1
|
Merakeb MS, Bribi N, Ferhat R, Afenai S. Intestinal anti-inflammatory, histopathologic and anti-oxidative regulatory effects of total alkaloids extract from Linum usitatissimum L. (Flaxseed) in vivo. JOURNAL OF ETHNOPHARMACOLOGY 2025; 350:120001. [PMID: 40419207 DOI: 10.1016/j.jep.2025.120001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 05/06/2025] [Accepted: 05/19/2025] [Indexed: 05/28/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Linum usitatissimum L., commonly known as flaxseed, is a perennial herb in the Lineaceae family that has been traditionally used to manage gastrointestinal disorders and diarrhea. The health benefits and medicinal applications of flaxseed can be attributed to the presence of some beneficial compounds, such as omega-3 fatty acids, tocopherol, cyclic peptides, alkaloids, mucilage, and phenylpropanoids. AIM OF THE STUDY This investigation explored the potential anti-inflammatory and antioxidant properties of the total alkaloid extract of Linum usitatissimum L. seeds (ALU) in a model of Crohn's disease induced by 2,4-dinitrobenzenesulfonic acid (DNBS) in BALB/c mice. MATERIALS AND METHODS ALU fraction was chemically characterized by liquid chromatography combined with electrospray ionization mass spectrometry (LC-ESI-MS/MS). Six groups of mice (n=6) were divided as follow: healthy group, colitic control, Dexamethasone treated-group (2.4 mg/kg) and three group for ALU treatment (50, 100 and 200 mg/kg). Intrarectal instillation of DNBS (250 mg/kg) induced colonic inflammation accompanied by body weight loss, colonic architecture modification, inflammatory cells infiltration and excessive inflammatory markers production. Tissues sample were used to assess the histological damages and eventual goblet cells loss (H & E and PAS staining) and to evaluate inflammatory and oxidative statute (MPO, NO, H2O2, MDA, CAT and GSH). RESULTS The phytochemical analysis of total alkaloid fraction of LU revealed the presence of 10 compounds. Oral administration of ALU (50, 100, and 200 mg/kg) significantly ameliorated DNBS-induced colitis in mice in a dose-dependent manner. ALU treatment mitigated body weight loss, reduced the weight/length (W/L) ratio, and improved clinical outcomes, including diarrhea and food intake. Histological analyses revealed preserved colonic architecture, enhanced goblet cell numbers, reduced neutrophil infiltration, and minimal mucosal damage, comparable to dexamethasone treatment. ALU also promoted mucosal healing and neutral mucin retention. Furthermore, ALU exerted potent anti-inflammatory and antioxidant effects by modulating key markers such as MPO, NO, H2O2, MDA, CAT, and GSH, supporting its protective role against colonic inflammation. CONCLUSION These findings indicate that alkaloid fraction extracted from Linum usitatissimum L. have strong anti- inflammatory and antioxidant properties in a DNBS-induced colitis model in BALB/c mice.
Collapse
Affiliation(s)
- Mohamed Sofiane Merakeb
- University of Bejaia, Laboratory of Plant Biotechnology and Ethnobotany, Faculty of Natural and Life Sciences, Bejaia, 06000, Algeria.
| | - Noureddine Bribi
- University of Bejaia, Laboratory of Plant Biotechnology and Ethnobotany, Faculty of Natural and Life Sciences, Bejaia, 06000, Algeria.
| | - Riad Ferhat
- University of Bejaia, Laboratory of Plant Biotechnology and Ethnobotany, Faculty of Natural and Life Sciences, Bejaia, 06000, Algeria.
| | - Safia Afenai
- University of Bejaia, Laboratory of Plant Biotechnology and Ethnobotany, Faculty of Natural and Life Sciences, Bejaia, 06000, Algeria.
| |
Collapse
|
2
|
Zhang Y, Cao P, Qin D, Zhao Y, Chen X, Ma P. Anti-inflammatory, anti-colitis, and antioxidant effects of columbianadin against DSS-induced ulcerative colitis in rats via alteration of HO-1/Nrf2 and TLR4-NF-κB signaling pathway. Inflammopharmacology 2025; 33:341-352. [PMID: 39757276 DOI: 10.1007/s10787-024-01630-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Accepted: 12/04/2024] [Indexed: 01/07/2025]
Abstract
BACKGROUND Ulcerative colitis (UC) is a significant inflammatory bowel disease (IBD) that typically arises from chronic inflammation of the intestinal tract. Report suggest that anti-inflammatory drug plays a crucial role in the protection of UC. The recent study demonstrated that columbianadin has a protective effect against UC induced by dextran sulfate sodium (DSS) in rats through the modulation of HO-1/Nrf2 and TLR4-NF-κB signaling pathways. MATERIAL AND METHODS In this study, Swiss Wistar rats were utilized, and UC was induced using 2% DSS. The treatment regimen included oral administration of columbianadin (5, 10 and 15 mg/kg) and sulfasalazine to the rats. The body weight, spleen index, disease activity index (DAI), colon length, food and water intake were estimated. Moreover, antioxidant, cytokines, inflammatory and apoptosis parameters were determined. mRNA expression levels were also quantitatively analyzed. RESULTS Columbianadin treatment significantly (P < 0.001) boosted the body weight and suppressed the DAI. Columbianadin significantly (P < 0.001) enhanced the colon length and repressed the spleen index along with enhanced food and water intake. Columbianadin significantly (P < 0.001) suppressed the level of lactate dehydrogenase (LDH), myeloperoxidase (MPO) and altered the level of oxidative stress parameters such as catalase (CAT), superoxide dismutase (SOD), glutathione reductase (GR), glutathione peroxidase (GPx), malonaldehyde (MDA), nitric oxide (NO), SA; cytokines level such as interleukin (IL)-1, 1β, 6, 10, 17, 18, TNF-α; inflammatory parameters viz., cyclooxygenase-2 (COX-2), prostaglandin (PGE2), inducible nitric oxide synthetase (iNOS), nuclear factor kappa B (NF-κB), transforming growth factor (TGF-β); apoptosis parameters include Bax, Bcl-2, Bcl-2/Bax ratio, caspase-1 and A-caspase-3 activity, respectively. Columbianadin significantly altered the mRNA expression of IFN-γ, IL-6, IL-1β, IL-8, TNF-α, NF-κB, TLR4, Bcl-2, caspase-9, Bax, p38, ASC, MCP-1, ZO-1, and Ocln. While this study focused on COX-2 modulation as a marker of inflammatory response, no direct measurements or inferences were made regarding leukotriene activity, which involves a separate lipoxygenase pathway. CONCLUSION Columbianadin exhibited the protective effect against DSS-induced UC via alteration of HO-1/Nrf2 and TLR4-NF-κB signaling pathway.
Collapse
Affiliation(s)
- Yanping Zhang
- Department of Gastroenterology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, Tongji Shanxi Hospital, No.99 Longcheng street, Xiao dian District, Taiyuan, 030032, China
- Faculty of Graduate Studies, Shanxi Medical University, NO.56 Road, NO. Xinjiannan Yingze District, Taiyuan, 030000, China
| | - Ping Cao
- Department of Gastroenterology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, Tongji Shanxi Hospital, No.99 Longcheng street, Xiao dian District, Taiyuan, 030032, China
| | - Dongyuan Qin
- Department of Gastroenterology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, Tongji Shanxi Hospital, No.99 Longcheng street, Xiao dian District, Taiyuan, 030032, China
| | - Ying Zhao
- Department of Gastroenterology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, Tongji Shanxi Hospital, No.99 Longcheng street, Xiao dian District, Taiyuan, 030032, China
| | - Xing Chen
- Early Gastrointestinal Cancer Diagnosis and Treatment Research Center, First Hospital of Shanxi Medical University, NO.85 Xinjian nan Road, Yingze District, Taiyuan, 030000, China.
- Department of Gastroenterology, First Hospital of Shanxi Medical University, NO.56 Jiefangnan Road, Taiyuan, 030000, China.
| | - Peng Ma
- General Surgery Department, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, China.
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
3
|
Gong JZ, Huang JJ, Pan M, Jin QW, Fan YM, Shi WQ, Huang SY. Cathepsin L of Fasciola hepatica meliorates colitis by altering the gut microbiome and inflammatory macrophages. Int J Biol Macromol 2025; 286:138270. [PMID: 39638178 DOI: 10.1016/j.ijbiomac.2024.138270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/27/2024] [Accepted: 11/30/2024] [Indexed: 12/07/2024]
Abstract
Helminths can relieve the development of autoimmune diseases and inflammatory diseases, by inducing anti-inflammatory innate immune responses. Here, we report that CL7, a Cathepsin L protein secreted by Fasciola hepatica, inhibited the activation of the NF-κB and MAPK signaling resulting in reduced secretion of inflammatory mediators in macrophages. Furthermore,we found that CL7 could prevent dextran sulfate sodium (DSS) induced ulcerative colitis (UC). CL7 and ESP administration restored DSS-induced body weight loss, colon shortening, and injury, significantly decreased the disease activity index (DAI) and alleviated colonic epithelial injury. CL7 noticeably suppressed the DSS-triggered M1 polarization upregulation and inhibited IL-17 and other inflammatory mediator production in UC mice. Additionally, CL7 ameliorated DSS-induced microbiota dysbiosis. Results of Antibiotic treatment (ABX) and fecal microbial transplants (FMT) suggested that the gut microbiota played an important role in CL7 treating UC. These findings propose that CL7 could be a promising strategy for UC therapy.
Collapse
Affiliation(s)
- Jing-Zhi Gong
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, PR China
| | - Jun-Jie Huang
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, PR China
| | - Ming Pan
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, PR China
| | - Qi-Wang Jin
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, PR China
| | - Yi-Min Fan
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, PR China
| | - Wen-Qian Shi
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, PR China
| | - Si-Yang Huang
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, PR China.
| |
Collapse
|
4
|
Jamtsho T, Loukas A, Wangchuk P. Pharmaceutical Potential of Remedial Plants and Helminths for Treating Inflammatory Bowel Disease. Pharmaceuticals (Basel) 2024; 17:819. [PMID: 39065669 PMCID: PMC11279646 DOI: 10.3390/ph17070819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 06/16/2024] [Accepted: 06/19/2024] [Indexed: 07/28/2024] Open
Abstract
Research is increasingly revealing that inflammation significantly contributes to various diseases, particularly inflammatory bowel disease (IBD). IBD is a major medical challenge due to its chronic nature, affecting at least one in a thousand individuals in many Western countries, with rising incidence in developing nations. Historically, indigenous people have used natural products to treat ailments, including IBD. Ethnobotanically guided studies have shown that plant-derived extracts and compounds effectively modulate immune responses and reduce inflammation. Similarly, helminths and their products offer unique mechanisms to modulate host immunity and alleviate inflammatory responses. This review explored the pharmaceutical potential of Aboriginal remedial plants and helminths for treating IBD, emphasizing recent advances in discovering anti-inflammatory small-molecule drug leads. The literature from Scopus, MEDLINE Ovid, PubMed, Google Scholar, and Web of Science was retrieved using keywords such as natural product, small molecule, cytokines, remedial plants, and helminths. This review identified 55 important Aboriginal medicinal plants and 9 helminth species that have been studied for their anti-inflammatory properties using animal models and in vitro cell assays. For example, curcumin, berberine, and triptolide, which have been isolated from plants; and the excretory-secretory products and their protein, which have been collected from helminths, have demonstrated anti-inflammatory activity with lower toxicity and fewer side effects. High-throughput screening, molecular docking, artificial intelligence, and machine learning have been engaged in compound identification, while clustered regularly interspaced short palindromic repeats (CRISPR) gene editing and RNA sequencing have been employed to understand molecular interactions and regulations. While there is potential for pharmaceutical application of Aboriginal medicinal plants and gastrointestinal parasites in treating IBD, there is an urgent need to qualify these plant and helminth therapies through reproducible clinical and mechanistic studies.
Collapse
Affiliation(s)
- Tenzin Jamtsho
- College of Public Health, Medical, and Veterinary Sciences (CPHMVS), Cairns Campus, James Cook University, Cairns, QLD 4878, Australia
- Australian Institute of Tropical Health and Medicine (AITHM), Cairns Campus, James Cook University, Cairns, QLD 4878, Australia;
| | - Alex Loukas
- Australian Institute of Tropical Health and Medicine (AITHM), Cairns Campus, James Cook University, Cairns, QLD 4878, Australia;
| | - Phurpa Wangchuk
- College of Public Health, Medical, and Veterinary Sciences (CPHMVS), Cairns Campus, James Cook University, Cairns, QLD 4878, Australia
- Australian Institute of Tropical Health and Medicine (AITHM), Cairns Campus, James Cook University, Cairns, QLD 4878, Australia;
| |
Collapse
|
5
|
Tak J, An Q, Lee SG, Lee CH, Kim SG. Gα12 and endoplasmic reticulum stress-mediated pyroptosis in a single cycle of dextran sulfate-induced mouse colitis. Sci Rep 2024; 14:6335. [PMID: 38491049 PMCID: PMC10943197 DOI: 10.1038/s41598-024-56685-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 03/09/2024] [Indexed: 03/18/2024] Open
Abstract
Inflammatory bowel disease (IBD) pathogenesis involves complex inflammatory events and cell death. Although IBD involves mainly necrosis in the digestive tract, pyroptosis has also been recognized. Nonetheless, the underlying basis is elusive. Gα12/13 overexpression may affect endoplasmic reticulum (ER) stress. This study examined how Gα12/13 and ER stress affect pyroptosis using dextran sulfate sodium (DSS)-induced colitis models. Gα12/13 levels were increased in the distal and proximal colons of mice exposed to a single cycle of DSS, as accompanied by increases of IRE1α, ATF6, and p-PERK. Moreover, Il-6, Il-1β, Ym1, and Arg1 mRNA levels were increased with caspase-1 and IL-1β activation, supportive of pyroptosis. In the distal colon, RIPK1/3 levels were enhanced to a greater degree, confirming necroptosis. By contrast, the mice subjected to three cycles of DSS treatments showed decreases of Gα12/13, as accompanied by IRE1α and ATF6 suppression, but increases of RIPK1/3 and c-Cas3. AZ2 treatment, which inhibited Gα12, has an anti-pyroptotic effect against a single cycle of colitis. These results show that a single cycle of DSS-induced colitis may cause ER stress-induced pyroptosis as mediated by Gα12 overexpression in addition to necroptosis, but three cycles model induces only necroptosis, and that AZ2 may have an anti-pyroptotic effect.
