); (A.T.)
- College of Medicine, Hanyang University, Seoul 04763, Korea
| | - Suresh Ramakrishna
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul 04763, Korea; (A.M.A.); (A.T.)
- College of Medicine, Hanyang University, Seoul 04763, Korea
| |
Collapse
|
7
|
Zhang X, Linder S, Bazzaro M. Drug Development Targeting the Ubiquitin-Proteasome System (UPS) for the Treatment of Human Cancers. Cancers (Basel) 2020; 12:cancers12040902. [PMID: 32272746 PMCID: PMC7226376 DOI: 10.3390/cancers12040902] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 04/01/2020] [Accepted: 04/02/2020] [Indexed: 12/12/2022] Open
Abstract
Cancer cells are characterized by a higher rate of protein turnover and greater demand for protein homeostasis compared to normal cells. In this scenario, the ubiquitin-proteasome system (UPS), which is responsible for the degradation of over 80% of cellular proteins within mammalian cells, becomes vital to cancer cells, making the UPS a critical target for the discovery of novel cancer therapeutics. This review systematically categorizes all current reported small molecule inhibitors of the various essential components of the UPS, including ubiquitin-activating enzymes (E1s), ubiquitin-conjugating enzymes (E2s), ubiquitin ligases (E3s), the 20S proteasome catalytic core particle (20S CP) and the 19S proteasome regulatory particles (19S RP), as well as their mechanism/s of action and limitations. We also discuss the immunoproteasome which is considered as a prospective therapeutic target of the next generation of proteasome inhibitors in cancer therapies.
Collapse
Affiliation(s)
- Xiaonan Zhang
- Masonic Cancer Center and Department of Obstetrics, Gynecology and Women’s Health, University of Minnesota, Minneapolis, MN 55455, USA;
- Department of Oncology-Pathology, Karolinska Institutet, 171 77 Stockholm, Sweden;
- Department of Immunology, Genetics, and Pathology, Uppsala University, 751 05 Uppsala, Sweden
| | - Stig Linder
- Department of Oncology-Pathology, Karolinska Institutet, 171 77 Stockholm, Sweden;
- Department of Medical and Health Sciences, Linköping University, SE-58183 Linköping, Sweden
| | - Martina Bazzaro
- Masonic Cancer Center and Department of Obstetrics, Gynecology and Women’s Health, University of Minnesota, Minneapolis, MN 55455, USA;
- Correspondence:
| |
Collapse
|