Collapse
Affiliation(s)
- Jihoon Tak
- College of Pharmacy and Integrated Research Institute for Drug Development, Dongguk University-Seoul, Goyang-si, Gyeonggi-do, 10326, Republic of Korea
| | - Quanxi An
- College of Pharmacy and Integrated Research Institute for Drug Development, Dongguk University-Seoul, Goyang-si, Gyeonggi-do, 10326, Republic of Korea
| | - Sang Gil Lee
- Research and Development Institute, A Pharma Inc, Goyang-si, Gyeonggi-do, 10326, Republic of Korea
| | - Chang Hoon Lee
- College of Pharmacy and Integrated Research Institute for Drug Development, Dongguk University-Seoul, Goyang-si, Gyeonggi-do, 10326, Republic of Korea
| | - Sang Geon Kim
- College of Pharmacy and Integrated Research Institute for Drug Development, Dongguk University-Seoul, Goyang-si, Gyeonggi-do, 10326, Republic of Korea.
| |
Collapse
|
6
|
Cantorna MT, Arora J. Vitamin D, microbiota, and inflammatory bowel disease. FELDMAN AND PIKE'S VITAMIN D 2024:1057-1073. [DOI: 10.1016/b978-0-323-91338-6.00047-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
7
|
Kim N. Colorectal Diseases and Gut Microbiome. SEX/GENDER-SPECIFIC MEDICINE IN CLINICAL AREAS 2024:137-208. [DOI: 10.1007/978-981-97-0130-8_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
8
|
Yang X, Wang C, Wang Q, Zhang Z, Nie W, Shang L. Armored probiotics for oral delivery. SMART MEDICINE 2023; 2:e20230019. [PMID: 39188298 PMCID: PMC11235677 DOI: 10.1002/smmd.20230019] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 06/26/2023] [Indexed: 08/28/2024]
Abstract
As a kind of intestinal flora regulator, probiotics show great potential in the treatment of many diseases. However, orally delivered probiotics are often vulnerable to unfriendly gastrointestinal environments, resulting in a low survival rate and decreased therapeutic efficacy. Decorating or encapsulating probiotics with functional biomaterials has become a facile yet useful strategy, and probiotics can be given different functions by wearing different armors. This review systematically discusses the challenges faced by oral probiotics and the research progress of armored probiotics delivery systems. We focus on how various functional armors help probiotics overcome different obstacles and achieve efficient delivery. We also introduce the applications of armor probiotics in disease treatment and analyze the future trends of developing advanced probiotics-based therapies.
Collapse
Affiliation(s)
- Xinyuan Yang
- Zhongshan‐Xuhui Hospital and the Shanghai Key Laboratory of Medical Epigenetics, the International Co‐laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology)Institutes of Biomedical SciencesFudan UniversityShanghaiChina
| | - Chong Wang
- Zhongshan‐Xuhui Hospital and the Shanghai Key Laboratory of Medical Epigenetics, the International Co‐laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology)Institutes of Biomedical SciencesFudan UniversityShanghaiChina
| | - Qiao Wang
- Zhongshan‐Xuhui Hospital and the Shanghai Key Laboratory of Medical Epigenetics, the International Co‐laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology)Institutes of Biomedical SciencesFudan UniversityShanghaiChina
| | - Zhuohao Zhang
- Zhongshan‐Xuhui Hospital and the Shanghai Key Laboratory of Medical Epigenetics, the International Co‐laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology)Institutes of Biomedical SciencesFudan UniversityShanghaiChina
| | - Weimin Nie
- Key Laboratory of Smart Drug DeliverySchool of PharmacyFudan UniversityShanghaiChina
| | - Luoran Shang
- Zhongshan‐Xuhui Hospital and the Shanghai Key Laboratory of Medical Epigenetics, the International Co‐laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology)Institutes of Biomedical SciencesFudan UniversityShanghaiChina
| |
Collapse
|
9
|
Aryannejad A, Tabary M, Noroozi N, Mashinchi B, Iranshahi S, Tavangar SM, Mohammad Jafari R, Rashidian A, Dehpour AR. Anti-inflammatory Effects of Ivermectin in the Treatment of Acetic Acid-Induced Colitis in Rats: Involvement of GABA B Receptors. Dig Dis Sci 2022; 67:3672-3682. [PMID: 34674071 DOI: 10.1007/s10620-021-07258-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 09/13/2021] [Indexed: 01/08/2023]
Abstract
BACKGROUND Recent investigations have proposed the potential role of gamma-aminobutyric acid (GABA) in regulating motility and immunity of the gastrointestinal system. AIMS We aimed to investigate the anti-inflammatory effects of ivermectin (IVM) through GABAB receptors following acetic acid-induced colitis in rats. METHODS In a controlled experimental study, we enrolled 78 male Wistar rats (13 groups; 6 rats/group). After colitis induction using acetic acid (4%), IVM, baclofen (a standard GABAB agonist) or the combination of both agents was delivered to rats orally (by gavage), with the same dosage continued for 5 days. The control group received the vehicle, and prednisolone (a standard anti-inflammatory agent) was administered in a separate group as the positive control. Colon samples were collected on the sixth day for histopathological evaluations and measurement of myeloperoxidase (MPO) activity, TNF-α levels, and p-NF-ĸB p65, COX-2 and iNOS expression levels. RESULTS The greatest recovery was found after administering IVM 0.5, baclofen 0.5, or IVM 0.2 + baclofen 0.2 mg/kg/day (ulcer index [UI] = 1.4 ± 0.4, 1.7 ± 0.6, and 1.4 ± 0.3, respectively; p < 0.001 vs. the control [UI = 6.5 ± 0.7]). Histopathological evaluations revealed a significant decrease in the inflammation severity in the three above-mentioned groups. P-NF-ĸB p65, COX-2, and iNOS expression, MPO activity, and TNF-α levels also decreased dramatically following treatment with IVM 0.5, baclofen 0.5, or the combination therapy (p < 0.001 vs. the control). CONCLUSIONS IVM exerted promising anti-inflammatory effects in treating acetic acid-induced colitis in rats. Its synergistic effect with baclofen also signified the possible involvement of GABAB receptors in this process.
Collapse
Affiliation(s)
- Armin Aryannejad
- Experimental Medicine Research Center, Tehran University of Medical Sciences, 13145-784, Tehran, Iran
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammadreza Tabary
- Experimental Medicine Research Center, Tehran University of Medical Sciences, 13145-784, Tehran, Iran
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Nafise Noroozi
- Experimental Medicine Research Center, Tehran University of Medical Sciences, 13145-784, Tehran, Iran
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Baharnaz Mashinchi
- Experimental Medicine Research Center, Tehran University of Medical Sciences, 13145-784, Tehran, Iran
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Seyed Mohammad Tavangar
- Department of Pathology, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Razieh Mohammad Jafari
- Experimental Medicine Research Center, Tehran University of Medical Sciences, 13145-784, Tehran, Iran
| | - Amir Rashidian
- Experimental Medicine Research Center, Tehran University of Medical Sciences, 13145-784, Tehran, Iran
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ahmad Reza Dehpour
- Experimental Medicine Research Center, Tehran University of Medical Sciences, 13145-784, Tehran, Iran.
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
10
|
Choi Y, Kim N. Inflammatory Bowel Diseases. SEX/GENDER-SPECIFIC MEDICINE IN THE GASTROINTESTINAL DISEASES 2022:281-299. [DOI: 10.1007/978-981-19-0120-1_19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
11
|
Motavallian A, Zamani E, Bouzari S, Rezaeyan F, Karimian P, Evazalipour M. Anti-inflammatory effect of pregabalin on acetic acid-induced colitis in the rats. Res Pharm Sci 2021; 17:35-42. [PMID: 34909042 PMCID: PMC8621841 DOI: 10.4103/1735-5362.329924] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 05/08/2021] [Accepted: 10/23/2021] [Indexed: 12/01/2022] Open
Abstract
Background and purpose: Inflammatory bowel disease (IBD) is a chronic gastrointestinal disease characterized by the inflammation of the intestine. The available medicinal treatments for IBD are not efficacious enough since they exert various adverse effects. Therefore, the search for new therapeutic agents should be continued. The present study aimed to assess the anti-inflammatory effects of pregabalin on acetic acid-induced colitis in rats. Experimental approach: Using 2 mL of 3% acetic acid solution, colitis was intra-rectally induced in rats. Animals were randomly divided into 6 groups including the normal group, colitis control group, pregabalin treatment groups (30, 50, and 100 mg/kg; i.p., respectively), and dexamethasone treatment group (1 mg/kg; i.p.). Macroscopic, microscopic, and biochemical (myeloperoxidase, tumor necrosis factor-alpha, interleukin-6, and interleukin-1 beta) examinations were used to evaluate the efficacy of pregabalin in the inflamed colon. Findings/Results: All the applied doses of pregabalin significantly decreased the severity of macroscopic and microscopic colonic damages including ulcer severity, ulcer area, percentage of necrosis, and total colitis index compared to the colitis control group. These results were confirmed by the reduced colonic concentration of tumor necrosis factor-alpha, interleukin-6, interleukin-1 beta, and myeloperoxidase activity. Conclusion and implications: Results of this study indicated that pregabalin administration has beneficial effects upon the treatment of experimental colitis, which might be partly due to its anti-inflammatory properties.
Collapse
Affiliation(s)
- Azadeh Motavallian
- Department of Pharmacology and Toxicology, School of Pharmacy, Guilan University of Medical Sciences, Rasht, I.R. Iran.,Department of Gastroenterology and Hepatology, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Ehsan Zamani
- Department of Pharmacology and Toxicology, School of Pharmacy, Guilan University of Medical Sciences, Rasht, I.R. Iran
| | - Saba Bouzari
- Department of Pharmacology and Toxicology, School of Pharmacy, Guilan University of Medical Sciences, Rasht, I.R. Iran
| | - Farzam Rezaeyan
- Department of Pharmacology and Toxicology, School of Pharmacy, Guilan University of Medical Sciences, Rasht, I.R. Iran
| | - Paridokht Karimian
- Department of Pathology and Histology, School of Medicine, Guilan University of Medical Sciences, Rasht, I.R. Iran
| | - Mehdi Evazalipour
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Guilan University of Medical Sciences, Rasht, I.R. Iran
| |
Collapse
|
12
|
Kim N. Sex- and Gender-related Issues of Gut Microbiota in Gastrointestinal Tract Diseases. THE KOREAN JOURNAL OF GASTROENTEROLOGY 2021. [DOI: 10.4166/kjg.2021.409] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Nayoung Kim
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
- Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
13
|
Motavallian A, Bouzari S, Zamani E, Karimian P, Dabirian S, Molavi M, Torshkooh FA. An investigation of the anti-inflammatory effects of gabapentin on acetic acid-induced colitis in rats. Mol Biol Rep 2021; 48:3423-3430. [PMID: 33928442 DOI: 10.1007/s11033-021-06357-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 04/16/2021] [Indexed: 12/31/2022]
Abstract
Inflammatory bowel disease (IBD) is considered a chronic inflammatory gastrointestinal disease with treatment options which exhibit low efficacies and lead to considerable side effects. Hence, the challenge to alleviate IBD complications is remained to be resolved. The purpose of this study is evaluating anti-inflammatory impacts of gabapentin on acetic acid-induced colitis in rats. Colitis was induced by the instillation of 2 mL of 3% acetic acid solution into rat's colons. Rats were randomly allocated into six groups including normal group, colitis control group, gabapentin-treated groups (25, 50, and 100 mg/kg; i.p.), and dexamethasone-treated group (1 mg/kg; i.p.). Based on the macroscopic assessment besides histological and biochemical findings [myeloperoxidase (MPO), pro-inflammatory cytokines], the efficacy of gabapentin was investigated. Gabapentin (50 and 100 mg/kg), and dexamethasone considerably reduced macroscopic and microscopic colonic lesions induced by acetic acid in rats in comparison with colitis control group. These results were confirmed by reduced levels of MPO activity and colonic concentrations of interleukin-6, interleukin-1 beta, and tumor necrosis factor-alpha, in inflamed colon tissue. Our data demonstrated that gabapentin exerts profitable impacts in experimental colitis that might be ascribed to its anti-inflammatory features and thus can be a potential therapeutic agent for IBD treatment.
Collapse
Affiliation(s)
- Azadeh Motavallian
- Department of Pharmacology and Toxicology, School of Pharmacy, Guilan University of Medical Sciences, Rasht, Iran. .,Rhino-Sinus, Ear, and Skull Base Diseases Research Center, Department of Otolaryngology and Head and Neck Surgery, Amiralmomenin Hospital, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran.
| | - Saba Bouzari
- Student Research Committee, School of Pharmacy, Guilan University of Medical Sciences, Rasht, Iran
| | - Ehsan Zamani
- Department of Pharmacology and Toxicology, School of Pharmacy, Guilan University of Medical Sciences, Rasht, Iran
| | - Paridokht Karimian
- Department of Pathology and Histology, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Sara Dabirian
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Guilan University of Medical Sciences, Rasht, Iran
| | - Mehdi Molavi
- Department of Internal Medicine, School of Medicine, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Forough Aghajani Torshkooh
- Department of Pharmacology and Toxicology, School of Pharmacy, Guilan University of Medical Sciences, Rasht, Iran
| |
Collapse
|
14
|
Sun H, Lagarrigue F, Wang H, Fan Z, Lopez-Ramirez MA, Chang JT, Ginsberg MH. Distinct integrin activation pathways for effector and regulatory T cell trafficking and function. J Exp Med 2021; 218:e20201524. [PMID: 33104169 PMCID: PMC7590511 DOI: 10.1084/jem.20201524] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 09/17/2020] [Accepted: 09/22/2020] [Indexed: 12/19/2022] Open
Abstract
Integrin activation mediates lymphocyte trafficking and immune functions. Conventional T cell (Tconv cell) integrin activation requires Rap1-interacting adaptor molecule (RIAM). Here, we report that Apbb1ip-/- (RIAM-null) mice are protected from spontaneous colitis due to IL-10 deficiency, a model of inflammatory bowel disease (IBD). Protection is ascribable to reduced accumulation and homing of Tconv cells in gut-associated lymphoid tissue (GALT). Surprisingly, there are abundant RIAM-null regulatory T cells (T reg cells) in the GALT. RIAM-null T reg cells exhibit normal homing to GALT and lymph nodes due to preserved activation of integrins αLβ2, α4β1, and α4β7. Similar to Tconv cells, T reg cell integrin activation and immune function require Rap1; however, lamellipodin (Raph1), a RIAM paralogue, compensates for RIAM deficiency. Thus, in contrast to Tconv cells, RIAM is dispensable for T reg cell integrin activation and suppressive function. In consequence, inhibition of RIAM can inhibit spontaneous Tconv cell-mediated autoimmune colitis while preserving T reg cell trafficking and function.
Collapse
Affiliation(s)
- Hao Sun
- Department of Medicine, University of California, San Diego, La Jolla, CA
| | - Frederic Lagarrigue
- Department of Medicine, University of California, San Diego, La Jolla, CA
- Institut de Pharmacologie et Biologie Structurale, Université de Toulouse, Centre National de la Recherche Scientifique, Université Paul Sabatier, Toulouse, France
| | - Hsin Wang
- Department of Medicine, University of California, San Diego, La Jolla, CA
| | - Zhichao Fan
- Department of Immunology, School of Medicine, UConn Health, Farmington, CT
| | | | - John T. Chang
- Department of Medicine, University of California, San Diego, La Jolla, CA
| | - Mark H. Ginsberg
- Department of Medicine, University of California, San Diego, La Jolla, CA
| |
Collapse
|
15
|
Sato N, Yuzawa M, Aminul MI, Tomokiyo M, Albarracin L, Garcia-Castillo V, Ideka-Ohtsubo W, Iwabuchi N, Xiao JZ, Garcia-Cancino A, Villena J, Kitazawa H. Evaluation of Porcine Intestinal Epitheliocytes as an In vitro Immunoassay System for the Selection of Probiotic Bifidobacteria to Alleviate Inflammatory Bowel Disease. Probiotics Antimicrob Proteins 2020; 13:824-836. [PMID: 32779098 DOI: 10.1007/s12602-020-09694-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The use of in vitro systems that allow efficient selection of probiotic candidates with immunomodulatory properties could significantly minimize the use of experimental animals. In this work, we generated an in vitro immunoassay system based on porcine intestinal epithelial (PIE) cells and dextran sodium sulfate (DSS) administration that could be useful for the selection and characterization of potential probiotic strains to be used in inflammatory bowel disease (IBD) patients. Our strategy was based on two fundamental pillars: on the one hand, the capacity of PIE cells to create a monolayer by attaching to neighboring cells and efficiently mount inflammatory responses and, on the other hand, the use of two probiotic bifidobacteria strains that have been characterized in terms of their immunomodulatory capacities, particularly in mouse IBD models and patients. Our results demonstrated that DSS administration can alter the epithelial barrier created in vitro by PIE cells and induce a potent inflammatory response, characterized by increases in the expression levels of several inflammatory factors including TNF-α, IL-1α, CCL4, CCL8, CCL11, CXCL5, CXCL9, CXCL10, SELL, SELE, EPCAM, VCAM, NCF2, and SAA2. In addition, we demonstrated that Bifidobacterium breve M-16V and B. longum BB536 are able to regulate the C-jun N-terminal kinase (JNK) intracellular signalling pathway, reducing the DSS-induced alterations of the in vitro epithelial barrier and differentially regulating the inflammatory response in a strain-dependent fashion. The good correlation between our in vitro findings in PIE cells and previous studies in animal models and IBD patients shows the potential value of our system to select new probiotic candidates in an efficient way.
Collapse
Affiliation(s)
- Nana Sato
- Food and Feed Immunology Group, Graduate School of Agricultural Science, Tohoku University, Sendai, 981-8555, Japan.,Livestock Immunology Unit, International Education and Research Center for Food Agricultural Immunology (CFAI), Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Mao Yuzawa
- Food and Feed Immunology Group, Graduate School of Agricultural Science, Tohoku University, Sendai, 981-8555, Japan.,Livestock Immunology Unit, International Education and Research Center for Food Agricultural Immunology (CFAI), Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Md Islam Aminul
- Food and Feed Immunology Group, Graduate School of Agricultural Science, Tohoku University, Sendai, 981-8555, Japan.,Livestock Immunology Unit, International Education and Research Center for Food Agricultural Immunology (CFAI), Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Mikado Tomokiyo
- Food and Feed Immunology Group, Graduate School of Agricultural Science, Tohoku University, Sendai, 981-8555, Japan.,Livestock Immunology Unit, International Education and Research Center for Food Agricultural Immunology (CFAI), Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Leonardo Albarracin
- Food and Feed Immunology Group, Graduate School of Agricultural Science, Tohoku University, Sendai, 981-8555, Japan.,Laboratory of Immunobiotechnology, Reference Centre for Lactobacilli (CERELA-CONICET), San Miguel de Tucuman, Tucuman, Argentina.,Laboratory of Computing Science, Faculty of Exact Sciences and Technology, Tucuman University, San Miguel de Tucuman, Tucuman, Argentina
| | - Valeria Garcia-Castillo
- Laboratory of Bacterial Pathogenicity, Faculty of Biological Sciences, University of Concepcion, Concepcion, Chile
| | - Wakako Ideka-Ohtsubo
- Food and Feed Immunology Group, Graduate School of Agricultural Science, Tohoku University, Sendai, 981-8555, Japan.,Livestock Immunology Unit, International Education and Research Center for Food Agricultural Immunology (CFAI), Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Noriyuki Iwabuchi
- Food Science and Technology Institute, Morinaga Milk Industry Co. Ltd, Zama, Kanagawa, Japan
| | - Jin-Zhong Xiao
- Food Science and Technology Institute, Morinaga Milk Industry Co. Ltd, Zama, Kanagawa, Japan
| | - Apolinaria Garcia-Cancino
- Laboratory of Bacterial Pathogenicity, Faculty of Biological Sciences, University of Concepcion, Concepcion, Chile
| | - Julio Villena
- Food and Feed Immunology Group, Graduate School of Agricultural Science, Tohoku University, Sendai, 981-8555, Japan. .,Laboratory of Immunobiotechnology, Reference Centre for Lactobacilli (CERELA-CONICET), San Miguel de Tucuman, Tucuman, Argentina.
| | - Haruki Kitazawa
- Food and Feed Immunology Group, Graduate School of Agricultural Science, Tohoku University, Sendai, 981-8555, Japan. .,Livestock Immunology Unit, International Education and Research Center for Food Agricultural Immunology (CFAI), Graduate School of Agricultural Science, Tohoku University, Sendai, Japan.
| |
Collapse
|
16
|
Nerolidol Mitigates Colonic Inflammation: An Experimental Study Using both In Vivo and In Vitro Models. Nutrients 2020; 12:nu12072032. [PMID: 32650602 PMCID: PMC7400891 DOI: 10.3390/nu12072032] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 07/01/2020] [Accepted: 07/02/2020] [Indexed: 12/15/2022] Open
Abstract
Nerolidol (NED) is a naturally occurring sesquiterpene alcohol present in various plants with potent anti-inflammatory effects. In the current study, we investigated NED as a putative anti-inflammatory compound in an experimental model of colonic inflammation. C57BL/6J male black mice (C57BL/6J) were administered 3% dextran sodium sulfate (DSS) in drinking water for 7 days to induce colitis. Six groups received either vehicle alone or DSS alone or DSS with oral NED (50, 100, and 150 mg/kg body weight/day by oral gavage) or DSS with sulfasalazine. Disease activity index (DAI), colonic histology, and biochemical parameters were measured. TNF-α-treated HT-29 cells were used as in vitro model of colonic inflammation to study NED (25 µM and 50 µM). NED significantly decreased the DAI and reduced the inflammation-associated changes in colon length as well as macroscopic and microscopic architecture of the colon. Changes in tissue Myeloperoxidase (MPO) concentrations, neutrophil and macrophage mRNA expression (CXCL2 and CCL2), and proinflammatory cytokine content (IL-1β, IL-6, and TNF-α) both at the protein and mRNA level were significantly reduced by NED. The increase in content of the proinflammatory enzymes, COX-2 and iNOS induced by DSS were also significantly inhibited by NED along with tissue nitrate levels. NED promoted Nrf2 nuclear translocation dose dependently. NED significantly increased antioxidant enzymes activity (Superoxide dismutase (SOD) and Catalase (CAT)), Hemeoxygenase-1 (HO-1), and SOD3 mRNA levels. NED treatment in TNF-α-challenged HT-29 cells significantly decreased proinflammatory chemokines (CXCL1, IL-8, CCL2) and COX-2 mRNA levels. NED supplementation attenuates colon inflammation through its potent antioxidant and anti-inflammatory activity both in in vivo and in vitro models of colonic inflammation.
Collapse
|
17
|
Bakshi HA, Mishra V, Satija S, Mehta M, Hakkim FL, Kesharwani P, Dua K, Chellappan DK, Charbe NB, Shrivastava G, Rajeshkumar S, Aljabali AA, Al-Trad B, Pabreja K, Tambuwala MM. Dynamics of Prolyl Hydroxylases Levels During Disease Progression in Experimental Colitis. Inflammation 2019; 42:2032-2036. [PMID: 31377947 PMCID: PMC6856031 DOI: 10.1007/s10753-019-01065-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Hypoxia inducible factor (HIF)-prolyl hydroxylase (PHD) inhibitors are shown to be protective in several models of inflammatory bowel disease (IBD). However, these non-selective inhibitors are known to inhibit all the three isoforms of PHD, i.e. PHD-1, PHD-2 and PHD-3. In the present report, we investigated the associated changes in levels of PHDs during the development and recovery of chemically induced colitis in mice. The results indicated that in the experimental model of murine colitis, levels of both, PHD-1 and PHD-2 were found to be increased with the progression of the disease; however, the level of PHD-3 remained the same in group of healthy controls and mice with colitis. Thus, the findings advocated that inhibitors, which inhibited all three isoforms of PHD could not be ideal therapeutics for IBD since PHD-3 is required for normal gut function. Hence, this necessitates the development of new compounds capable of selectively inhibiting PHD-1 and PHD-2 for effective treatment of IBD.
Collapse
Affiliation(s)
- Hamid A Bakshi
- SAAD Centre for Pharmacy and Diabetes, School of Pharmacy and Pharmaceutical Science, Ulster University, Coleraine, County Londonderry, Northern Ireland, BT52 1SA, UK
| | - Vijay Mishra
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Saurabh Satija
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Meenu Mehta
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Faruk L Hakkim
- Department of Mathematics and Sciences, College of Arts and Applied Sciences, Dhofar University, Salalah, Oman
| | - Prashant Kesharwani
- School of Pharmaceutical Education and Research, Jamia Hamdard (Hamdard University), New Delhi, 110062, India
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Dinesh K Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University, Bukit Jalil, 57000, Kuala Lumpur, Malaysia
| | - Nitin B Charbe
- Departamento de Química Orgánica, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Av. Vicuña McKenna 4860, 7820436, Macul, Santiago, Chile
- Sri Adichunchunagiri College of Pharmacy, Sri Adichunchunagiri University, BG Nagar, Karnataka, 571418, India
| | | | - S Rajeshkumar
- Department of Pharmacology, Saveetha Dental College and Hospitals, SIMATS, Chennai, Tamil Nadu, 600077, India
| | - Alaa A Aljabali
- Faculty of Pharmacy, Department of Pharmaceutical Sciences, Yarmouk University, Irbid, Jordan
| | - Bahaa Al-Trad
- Department of Biological Sciences, Yarmouk University, Irbid, 21163, Jordan
| | - Kavita Pabreja
- School of Medicine and Public Health, University of Newcastle, Newcastle, Australia
| | - Murtaza M Tambuwala
- SAAD Centre for Pharmacy and Diabetes, School of Pharmacy and Pharmaceutical Science, Ulster University, Coleraine, County Londonderry, Northern Ireland, BT52 1SA, UK.
| |
Collapse
|
18
|
Chae JM, Chang MH, Heo W, Cho HT, Lee DH, Hwang BB, Kim JW, Yoon SM, Yang S, Lee JH, Kim YJ. LB-9, Novel Probiotic Lactic Acid Bacteria, Ameliorates Dextran Sodium Sulfate-Induced Colitis in Mice by Inhibiting TNF-α-Mediated Apoptosis of Intestinal Epithelial Cells. J Med Food 2019; 22:271-276. [DOI: 10.1089/jmf.2018.4236] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Affiliation(s)
- Jung Min Chae
- Department of Food and Biotechnology, Korea University, Sejong, Korea
| | - Moon Han Chang
- Department of Food and Biotechnology, Korea University, Sejong, Korea
| | - Wan Heo
- Department of Food and Biotechnology, Korea University, Sejong, Korea
| | - Hyung Taek Cho
- Department of Food and Biotechnology, Korea University, Sejong, Korea
| | - Dong Hun Lee
- Department of Food and Biotechnology, Korea University, Sejong, Korea
| | - Bo Byeol Hwang
- Department of Food and Biotechnology, Korea University, Sejong, Korea
| | - Jin Woo Kim
- Department of Food and Biotechnology, Korea University, Sejong, Korea
| | | | | | - Jin Hyup Lee
- Department of Food and Biotechnology, Korea University, Sejong, Korea
| | - Young Jun Kim
- Department of Food and Biotechnology, Korea University, Sejong, Korea
| |
Collapse
|
19
|
Motavallian A, Minaiyan M, Rabbani M, Mahzouni P, Andalib S. Anti-inflammatory effects of alosetron mediated through 5-HT 3 receptors on experimental colitis. Res Pharm Sci 2019; 14:228-236. [PMID: 31160900 PMCID: PMC6540920 DOI: 10.4103/1735-5362.258489] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Development of new medicine with fewer deleterious effects and more efficacies for treatment of inflammatory bowel disease is needed. 5-Hydroxytryptamine 3 receptor (5-HT3R) antagonists have exhibited analgesic and anti-inflammatory features in vitro and in vivo. The present study was designed to evaluate the anti-inflammatory effect of alosetron, a 5-HT3R antagonist, on trinitrobenzenesulfonic acid (TNBS)-induced ulcerative colitis in rats. Two h subsequent to induce colitis (intracolonic instillation of TNBS, 50 mg/kg) in male Wistar rats, alosetron (1 mg/kg), dexamethasone (1 mg/kg), meta-chlorophenylbiguanide (mCPBG, a 5-HT3R agonist, 5 mg/kg), or alosetron + mCPBG were administrated intraperitoneally for 6 days. Animals were thereafter sacrificed and the efficacy of drugs was evaluated macroscopically, histologically, and biochemically (myeloperoxidase, tumor necrosis factor-alpha, interleukin-6, and interleukin-1 beta) on distal colon samples. Treatment with alosetron and dexamethasone improved macroscopic and microscopic colonic damages significantly and decreased myeloperoxidase activity and colonic levels of inflammatory cytokines. The profitable effects of alosetron were antagonized by concurrent administration of mCPBG. Our data provided evidence that the protective effects of alosetron on TNBS-induced colitis can be mediated by 5- HT3R.
Collapse
Affiliation(s)
- Azadeh Motavallian
- Department of Pharmacology and Toxicology, School of Pharmacy, Guilan University of Medical Sciences, Rasht, I.R. Iran.,Rhino-sinus, Ear, and Skull base Diseases Research Center, Department of Otolaryngology and Head and Neck Surgery, Amiralmomenin Hospital, School of Medicine, Guilan University of Medical Sciences, Rasht, I.R. Iran
| | - Mohsen Minaiyan
- Department of Pharmacology and Toxicology, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, I.R. Iran.,Isfahan Pharmaceutical Sciences Research Center, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, I.R. Iran
| | - Mohammad Rabbani
- Department of Pharmacology and Toxicology, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, I.R. Iran.,Isfahan Pharmaceutical Sciences Research Center, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, I.R. Iran
| | - Parvin Mahzouni
- Department of Clinical Pathology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, I.R. Iran
| | - Sasan Andalib
- Neuroscience Research Center, Road Trauma Research Center, Department of Neurosurgery, Poursina Hospital, Guilan University of Medical Sciences, Rasht, I.R. Iran.,Research Unit of Clinical Physiology and Nuclear Medicine, Department of Clinical Research, Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
20
|
Rodrigues VF, Bahia MPS, Cândido NR, Moreira JMP, Oliveira VG, Araújo ES, Rodrigues Oliveira JL, Rezende MDC, Correa A, Negrão-Corrêa D. Acute infection with Strongyloides venezuelensis increases intestine production IL-10, reduces Th1/Th2/Th17 induction in colon and attenuates Dextran Sulfate Sodium-induced colitis in BALB/c mice. Cytokine 2018; 111:72-83. [PMID: 30118915 DOI: 10.1016/j.cyto.2018.08.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 07/26/2018] [Accepted: 08/06/2018] [Indexed: 12/15/2022]
Abstract
Helminth infection can reduce the severity of inflammatory bowel disease. However, the modulatory mechanisms elicited by helminth infection are not yet fully understood and vary depending on the experimental model. Herein we evaluated the effect of acute infection of BALB/c mice with Strongyloides venezuelensis on the clinical course of ulcerative colitis induced by Dextran Sulfate Sodium (DSS) treatment of these animals. For the experiments, S. venezuelensis-infected BALB/c mice were treated orally with 4% DSS solution for seven days. As controls, we used untreated S. venezuelensis infected, DSS-treated uninfected, and untreated/uninfected BALB/c mice. During DSS treatment, mice from the different groups were compared with regards to the clinical signs related to the severity of colitis and intestinal inflammation. Mice acutely infected with S. venezulensis and treated with DSS had reduced clinical score, shortening of the colon, and tissue inflammation. Moreover, DSS-treated and infected mice showed reduced IL-4, INF-γ, and IL-17 levels and increase of IL-10 production in the colon and/or in the supernatant of mesenteric lymph nodes cell cultures that resulted in lower eosinophil peroxidase and myeloperoxidase activity in colon homogenates, when compared with DSS-treated uninfected mice. DSS-treated infected mice also preserved the intestine architecture and had normal differentiation of goblet cells and mucus production in the colon mucosa. In conclusion, the data indicate that the clinical improvement reported in DSS-treated infected mice was accompanied by the lower production of Th1/Th2/Th17 pro-inflammatory cytokines, stimulation of IL-10, and induction of mucosal repair mechanisms.
Collapse
Affiliation(s)
- Vanessa Fernandes Rodrigues
- Departments of Parasitology, Biological Science Institute of the Federal University of Minas Gerais - UFMG, Belo Horizonte, MG, Brazil
| | - Márcia Paulliny Soares Bahia
- Departments of Parasitology, Biological Science Institute of the Federal University of Minas Gerais - UFMG, Belo Horizonte, MG, Brazil
| | - Núbia Rangel Cândido
- Departments of Parasitology, Biological Science Institute of the Federal University of Minas Gerais - UFMG, Belo Horizonte, MG, Brazil
| | - João Marcelo Peixoto Moreira
- Departments of Parasitology, Biological Science Institute of the Federal University of Minas Gerais - UFMG, Belo Horizonte, MG, Brazil
| | - Vinicius Gustavo Oliveira
- Departments of Parasitology, Biological Science Institute of the Federal University of Minas Gerais - UFMG, Belo Horizonte, MG, Brazil
| | - Emília Souza Araújo
- Departments of Parasitology, Biological Science Institute of the Federal University of Minas Gerais - UFMG, Belo Horizonte, MG, Brazil
| | - Jailza Lima Rodrigues Oliveira
- Departments of Parasitology, Biological Science Institute of the Federal University of Minas Gerais - UFMG, Belo Horizonte, MG, Brazil
| | - Michelle de Carvalho Rezende
- Departments of Parasitology, Biological Science Institute of the Federal University of Minas Gerais - UFMG, Belo Horizonte, MG, Brazil
| | - Ary Correa
- Departments of Microbiology, Biological Science Institute of the Federal University of Minas Gerais - UFMG, Belo Horizonte, MG, Brazil
| | - Deborah Negrão-Corrêa
- Departments of Parasitology, Biological Science Institute of the Federal University of Minas Gerais - UFMG, Belo Horizonte, MG, Brazil.
| |
Collapse
|
21
|
Bora S, Cantorna MT. The role of UVR and vitamin D on T cells and inflammatory bowel disease. Photochem Photobiol Sci 2018; 16:347-353. [PMID: 27714313 DOI: 10.1039/c6pp00266h] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Vitamin D deficiency is associated with the development of inflammatory bowel disease (IBD). In experimental IBD the targets of vitamin D that result in protection from IBD include gut epithelial cells, innate immune cells, T cells, and the microbiota. Ultraviolet radiation (UVR) induces production of vitamin D in the skin and suppresses T cell responses in the host. There is limited data demonstrating an effect of UVR on experimental IBD but the mechanisms of UVR suppression in IBD have not been defined. There are several shared effects of vitamin D and UVR on T cells including inhibition of proliferation and suppression of IFN-γ and IL-17 producing T cells. Conversely UVR decreases and vitamin D increases IL-4 production from T cells. Together the data suggest that UVR suppression of T cells and potentially IBD are both vitamin D dependent and independent.
Collapse
Affiliation(s)
- Stephanie Bora
- Center for Immunology and Infectious Disease, Department of Veterinary and Biomedical Science, The Pennsylvania State University, University Park, PA 16802, USA.
| | - Margherita T Cantorna
- Center for Immunology and Infectious Disease, Department of Veterinary and Biomedical Science, The Pennsylvania State University, University Park, PA 16802, USA.
| |
Collapse
|
22
|
Shepherd C, Giacomin P, Navarro S, Miller C, Loukas A, Wangchuk P. A medicinal plant compound, capnoidine, prevents the onset of inflammation in a mouse model of colitis. JOURNAL OF ETHNOPHARMACOLOGY 2018; 211:17-28. [PMID: 28942135 DOI: 10.1016/j.jep.2017.09.024] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 09/13/2017] [Accepted: 09/18/2017] [Indexed: 05/23/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The traditional uses of Corydalis dubia, Ajania nubigena and Pleurospermum amabile in the Bhutanese traditional medicine for treating disorders related to inflammatory conditions and the in vitro anti-inflammatory activity of their crude extracts inspired the isolation and the investigation of anticolitic properties of four pure compounds. MATERIALS AND METHODS Three medicinal plants were collected from Himalayan Mountains of Bhutan. Capnoidine and scoulerine were isolated from C. dubia, linalool oxide acetate from A. nubigena and isomyristicin from P. amabile using natural product isolation protocols. Four compounds were investigated for their anti-inflammatory activities against IBD-colitis using chemically induced (TNBS) mice model of colitis. Capnoidine conferred the best preliminary protection against TNBS-induced colitis in mice and we have conducted in-depth pharmacological investigation of this compound including clinical symptoms, pathological signs, cytokine profiles, histological structure and inflammasomes using relevant bioassay protocols. RESULTS Capnoidine-treated mice had significantly: a) improved clinical symptoms (body weight loss, mobility, piloerection and faecal consistency); b) reduced colon pathology (adhesion, oedema, ulceration, and colon length); c) altered inflammatory cytokines profiles within the colons; d) reduced levels of p-IκB-α (Ser32) and p-NF-κB p65 (Ser536) and e) reduced histological inflammation in the colon when compared with mice administered TNBS only. CONCLUSION Capnoidine presents as a potential new anti-inflammatory drug lead candidate for diseases where current standard-of-care often fails and is associated with major side effects. It also validates the traditional uses of C. dubia against inflammatory conditions and underlines the value of pursuing bioactive compounds derived from traditionally used ethnobotanical medicines.
Collapse
Affiliation(s)
- Catherine Shepherd
- Centre for Biodiscovery and Molecular Development of Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns QLD 4878, Australia
| | - Paul Giacomin
- Centre for Biodiscovery and Molecular Development of Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns QLD 4878, Australia
| | - Severine Navarro
- Centre for Biodiscovery and Molecular Development of Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns QLD 4878, Australia
| | - Catherine Miller
- College of Public Health, Medical and Veterinary Sciences and Centre for Biodiscovery and Molecular Development of Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Australia
| | - Alex Loukas
- Centre for Biodiscovery and Molecular Development of Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns QLD 4878, Australia
| | - Phurpa Wangchuk
- Centre for Biodiscovery and Molecular Development of Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns QLD 4878, Australia.
| |
Collapse
|
23
|
Ma X, Dai Z, Sun K, Zhang Y, Chen J, Yang Y, Tso P, Wu G, Wu Z. Intestinal Epithelial Cell Endoplasmic Reticulum Stress and Inflammatory Bowel Disease Pathogenesis: An Update Review. Front Immunol 2017; 8:1271. [PMID: 29118753 PMCID: PMC5660968 DOI: 10.3389/fimmu.2017.01271] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 09/25/2017] [Indexed: 12/18/2022] Open
Abstract
The intestinal epithelial cells serve essential roles in maintaining intestinal homeostasis, which relies on appropriate endoplasmic reticulum (ER) function for proper protein folding, modification, and secretion. Exogenous or endogenous risk factors with an ability to disturb the ER function can impair the intestinal barrier function and activate inflammatory responses in the host. The last decade has witnessed considerable progress in the understanding of the functional role of ER stress and unfolded protein response (UPR) in the gut homeostasis and its significant contribution to the pathogenesis of inflammatory bowel disease (IBD). Herein, we review recent evidence supporting the viewpoint that deregulation of ER stress and UPR signaling in the intestinal epithelium, including the absorptive cells, Paneth cells, goblet cells, and enteroendocrine cells, mediates the action of genetic or environmental factors driving colitis in experimental animals and IBD patients. In addition, we highlight pharmacologic application of chaperones or small molecules that enhance protein folding and modification capacity or improve the function of the ER. These molecules represent potential therapeutic strategies in the prevention or treatment of IBD through restoring ER homeostasis in intestinal epithelial cells.
Collapse
Affiliation(s)
- Xiaoshi Ma
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, China Agricultural University, Beijing, China
| | - Zhaolai Dai
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, China Agricultural University, Beijing, China
| | - Kaiji Sun
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, China Agricultural University, Beijing, China
| | - Yunchang Zhang
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, China Agricultural University, Beijing, China
| | - Jingqing Chen
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, China Agricultural University, Beijing, China
| | - Ying Yang
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, China Agricultural University, Beijing, China
| | - Patrick Tso
- Department of Pathology and Laboratory Medicine, Metabolic Diseases Institute, University of Cincinnati, Cincinnati, OH, United States
| | - Guoyao Wu
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, China Agricultural University, Beijing, China.,Department of Animal Science, Texas A&M University, College Station, TX, United States
| | - Zhenlong Wu
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, China Agricultural University, Beijing, China.,Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing, China
| |
Collapse
|
24
|
Wei W, Ding M, Zhou K, Xie H, Zhang M, Zhang C. Protective effects of wedelolactone on dextran sodium sulfate induced murine colitis partly through inhibiting the NLRP3 inflammasome activation via AMPK signaling. Biomed Pharmacother 2017; 94:27-36. [DOI: 10.1016/j.biopha.2017.06.071] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 05/29/2017] [Accepted: 06/20/2017] [Indexed: 02/07/2023] Open
|
25
|
Hu LH, Fan YJ, Li Q, Guan JM, Qu B, Pei FH, Liu BR. Bortezomib protects against dextran sulfate sodium‑induced ulcerative colitis in mice. Mol Med Rep 2017; 15:4093-4099. [PMID: 28487944 PMCID: PMC5436237 DOI: 10.3892/mmr.2017.6524] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 02/14/2017] [Indexed: 12/19/2022] Open
Abstract
Bortezomib, a first-in-class proteasome inhibitor, is a standard method of treatment in multiple myeloma. In the present study, the therapeutic effect of bortezomib was evaluated in an ulcerative colitis model induced by dextran sulfate sodium (DSS) in mice, and the mechanism of action was also investigated. Mice were administered with 3% DSS drinking water for 7 consecutive days and then they were intraperitoneally treated with bortezomib (0.2, 0.6 or 1 mg/kg) for 1, 3 or 7 days. Mice in the control group and the DSS group were provided the same volume of PBS, respectively. Body weight, stool characteristics and hematochezia were observed. Serum levels of tumor necrosis factor-α (TNF-α), C-reactive protein (CRP), albumin (ALB) and colonic activity of superoxide dismutase (SOD) were evaluated using specific kits. The expression of the transcription factor nuclear factor-κB (NF-κB) p65 gene and the DNA-binding activity of NF-κB protein were also evaluated. Administration of bortezomib attenuates colonic inflammation in mice. After 3 or 7 days of treatment, Disease Activity Index (DAI) as well as histological scores and NF-κB p65 protein expression were significantly reduced in mice treated with bortezomib at a dose of 0.6 or 1 mg/kg/day. Furthermore, it was also revealed that bortezomib was able to reduce serum levels of CRP and TNF-α caused by DSS and increase the level of ALB in serum and the activity of SOD in colonic tissues. These results demonstrated that bortezomib exerts a protective effect on DSS-induced colitis, and its underlying mechanisms are associated with the NF-κB gene inhibition that mitigates colon inflammatory responses in intestinal epithelial cells.
Collapse
Affiliation(s)
- Li-Hong Hu
- Department of Gastroenterology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Yu-Jing Fan
- Department of Gastroenterology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Qing Li
- Department of Gastroenterology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Jing-Ming Guan
- Department of Gastroenterology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Bo Qu
- Department of Gastroenterology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Feng-Hua Pei
- Department of Gastroenterology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Bing-Rong Liu
- Department of Gastroenterology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| |
Collapse
|
26
|
Varga G, Ugocsai M, Hartmann P, Lajkó N, Molnár R, Szűcs S, Jász DK, Érces D, Ghyczy M, Tóth G, Boros M. Acetylsalicylic acid-tris-hydroxymethyl-aminomethane reduces colon mucosal damage without causing gastric side effects in a rat model of colitis. Inflammopharmacology 2017; 26:261-271. [PMID: 28451776 DOI: 10.1007/s10787-017-0354-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 04/21/2017] [Indexed: 01/17/2023]
Abstract
BACKGROUND We have developed a novel compound from acetylsalicylic acid (ASA) and 2-amino-2-(hydroxymethyl)-1,3-propanediol (Tris) precursors with ASA-like anti-inflammatory efficacy and reduced the mucosa-damaging side-effects. Our aim was to examine local and remote consequences of ASA-Tris administration in 2-,4-,6-trinitrobenzene-sulfonic acid (TNBS)-induced colitis as compared to ASA or mesalamine (5-aminosalicylate) treatment. METHODS Sprague-Dawley rats were randomized to five groups (n = 6, each), and TNBS enemas were performed. Group 1 was the negative control; group 2 was the untreated colitis group. 12 hour after colitis induction repeated doses of ASA, ASA-Tris (both 0.55 mmol/kg) and mesalamine (0.77 mmol/kg) were given 3 times daily for 3 days to groups 3-5. On day 3 of colitis, the in vivo histology of the colon and stomach was investigated. Tissue xanthine-oxidoreductase, myeloperoxidase, nitrite/nitrate changes, and circulating TNF-alpha levels were measured. In addition, liver mitochondria were examined with high-resolution respirometry to analyze alterations in the electron transport chain. RESULTS TNBS enema significantly elevated inflammatory enzyme activities, NO production, TNF-alpha concentration, and induced morphological damage in the colon. ASA-treatment reduced the inflammatory marker levels and mucosal injury in the colon, but gastric tissue damage was present. ASA-Tris- and mesalamine-treatments significantly reduced the cytokine levels, inflammatory enzyme activities, and colonic mucosal damage without inducing gastric injury. Also, ASA significantly reduced the Complex IV-linked respiration of liver mitochondria, which was not observed after ASA-Tris-treatment. CONCLUSION As compared to ASA, ASA-Tris conjugation provides significant protection against the colonic injury and cytokine-mediated progression of inflammatory events in experimental colitis without influencing the gastric epithelial structure.
Collapse
Affiliation(s)
- Gabriella Varga
- Institute of Surgical Research, Faculty of Medicine, University of Szeged, Szőkefalvi-Nagy Béla u. 6, Szeged, 6720, Hungary
| | - Melinda Ugocsai
- Institute of Surgical Research, Faculty of Medicine, University of Szeged, Szőkefalvi-Nagy Béla u. 6, Szeged, 6720, Hungary
| | - Petra Hartmann
- Institute of Surgical Research, Faculty of Medicine, University of Szeged, Szőkefalvi-Nagy Béla u. 6, Szeged, 6720, Hungary
| | - Norbert Lajkó
- Institute of Surgical Research, Faculty of Medicine, University of Szeged, Szőkefalvi-Nagy Béla u. 6, Szeged, 6720, Hungary
| | - Réka Molnár
- Institute of Surgical Research, Faculty of Medicine, University of Szeged, Szőkefalvi-Nagy Béla u. 6, Szeged, 6720, Hungary
| | - Szilárd Szűcs
- Institute of Surgical Research, Faculty of Medicine, University of Szeged, Szőkefalvi-Nagy Béla u. 6, Szeged, 6720, Hungary
| | - Dávid Kurszán Jász
- Institute of Surgical Research, Faculty of Medicine, University of Szeged, Szőkefalvi-Nagy Béla u. 6, Szeged, 6720, Hungary
| | - Dániel Érces
- Institute of Surgical Research, Faculty of Medicine, University of Szeged, Szőkefalvi-Nagy Béla u. 6, Szeged, 6720, Hungary
| | - Miklós Ghyczy
- Institute of Surgical Research, Faculty of Medicine, University of Szeged, Szőkefalvi-Nagy Béla u. 6, Szeged, 6720, Hungary
| | - Gábor Tóth
- Department of Medical Chemistry, Faculty of Medicine, University of Szeged, Dóm tér 8, Szeged, 6720, Hungary
| | - Mihály Boros
- Institute of Surgical Research, Faculty of Medicine, University of Szeged, Szőkefalvi-Nagy Béla u. 6, Szeged, 6720, Hungary.
| |
Collapse
|
27
|
Zhang Z, Shen P, Liu J, Gu C, Lu X, Li Y, Cao Y, Liu B, Fu Y, Zhang N. In Vivo Study of the Efficacy of the Essential Oil of Zanthoxylum bungeanum Pericarp in Dextran Sulfate Sodium-Induced Murine Experimental Colitis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:3311-3319. [PMID: 28368613 DOI: 10.1021/acs.jafc.7b01323] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The purpose of this study was to investigate the protective effects and mechanisms of the essential oil of Zanthoxylum bungeanum pericarp (ZBEO) on dextran sulfate sodium (DSS)-induced experimental colitis in mice. ZBEO decreased DSS-induced body weight loss, the disease activity index, colon length shortening, colonic pathological damage, and myeloperoxidase activities. The production of pro-inflammatory mediators was significantly alleviated by ZBEO. Further mechanistic analysis showed that ZBEO inhibited inflammation by regulating NF-κB and PPARγ pathways. ZBEO also inhibited NLRP3 activation in colitis in mice. Furthermore, ZBEO contributed to the maintenance of tight junction architecture by regulating the expression of zonula occludens-1 during colitis. Surprisingly, treatment with ZBEO increased levels of the commensal bacteria containing Lactobacillus and Bifidobacteria but reduced Escherichia coli levels in the feces of mice. These results suggested that supplementation with ZBEO might provide a new dietary strategy for the prevention of ulcerative colitis.
Collapse
Affiliation(s)
- Zecai Zhang
- College of Veterinary Medicine, Jilin University , Changchun 130062, People's Republic of China
| | - Peng Shen
- College of Veterinary Medicine, Jilin University , Changchun 130062, People's Republic of China
| | - Jiuxi Liu
- College of Veterinary Medicine, Jilin University , Changchun 130062, People's Republic of China
| | - Cong Gu
- College of Veterinary Medicine, Jilin University , Changchun 130062, People's Republic of China
| | - Xiaojie Lu
- College of Veterinary Medicine, Jilin University , Changchun 130062, People's Republic of China
| | - Yanxin Li
- College of Veterinary Medicine, Jilin University , Changchun 130062, People's Republic of China
| | - Yongguo Cao
- College of Veterinary Medicine, Jilin University , Changchun 130062, People's Republic of China
| | - Bo Liu
- College of Veterinary Medicine, Jilin University , Changchun 130062, People's Republic of China
| | - Yunhe Fu
- College of Veterinary Medicine, Jilin University , Changchun 130062, People's Republic of China
| | - Naisheng Zhang
- College of Veterinary Medicine, Jilin University , Changchun 130062, People's Republic of China
| |
Collapse
|
28
|
Qu T, Wang E, Jin B, Li W, Liu R, Zhao ZB. 5-Aminosalicylic acid inhibits inflammatory responses by suppressing JNK and p38 activity in murine macrophages. Immunopharmacol Immunotoxicol 2017; 39:45-53. [PMID: 28071183 DOI: 10.1080/08923973.2016.1274997] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
CONTEXT 5-Aminosalicylic acid (5-ASA), as an anti-inflammatory drug, has been extensively used for the treatment of mild to moderate active ulcerative colitis (UC), but the possible mechanisms of action remain unclear. OBJECTIVE To investigate the effects of 5-ASA on the production of inflammatory mediators by murine macrophages stimulated with lipopolysaccharide (LPS), and determine the underlying pharmacological mechanism of action. MATERIALS AND METHODS The levels of nitric oxide (NO) and interleukin-6 (IL-6) were measured by Varioskan Flash and IL-6 Enzyme-Linked Immunosorbent Assay sets. Real time quantitative polymerase chain reaction was used to determine the level of induced nitric oxide synthase (iNOS). The effects of 5-ASA on iNOS, the c-Jun N-terminal kinases (JNKs), p38 and nuclear factor (NF)-κB signaling pathways were examined using western blotting. RESULTS 5-ASA suppressed the production of NO and IL-6, and also decreased the expression of iNOS in LPS-induced RAW264.7 cells. 5-ASA inhibited the phosphorylation of JNKs and p38, but did not block NF-κB activation at all doses tested. DISCUSSION AND CONCLUSION The results indicated that the anti-inflammatory effect of 5-ASA was mainly regulated by the inhibition of the JNKs, p38 pathways rather than NF-κB pathway. Further research is required to clarify the detailed mechanism of the action.
Collapse
Affiliation(s)
- Tingli Qu
- a School of Pharmaceutical Science of Shanxi Medical University , Taiyuan , Shanxi , People's Republic of China
| | - Erbing Wang
- b Chemical and Biological Engineering College of Taiyuan University of Science and Technology , Taiyuan , Shanxi , People's Republic of China
| | - Baofen Jin
- a School of Pharmaceutical Science of Shanxi Medical University , Taiyuan , Shanxi , People's Republic of China.,c Fuyong People's Hospital , Shenzhen , Guangdong , People's Republic of China
| | - Weiping Li
- d Department of Pharmacology , Fenyang College Shanxi Medical University , Fenyang , Shanxi , People's Republic of China
| | - Ruiling Liu
- a School of Pharmaceutical Science of Shanxi Medical University , Taiyuan , Shanxi , People's Republic of China
| | - Zheng-Bao Zhao
- a School of Pharmaceutical Science of Shanxi Medical University , Taiyuan , Shanxi , People's Republic of China
| |
Collapse
|
29
|
Schultz BM, Paduro CA, Salazar GA, Salazar-Echegarai FJ, Sebastián VP, Riedel CA, Kalergis AM, Alvarez-Lobos M, Bueno SM. A Potential Role of Salmonella Infection in the Onset of Inflammatory Bowel Diseases. Front Immunol 2017; 8:191. [PMID: 28293241 PMCID: PMC5329042 DOI: 10.3389/fimmu.2017.00191] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2016] [Accepted: 02/09/2017] [Indexed: 12/13/2022] Open
Abstract
Inflammatory bowel disease (IBD) includes a set of pathologies that result from a deregulated immune response that may affect any portion of the gastrointestinal tract. The most prevalent and defined forms of IBD are Crohn’s disease and ulcerative colitis. Although the etiology of IBD is not well defined, it has been suggested that environmental and genetic factors contribute to disease development and that the interaction between these two factors can trigger the pathology. Diet, medication use, vitamin D status, smoking, and bacterial infections have been proposed to influence or contribute to the onset or development of the disease in susceptible individuals. The infection with pathogenic bacteria is a key factor that can influence the development and severity of this disease. Here, we present a comprehensive review of studies performed in human and mice susceptible to IBD, which supports the notion that infection with bacterial pathogens, such as Salmonella, could promote the onset of IBD due to permanent changes in the intestinal microbiota, disruption of the epithelial barrier and alterations of the intestinal immune response after infection.
Collapse
Affiliation(s)
- Bárbara M Schultz
- Facultad de Ciencias Biológicas, Departamento de Genética Molecular y Microbiología, Millennium Institute on Immunology and Immunotherapy, Pontificia Universidad Católica de Chile , Santiago , Chile
| | - Carolina A Paduro
- Facultad de Ciencias Biológicas, Departamento de Genética Molecular y Microbiología, Millennium Institute on Immunology and Immunotherapy, Pontificia Universidad Católica de Chile , Santiago , Chile
| | - Geraldyne A Salazar
- Facultad de Ciencias Biológicas, Departamento de Genética Molecular y Microbiología, Millennium Institute on Immunology and Immunotherapy, Pontificia Universidad Católica de Chile , Santiago , Chile
| | - Francisco J Salazar-Echegarai
- Facultad de Ciencias Biológicas, Departamento de Genética Molecular y Microbiología, Millennium Institute on Immunology and Immunotherapy, Pontificia Universidad Católica de Chile , Santiago , Chile
| | - Valentina P Sebastián
- Facultad de Ciencias Biológicas, Departamento de Genética Molecular y Microbiología, Millennium Institute on Immunology and Immunotherapy, Pontificia Universidad Católica de Chile , Santiago , Chile
| | - Claudia A Riedel
- Facultad de Ciencias Biológicas y Facultad de Medicina, Departamento de Ciencias Biológicas, Millennium Institute on Immunology and Immunotherapy, Universidad Andrés Bello , Santiago , Chile
| | - Alexis M Kalergis
- Facultad de Ciencias Biológicas, Departamento de Genética Molecular y Microbiología, Millennium Institute on Immunology and Immunotherapy, Pontificia Universidad Católica de Chile, Santiago, Chile; Facultad de Medicina, Departamento de Endocrinología, Pontificia Universidad Católica de Chile, Santiago, Chile; INSERM, UMR 1064, Nantes, France
| | - Manuel Alvarez-Lobos
- Facultad de Medicina, Departamento de Gastroenterología, Pontificia Universidad Católica de Chile , Santiago , Chile
| | - Susan M Bueno
- Facultad de Ciencias Biológicas, Departamento de Genética Molecular y Microbiología, Millennium Institute on Immunology and Immunotherapy, Pontificia Universidad Católica de Chile, Santiago, Chile; INSERM, UMR 1064, Nantes, France
| |
Collapse
|
30
|
Rhapontin ameliorates colonic epithelial dysfunction in experimental colitis through SIRT1 signaling. Int Immunopharmacol 2017; 42:185-194. [PMID: 27930969 DOI: 10.1016/j.intimp.2016.11.024] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 11/19/2016] [Accepted: 11/21/2016] [Indexed: 12/21/2022]
|
31
|
Jeon YD, Bang KS, Shin MK, Lee JH, Chang YN, Jin JS. Regulatory effects of glycyrrhizae radix extract on DSS-induced ulcerative colitis. Altern Ther Health Med 2016; 16:459. [PMID: 27846836 PMCID: PMC5111347 DOI: 10.1186/s12906-016-1390-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 10/13/2016] [Indexed: 12/12/2022]
Abstract
BACKGROUND Glycyrrhizae Radix (GR) is a Korean traditional herb medicine that is widely-used in clinical health care. The clinical functions of GR include relief of toxicity, anti-cancer, regulating blood cholesterol and anti-inflammation. This study investigated the role of GR on ulcerative colitis in a dextran sulfate sodium (DSS)-induced mouse model of colitis. METHOD Western blot analysis and enzyme-linked immunosorbent assay (ELISA) analyses were done on male BALB/c mice administered 5 % DSS during the experimental period. Ethanol extracts of GR were orally administered at same time daily to control mice. The severity of colitis was measured by body weight change and colon length. RESULT DSS-treated mice displayed weight loss and shortened colon length compared with control mice. Mice were administered GR showed less weight loss and longer colon length than the DSS-treated group. Inflammatory cytokines were decreased by GR treatment. Treatment also reduced DSS-induced microscopic damage to colon tissue. GR regulated the phosphorylation of transcription factors such as NF-κB p65 and IκB α. CONCLUSIONS GR has beneficial effects in a colitis model. GR might be a useful herb medicine in the treatment of ulcerative colitis.
Collapse
|
32
|
Andrade MER, Santos RDGCD, Soares ADN, Costa KA, Fernandes SOA, de Souza CM, Cassali GD, de Souza AL, Faria AMC, Cardoso VN. Pretreatment and Treatment WithL-Arginine Attenuate Weight Loss and Bacterial Translocation in Dextran Sulfate Sodium Colitis. JPEN J Parenter Enteral Nutr 2016; 40:1131-1139. [DOI: 10.1177/0148607115581374] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Accepted: 03/17/2015] [Indexed: 12/11/2022]
Affiliation(s)
| | | | | | | | | | | | | | - Adna Luciana de Souza
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brasil
| | - Ana Maria Caetano Faria
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brasil
| | | |
Collapse
|
33
|
Bribi N, Algieri F, Rodriguez-Nogales A, Vezza T, Garrido-Mesa J, Utrilla MP, Del Mar Contreras M, Maiza F, Segura-Carretero A, Rodriguez-Cabezas ME, Gálvez J. Intestinal anti-inflammatory effects of total alkaloid extract from Fumaria capreolata in the DNBS model of mice colitis and intestinal epithelial CMT93 cells. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2016; 23:901-13. [PMID: 27387398 DOI: 10.1016/j.phymed.2016.05.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Revised: 05/04/2016] [Accepted: 05/10/2016] [Indexed: 05/27/2023]
Abstract
BACKGROUND Fumaria capreolata L. (Papaveraceae) is a botanical drug used in North Africa for its gastro-intestinal and anti-inflammatory properties. It is characterized for the presence of several alkaloids that could be responsible for some of its effects, including an immunomodulatory activity. PURPOSE To test in vivo the intestinal anti-inflammatory properties of the total alkaloid fraction extracted from the aerial parts of F. capreolata (AFC), and to evaluate its effects on an intestinal epithelial cell line. STUDY DESIGN AND METHODS AFC was chemically characterized by liquid chromatography coupled to diode array detection and high resolution mass spectrometry. Different doses of AFC (25, 50 and 100mg/kg) were assayed in the DNBS model of experimental colitis in mice, and the colonic damage was evaluated both histologically and biochemically. In addition, in vitro experiments were performed with this alkaloid fraction on the mouse intestinal epithelial cell line CMT93 stimulated with LPS. RESULTS The chemical analysis of AFC revealed the presence of 23 alkaloids, being the most abundants stylopine, protopine and coptisine. Oral administration of AFC produced a significant inhibition of the release and the expression of IL-6 and TNF-α in the colonic tissue. It also suppressed in vivo the transcription of other pro-inflammatory mediators such as IL-1β, iNOS, IL-12 and IL-17. Furthermore, AFC showed an immunomodulatory effect in vitro since it was able to inhibit the mRNA expression of IL-6, TNF-α and ICAM-1. Moreover, the beneficial effect of AFC in the colitic mice could also be associated with the normalization of the expression of MUC-2 and ZO-1, which are important for the intestinal epithelial integrity. CONCLUSION The present study suggests that AFC, containing 1.3% of stylopine and 0.9% of protopine, significantly exerted intestinal anti-inflammatory effects in an experimental model of mouse colitis. This fact could be related to a modulation of the intestinal immune response and a restoration of the intestinal epithelial function.
Collapse
Affiliation(s)
- Noureddine Bribi
- Laboratoire de Biotechnologies Végétales et Ethnobotanique, Faculté des Sciences de la Nature et de la Vie, Université de Bejaia, 06000 Bejaia, Algeria; CIBER-EHD, Department of Pharmacology, ibs.GRANADA, Center for Biomedical Research (CIBM), University of Granada, Avenida del Conocimiento s/n 18016-Armilla, Granada, Spain
| | - Francesca Algieri
- CIBER-EHD, Department of Pharmacology, ibs.GRANADA, Center for Biomedical Research (CIBM), University of Granada, Avenida del Conocimiento s/n 18016-Armilla, Granada, Spain
| | - Alba Rodriguez-Nogales
- CIBER-EHD, Department of Pharmacology, ibs.GRANADA, Center for Biomedical Research (CIBM), University of Granada, Avenida del Conocimiento s/n 18016-Armilla, Granada, Spain
| | - Teresa Vezza
- CIBER-EHD, Department of Pharmacology, ibs.GRANADA, Center for Biomedical Research (CIBM), University of Granada, Avenida del Conocimiento s/n 18016-Armilla, Granada, Spain
| | - Jose Garrido-Mesa
- CIBER-EHD, Department of Pharmacology, ibs.GRANADA, Center for Biomedical Research (CIBM), University of Granada, Avenida del Conocimiento s/n 18016-Armilla, Granada, Spain
| | - María Pilar Utrilla
- CIBER-EHD, Department of Pharmacology, ibs.GRANADA, Center for Biomedical Research (CIBM), University of Granada, Avenida del Conocimiento s/n 18016-Armilla, Granada, Spain
| | - María Del Mar Contreras
- Department of Analytical Chemistry, Faculty of Sciences, University of Granada, Avenida Fuentenueva s/n, 18071-Granada, Spain; Research and Development Centre for Functional Food (CIDAF), Health-Science Technological Park, Avenida del Conocimiento 37, 18016-Granada, Spain
| | - Fadila Maiza
- Laboratoire de Biotechnologies Végétales et Ethnobotanique, Faculté des Sciences de la Nature et de la Vie, Université de Bejaia, 06000 Bejaia, Algeria
| | - Antonio Segura-Carretero
- Department of Analytical Chemistry, Faculty of Sciences, University of Granada, Avenida Fuentenueva s/n, 18071-Granada, Spain; Research and Development Centre for Functional Food (CIDAF), Health-Science Technological Park, Avenida del Conocimiento 37, 18016-Granada, Spain
| | - Maria Elena Rodriguez-Cabezas
- CIBER-EHD, Department of Pharmacology, ibs.GRANADA, Center for Biomedical Research (CIBM), University of Granada, Avenida del Conocimiento s/n 18016-Armilla, Granada, Spain
| | - Julio Gálvez
- CIBER-EHD, Department of Pharmacology, ibs.GRANADA, Center for Biomedical Research (CIBM), University of Granada, Avenida del Conocimiento s/n 18016-Armilla, Granada, Spain.
| |
Collapse
|
34
|
Tanshinone IIA Protects against Dextran Sulfate Sodium- (DSS-) Induced Colitis in Mice by Modulation of Neutrophil Infiltration and Activation. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:7916763. [PMID: 26881040 PMCID: PMC4735939 DOI: 10.1155/2016/7916763] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2015] [Revised: 10/09/2015] [Accepted: 10/13/2015] [Indexed: 12/19/2022]
Abstract
Neutrophils play a critical role in the initiation and maintenance of intestinal inflammation. However, conventional neutrophil-targeted therapies can impair normal host defense. Tanshinone IIA has been recently revealed to act directly on neutrophils. Hence, we aimed at investigating whether Tanshinone IIA can protect against experimental colitis through modulation of neutrophils. We induced colitis in C57BL/6 mice by giving 3% dextran sulfate sodium (DSS) orally, and meanwhile, we treated mice daily with Tanshinone IIA intraperitoneally. The severity of colitis was evaluated by calculating disease activity index (DAI) and histological parameters. Neutrophil infiltration and activation in the colons of mice were measured. Moreover, whether Tanshinone IIA has direct effects on neutrophil migration and activation was determined in vitro. Our data showed that Tanshinone IIA significantly ameliorated the severity of DSS-induced colitis in mice, evidenced by the reduced DAI and improved colonic inflammation. In addition, Tanshinone IIA decreased neutrophil infiltration of intestinal mucosa and activation and reduced colonic inflammatory cytokines in DSS-treated mice. Furthermore, Tanshinone IIA was demonstrated to significantly suppress neutrophil migration and activation. These results provide compelling evidence that Tanshinone IIA has a therapeutic potential for alleviating inflammatory colitis in mice, which is possibly mediated by the immunomodulation of neutrophils.
Collapse
|
35
|
Chen Y, Zhang HS, Fong GH, Xi QL, Wu GH, Bai CG, Ling ZQ, Fan L, Xu YM, Qin YQ, Yuan TL, Sun H, Fang J. PHD3 Stabilizes the Tight Junction Protein Occludin and Protects Intestinal Epithelial Barrier Function. J Biol Chem 2015; 290:20580-9. [PMID: 26124271 PMCID: PMC4536461 DOI: 10.1074/jbc.m115.653584] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Revised: 06/25/2015] [Indexed: 12/13/2022] Open
Abstract
Prolyl hydroxylase domain proteins (PHDs) control cellular adaptation to hypoxia. PHDs are found involved in inflammatory bowel disease (IBD); however, the exact role of PHD3, a member of the PHD family, in IBD remains unknown. We show here that PHD3 plays a critical role in maintaining intestinal epithelial barrier function. We found that genetic ablation of Phd3 in intestinal epithelial cells led to spontaneous colitis in mice. Deletion of PHD3 decreases the level of tight junction protein occludin, leading to a failure of intestinal epithelial barrier function. Further studies indicate that PHD3 stabilizes occludin by preventing the interaction between the E3 ligase Itch and occludin, in a hydroxylase-independent manner. Examination of biopsy of human ulcerative colitis patients indicates that PHD3 is decreased with disease severity, indicating that PHD3 down-regulation is associated with progression of this disease. We show that PHD3 protects intestinal epithelial barrier function and reveal a hydroxylase-independent function of PHD3 in stabilizing occludin. These findings may help open avenues for developing a therapeutic strategy for IBD.
Collapse
Affiliation(s)
- Ying Chen
- From the Laboratory of Food Safety Research, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Hai-Sheng Zhang
- From the Laboratory of Food Safety Research, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Guo-Hua Fong
- the Center for Vascular Biology, University of Connecticut Health Center, Farmington, Connecticut 06030
| | - Qiu-Lei Xi
- the Department of Surgery, Zhongshan Hospital, Fudan University School of Medicine, Shanghai 200030, China
| | - Guo-Hao Wu
- the Department of Surgery, Zhongshan Hospital, Fudan University School of Medicine, Shanghai 200030, China
| | - Chen-Guang Bai
- the Department of Pathology, Changhai Hospital, the Second Military Medical University, Shanghai 200433, China
| | - Zhi-Qiang Ling
- the Department of Pathology, Zhejiang Cancer Research Institute, Zhejiang Cancer Hospital and Zhejiang Cancer Center, Hangzhou 310022, China, and
| | - Li Fan
- From the Laboratory of Food Safety Research, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yi-Ming Xu
- From the Laboratory of Food Safety Research, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yan-Qing Qin
- From the Laboratory of Food Safety Research, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Tang-Long Yuan
- From the Laboratory of Food Safety Research, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Heng Sun
- From the Laboratory of Food Safety Research, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Jing Fang
- From the Laboratory of Food Safety Research, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China, the Key Laboratory of Food Safety Risk Assessment, Ministry of Health, Beijing 100021 China
| |
Collapse
|
36
|
Wen YA, Li X, Goretsky T, Weiss HL, Barrett TA, Gao T. Loss of PHLPP protects against colitis by inhibiting intestinal epithelial cell apoptosis. Biochim Biophys Acta Mol Basis Dis 2015; 1852:2013-23. [PMID: 26187040 DOI: 10.1016/j.bbadis.2015.07.012] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Revised: 07/10/2015] [Accepted: 07/13/2015] [Indexed: 12/12/2022]
Abstract
A common feature of inflammatory bowel disease (IBD) is the loss of intestinal epithelial barrier function due to excessive apoptosis of intestinal epithelial cells (IECs). However, the molecular mechanism underlying increased IEC apoptosis remains unclear. Here, we investigated the role of PHLPP, a novel family of protein phosphatases, in regulating inflammation-induced IEC apoptosis in mouse models of colitis. Both Phlpp1 and Phlpp2 genes were deleted in mice. Compared with wild-type mice, PHLPP double knockout (DKO) mice were protected from colitis induced by DSS as demonstrated by lower histopathological scores, and this reduced susceptibility to colitis was associated with decreased apoptosis and increased Akt activity in IECs in vivo. In addition, epithelial organoids derived from PHLPP DKO mice were more resistant to inflammation-induced apoptosis while inhibition of Akt activity abolished the protective effect of PHLPP-loss. Furthermore, we found that PHLPP expression was significantly reduced in IECs following the induction of colitis by DSS and in human IBD patient samples. This inflammation-induced downregulation of PHLPP was partially blocked by treating cells with a proteasome inhibitor. Taken together, our results indicated that proteasome-mediated degradation of PHLPP at the onset of inflammation plays an important role in protecting IEC injury by inhibiting apoptosis.
Collapse
Affiliation(s)
- Yang-An Wen
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536-0509, USA
| | - Xin Li
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536-0509, USA
| | - Tatiana Goretsky
- Division of Digestive Diseases and Nutrition, Department of Internal Medicine, University of Kentucky, Lexington, KY 40536-0509, USA
| | - Heidi L Weiss
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536-0509, USA
| | - Terrence A Barrett
- Division of Digestive Diseases and Nutrition, Department of Internal Medicine, University of Kentucky, Lexington, KY 40536-0509, USA
| | - Tianyan Gao
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536-0509, USA; Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY 40536-0509, USA.
| |
Collapse
|
37
|
Extraintestinal Helminth Infection Limits Pathology and Proinflammatory Cytokine Expression during DSS-Induced Ulcerative Colitis: A Role for Alternatively Activated Macrophages and Prostaglandins. BIOMED RESEARCH INTERNATIONAL 2015; 2015:563425. [PMID: 26090422 PMCID: PMC4450267 DOI: 10.1155/2015/563425] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Revised: 10/14/2014] [Accepted: 10/20/2014] [Indexed: 01/05/2023]
Abstract
Chronic inflammation of the intestinal mucosa is characteristic of inflammatory bowel diseases such as ulcerative colitis and Crohn's disease. Helminth parasites have developed immunomodulatory strategies that may impact the outcome of several inflammatory diseases. Therefore, we investigated whether Taenia crassiceps infection is able to decrease the inflammatory effects of dextran sulfate sodium- (DSS-) induced ulcerative colitis in BALB/c and C57BL/6 mice. Preinfection significantly reduced the manifestations of DSS-induced colitis, as weight loss and shortened colon length, and decreased the disease activity index independently of the genetic background of the mice. Taenia infection decreased systemic levels of proinflammatory cytokines while increasing levels of IL-4 and IL-10, and the inflammatory infiltrate into the colon was also markedly reduced. RT-PCR assays from colon showed that T. crassiceps-infected mice displayed increased expression of Arginase-1 but decreased expression of iNOS compared to DSS-treated uninfected mice. The percentages of T regulatory cells were not increased. The adoptive transfer of alternatively activated macrophages (AAMФs) from infected mice into mice with DSS-induced colitis reduced the severity of colon inflammation. Administration of indomethacin abrogated the anticolitic effect of Taenia. Thus, T. crassiceps infection limits the pathology of ulcerative colitis by suppressing inflammatory responses mechanistically associated with AAMФs and prostaglandins.
Collapse
|
38
|
Zhang HS, Chen Y, Fan L, Xi QL, Wu GH, Li XX, Yuan TL, He SQ, Yu Y, Shao ML, Liu Y, Bai CG, Ling ZQ, Li M, Liu Y, Fang J. The Endoplasmic Reticulum Stress Sensor IRE1α in Intestinal Epithelial Cells Is Essential for Protecting against Colitis. J Biol Chem 2015; 290:15327-36. [PMID: 25925952 DOI: 10.1074/jbc.m114.633560] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Indexed: 12/19/2022] Open
Abstract
Intestinal epithelial cells (IECs) have critical roles in maintaining homeostasis of intestinal epithelium. Endoplasmic reticulum (ER) stress is implicated in intestinal epithelium homeostasis and inflammatory bowel disease; however, it remains elusive whether IRE1α, a major sensor of ER stress, is directly involved in these processes. We demonstrate here that genetic ablation of Ire1α in IECs leads to spontaneous colitis in mice. Deletion of IRE1α in IECs results in loss of goblet cells and failure of intestinal epithelial barrier function. IRE1α deficiency induces cell apoptosis through induction of CHOP, the pro-apoptotic protein, and sensitizes cells to lipopolysaccharide, an endotoxin from bacteria. IRE1α deficiency confers upon mice higher susceptibility to chemical-induced colitis. These results suggest that IRE1α functions to maintain the intestinal epithelial homeostasis and plays an important role in defending against inflammation bowel diseases.
Collapse
Affiliation(s)
- Hai-Sheng Zhang
- From the Laboratory of Food Safety Research, Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031
| | - Ying Chen
- From the Laboratory of Food Safety Research, Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031
| | - Li Fan
- From the Laboratory of Food Safety Research, Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031
| | - Qiu-Lei Xi
- the Department of Surgery, Zhongshan Hospital, Fudan University School of Medicine, Shanghai 200030
| | - Guo-Hao Wu
- the Department of Surgery, Zhongshan Hospital, Fudan University School of Medicine, Shanghai 200030
| | - Xiu-Xiu Li
- From the Laboratory of Food Safety Research, Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031
| | - Tang-Long Yuan
- From the Laboratory of Food Safety Research, Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031
| | - Sheng-Qi He
- From the Laboratory of Food Safety Research, Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031
| | - Yue Yu
- From the Laboratory of Food Safety Research, Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031
| | - Meng-Le Shao
- From the Laboratory of Food Safety Research, Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031
| | - Yang Liu
- From the Laboratory of Food Safety Research, Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031
| | - Chen-Guang Bai
- the Department of Pathology, Changhai Hospital, the Second Military Medical University, Shanghai 200433
| | - Zhi-Qiang Ling
- the Department of Pathology, Zhejiang Cancer Research Institute, Zhejiang Cancer Hospital and Zhejiang Cancer Center, Hangzhou 310022
| | - Min Li
- the Department of Surgery, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104
| | - Yong Liu
- From the Laboratory of Food Safety Research, Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031,
| | - Jing Fang
- From the Laboratory of Food Safety Research, Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, the Department of Surgery, Zhongshan Hospital, Fudan University School of Medicine, Shanghai 200030, the Key Laboratory of Food Safety Risk Assessment, Ministry of Health, Beijing 100021, and
| |
Collapse
|
39
|
Sánchez-Fidalgo S, Villegas I, Aparicio-Soto M, Cárdeno A, Rosillo MÁ, González-Benjumea A, Marset A, López Ó, Maya I, Fernández-Bolaños JG, Alarcón de la Lastra C. Effects of dietary virgin olive oil polyphenols: hydroxytyrosyl acetate and 3, 4-dihydroxyphenylglycol on DSS-induced acute colitis in mice. J Nutr Biochem 2015; 26:513-20. [PMID: 25736481 DOI: 10.1016/j.jnutbio.2014.12.001] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2014] [Revised: 11/26/2014] [Accepted: 12/02/2014] [Indexed: 01/16/2023]
Abstract
Hydroxytyrosol, a polyphenolic compound from extra virgin olive oil (EVOO) has exhibited an improvement in a model of DSS-induced colitis. However, other phenolic compounds present such as hydroxytyrosyl acetate (HTy-Ac) and 3,4-dihydroxyphenylglycol (DHPG) need to be explored to complete the understanding of the overall effects of EVOO on inflammatory colon mucosa. This study was designed to evaluate the effect of both HTy-Ac and DHPG dietary supplementation in the inflammatory response associated to colitis model. Six-week-old mice were randomized in four dietary groups: sham and control groups received standard diet, and other two groups were fed with HTy-Ac and DHPG, respectively, at 0.1%. After 30 days, all groups except sham received 3% DSS in drinking water for 5 days followed by a regime of 5 days of water. Acute inflammation was evaluated by Disease Activity Index (DAI), histology and myeloperoxidase (MPO) activity. Colonic expression of iNOS, COX-2, MAPKs, NF-kB and FOXP3 were determined by western blotting. Only HTy-Ac-supplemented group showed a significant DAI reduction as well as an improvement of histological damage and MPO. COX-2 and iNOS protein expression were also significantly reduced. In addition, this dietary group down-regulated JNK phosphorylation and prevented the DSS-induced nuclear translocation level of p65. However, no significant differences were observed in the FOXP3 expression. These results demonstrated, for the first time, that HTy-Ac exerts an antiinflammatory effect on acute ulcerative colitis. We concluded that HTy-Ac supplement might provide a basis for developing a new dietary strategy for the prevention of ulcerative colitis.
Collapse
Affiliation(s)
| | - Isabel Villegas
- Department of Pharmacology, Faculty of Pharmacy, University of Seville
| | | | - Ana Cárdeno
- Department of Pharmacology, Faculty of Pharmacy, University of Seville
| | | | | | - Azucena Marset
- Department of Organic Chemistry, Faculty of Pharmacy, University of Seville
| | - Óscar López
- Department of Organic Chemistry, Faculty of Pharmacy, University of Seville
| | - Inés Maya
- Department of Organic Chemistry, Faculty of Pharmacy, University of Seville
| | | | | |
Collapse
|
40
|
Sánchez-Fidalgo S, Villegas I, Rosillo MÁ, Aparicio-Soto M, de la Lastra CA. Dietary squalene supplementation improves DSS-induced acute colitis by downregulating p38 MAPK and NFkB signaling pathways. Mol Nutr Food Res 2014; 59:284-92. [PMID: 25387687 DOI: 10.1002/mnfr.201400518] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Revised: 10/29/2014] [Accepted: 10/31/2014] [Indexed: 12/20/2022]
Abstract
SCOPE Squalene is a polyunsaturated triterpene, which has exhibited anticancer and antioxidant activities among others. We investigated dietary squalene supplementation effect on an acute colitis model induced by dextran sulfate sodium (DSS) in C57BL/6 mice. METHODS AND RESULTS Mice were fed from weaning with squalene at 0.02% and 0.1%. After 4 weeks, mice were exposed to 3% DSS for 5 days developing acute colitis. After DSS removal (5 days), colons were histological and biochemically processed. Our results showed that dietary squalene treatment exerts anti-inflammatory action in DSS-induced acute colitis. Western blot revealed that squalene downregulated COX-2 (where COX is cyclooxygenase) and inducible nitric oxide synthase system by inhibition of mitogen-activated protein kinase p38 and the nuclear factor-kappa B signaling pathways, preventing an increase in the cytokines levels. Under our experimental conditions, STAT3 and FOXP3 (where FOXP3 is forkhead box P3) were not modified and the transcriptional regulation of antioxidant and/or detoxifying enzymes, Nrf2 (where Nrf2 is nuclear factor (erythroid-derived 2)-like 2), was reduced in DSS-induced colitis. However, any change could be observed after squalene supplementation. CONCLUSION Squalene was able to improve the oxidative events and returned proinflammatory proteins expression to basal levels probably through p38 mitogen-activated protein kinase and nuclear factor-kappa B signaling pathways. However, supplementary studies are needed in order to provide a basis for developing a new dietary supplementation strategy.
Collapse
|
41
|
Heylen M, Ruyssers NE, Gielis EM, Vanhomwegen E, Pelckmans PA, Moreels TG, De Man JG, De Winter BY. Of worms, mice and man: an overview of experimental and clinical helminth-based therapy for inflammatory bowel disease. Pharmacol Ther 2014; 143:153-167. [PMID: 24603369 DOI: 10.1016/j.pharmthera.2014.02.011] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Accepted: 02/25/2014] [Indexed: 12/17/2022]
Abstract
The incidence of inflammatory and autoimmune disorders is highest in well-developed countries which is directly related to their higher hygienic standards: it is suggested that the lack of exposure to helminths contributes to the susceptibility for immune-related diseases. Epidemiological, experimental and clinical data support the idea that helminths provide protection against immune-mediated diseases such as inflammatory bowel disease (IBD). The most likely mechanism for the suppression of immune responses by helminths is the release of helminth-derived immunomodulatory molecules. This article reviews the experimental and clinical studies investigating the therapeutic potential of helminth-based therapy in IBD and also focuses on the current knowledge of its immunomodulatory mechanisms of action highlighting innate as well as adaptive immune mechanisms. Identifying the mechanisms by which these helminths and helminth-derived molecules modulate the immune system will help in creating novel drugs for the treatment of IBD and other disorders that result from an overactive immune response.
Collapse
Affiliation(s)
- Marthe Heylen
- Laboratory of Experimental Medicine and Pediatrics, Division of Gastroenterology, University of Antwerp, Antwerp, Belgium
| | - Nathalie E Ruyssers
- Laboratory of Experimental Medicine and Pediatrics, Division of Gastroenterology, University of Antwerp, Antwerp, Belgium
| | - Els M Gielis
- Laboratory of Experimental Medicine and Pediatrics, Division of Gastroenterology, University of Antwerp, Antwerp, Belgium
| | - Els Vanhomwegen
- Laboratory of Experimental Medicine and Pediatrics, Division of Gastroenterology, University of Antwerp, Antwerp, Belgium
| | - Paul A Pelckmans
- Laboratory of Experimental Medicine and Pediatrics, Division of Gastroenterology, University of Antwerp, Antwerp, Belgium; Antwerp University Hospital, Division of Gastroenterology & Hepatology, Antwerp, Belgium
| | - Tom G Moreels
- Laboratory of Experimental Medicine and Pediatrics, Division of Gastroenterology, University of Antwerp, Antwerp, Belgium; Antwerp University Hospital, Division of Gastroenterology & Hepatology, Antwerp, Belgium
| | - Joris G De Man
- Laboratory of Experimental Medicine and Pediatrics, Division of Gastroenterology, University of Antwerp, Antwerp, Belgium
| | - Benedicte Y De Winter
- Laboratory of Experimental Medicine and Pediatrics, Division of Gastroenterology, University of Antwerp, Antwerp, Belgium.
| |
Collapse
|
42
|
Sahin A, Calhan T, Cengiz M, Kahraman R, Aydin K, Ozdil K, Korachi M, Sokmen HM. Serum interleukin 17 levels in patients with Crohn's disease: real life data. DISEASE MARKERS 2014; 2014:690853. [PMID: 25140070 PMCID: PMC4124784 DOI: 10.1155/2014/690853] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Accepted: 06/16/2014] [Indexed: 12/17/2022]
Abstract
UNLABELLED The aim of this study was to investigate serum IL17 levels in patients with Crohn's disease (CD) and to investigate the relationship between serum IL17 levels with disease activity. METHODS Fifty patients with CD and sex- and age-matched 40 healthy controls were included in the study. The serum IL17 levels, complete blood count, blood chemistry, erythrocyte sedimentation rate (ESR), and C-reactive protein (CRP) levels were measured, and Crohn's disease activity was calculated using Crohn's disease activity index (CDAI). RESULTS The mean serum IL17 level of CD patients did not differ from those of healthy controls (P > 0.05). There was no difference between the mean serum IL levels of active CD patients and of quiescent CD patients (P > 0.05). However, the mean IL17 level of active patients was lower than of control subjects (P = 0.02). Serum IL17 was not correlated with inflammatory markers (ESR, CRP, white blood count, platelet count, and albumin) and CDAI. CONCLUSIONS Peripheral blood serum IL17 levels of CD patients were not higher than of healthy controls, and also, serum IL17 level was not correlated with clinical disease activity. Peripheral IL17 measurement is not a useful tool for detecting and monitoring Crohn's disease which is understood to have complex etiopathogenesis.
Collapse
Affiliation(s)
- Abdurrahman Sahin
- Department of Gastroenterology, Elazig Education and Research Hospital, Rizaiye Mah. Inonu Caddesi, 23200 Elazig, Turkey
| | - Turan Calhan
- Gastroenterology Department, Turkiye Gazetesi Hospital, 34381 Istanbul, Turkey
| | - Mustafa Cengiz
- Department of Gastroenterology, Ankara Oncology Education and Research Hospital, 06500 Ankara, Turkey
| | - Resul Kahraman
- Department of Gastroenterology, Batman State Hospital, 72070 Batman, Turkey
| | - Kubra Aydin
- Department of Genetics and Bioengineering, Yeditepe University, 34755 Istanbul, Turkey
| | - Kamil Ozdil
- Department of Gastroenterology, Umraniye Training and Research Hospital, 34764 Istanbul, Turkey
| | - May Korachi
- Department of Genetics and Bioengineering, Yeditepe University, 34755 Istanbul, Turkey
| | - H. Mehmet Sokmen
- Department of Gastroenterology, Umraniye Training and Research Hospital, 34764 Istanbul, Turkey
| |
Collapse
|
43
|
XU DEKUI, YU HONGBO, YU QINGGONG, WU SIMENG, LIU DONGMEI, LIN YAN, ZHANG YING, ZHENG CHANGQING. Salvia miltiorrhiza increases the expression of transcription factor Foxp3 in experimental murine colitis. Mol Med Rep 2014; 9:1947-51. [DOI: 10.3892/mmr.2014.1986] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Accepted: 02/07/2014] [Indexed: 01/30/2023] Open
|
44
|
Miao J, Niu J, Wang K, Xiao Y, Du Y, Zhou L, Duan L, Li S, Yang G, Chen L, Tong M, Miao Y. Heat shock factor 2 levels are associated with the severity of ulcerative colitis. PLoS One 2014; 9:e88822. [PMID: 24533153 PMCID: PMC3923051 DOI: 10.1371/journal.pone.0088822] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Accepted: 01/12/2014] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND AND AIMS The morbidity of ulcerative colitis (UC) is increasing in China every year. In addition, there is a lack of accurate diagnostic indices with which to evaluate the activity of the disease. The aim of this study was to identify UC-associated proteins as biomarkers for the diagnosis, and objective assessment of disease activity. METHODS Differential expression of serum proteins from UC patients compared to normal controls was analyzed by two-dimensional electrophoresis (2-DE) and matrix-assisted laser desorption/ionization-time-of-flight mass spectrometry (MALDI-TOF-MS). The expression of heat shock factor 2(HSF2)in colonic mucosa in Crohn's disease, Behcet's disease, ulcerative colitis, intestinal tuberculosis, infective enteritis, intestinal lymphoma, and normal controls was investigated by immunohistochemistry (IHC). The expression of the HSF2 in colonic mucosa of UC subjects with varying severity of disease was measured by real time-PCR and Western Blots. The expression of HSF2 was inhibited by HSF2 small interfering RNA (siRNA) transfection in Caco-2 cells. The concentrations of HSF2, IL-1β, and TNF-α in serum and IL-1β, and TNF-α in the supernatants of transfected Caco-2 cells were determined by ELISA. RESULTS HSF2 was differentially expressed in UC patients compared to normal controls. HSF2 expression was significantly higher in the intestinal mucosa of UC patients compared to other six groups. The results of immunohistochemistry, real time-PCR, Western Blots, and ELISA showed that the expression of HSF2 increased in parallel with the severity of UC. The serum concentration of HSF2 also positively correlated with levels of IL-1β and TNF-α. After down-regulation expression of HSF2 in Caco-2 cells by RNA interference, the productions of IL-1β and TNF-α stimulated by lipopolysaccharide (LPS) increased dramatically. CONCLUSIONS HSF2 appears to be a potential novel molecular marker for UC activity, and may provide a basis for studies on the pathogenesis and novel therapeutic targets for UC.
Collapse
Affiliation(s)
- Jiarong Miao
- Department of Gastroenterology, The First Affiliated Hospital of Kunming Medical University, Kunming, P. R. China
| | - Junkun Niu
- Department of Gastroenterology, The First Affiliated Hospital of Kunming Medical University, Kunming, P. R. China
| | - Kunhua Wang
- Department of General Surgery, The First Affiliated Hospital of Kunming Medical University, Kunming, P. R. China
| | - Yuliang Xiao
- Department of Gastroenterology, The First Affiliated Hospital of Kunming Medical University, Kunming, P. R. China
| | - Yan Du
- Department of Clinical Laboratory, The First Affiliated Hospital of Kunming Medical University, Kunming, P. R. China
| | - Lifeng Zhou
- Department of Gastroenterology, The First Affiliated Hospital of Kunming Medical University, Kunming, P. R. China
| | - Liping Duan
- Department of Gastroenterology, The First Affiliated Hospital of Kunming Medical University, Kunming, P. R. China
| | - Shuan Li
- Department of Gastroenterology, The First Affiliated Hospital of Kunming Medical University, Kunming, P. R. China
| | - Gang Yang
- Department of Gastroenterology, The First Affiliated Hospital of Kunming Medical University, Kunming, P. R. China
| | - Lifang Chen
- Department of Gastroenterology, The First Affiliated Hospital of Kunming Medical University, Kunming, P. R. China
| | - Mingxia Tong
- Department of Gastroenterology, The First Affiliated Hospital of Kunming Medical University, Kunming, P. R. China
| | - Yinglei Miao
- Department of Gastroenterology, The First Affiliated Hospital of Kunming Medical University, Kunming, P. R. China
| |
Collapse
|
45
|
Miao YL, Xiao YL, Du Y, Duan LP. Gene expression profiles in peripheral blood mononuclear cells of ulcerative colitis patients. World J Gastroenterol 2013; 19:3339-46. [PMID: 23745037 PMCID: PMC3671087 DOI: 10.3748/wjg.v19.i21.3339] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Revised: 09/27/2012] [Accepted: 03/15/2013] [Indexed: 02/06/2023] Open
Abstract
AIM To identify peripheral blood mononuclear cell (PBMC) gene expression profiles of ulcerative colitis (UC) patients, using oligonucleotide microarrays, to gain insights into UC molecular mechanisms. METHODS The Human OneArray microarrays were used for a complete genome-wide transcript profiling of PBMCs from 12 UC patients and 6 controls. Differential analysis per gene was performed with a random variance model; t test and P values were adjusted to control the false discovery rate (5%). Gene ontology (GO) was deployed to analyze differentially expressed genes at significant levels between patients and controls to identify the biological processes involved in UC. RESULTS Comparative analysis revealed that 4438 probes (4188 genes) were differentially expressed between the two groups, of which 3689 probes (3590 genes) were down-regulated whereas 749 probes (598 genes) were up-regulated. Many disregulated genes in our data have been reported by previous microarray studies carried out on intestinal mucosa samples, such as S100A8, CEACAM1 and S100A9. GO enrichment analysis revealed 67 high enrichment up-regulated categories and one significant down-regulated category. The up-regulated genes were mainly involved in immune and inflammatory response, cell cycle and proliferation, DNA metabolism and repair. CONCLUSION Gene expression profiling of PBMCs from patients with UC has highlighted several novel gene categories that could contribute to the pathogenesis of UC.
Collapse
|
46
|
Kim HR, Lee SM, Won JW, Lim W, Moon BI, Yang HJ, Seoh JY. Functional changes in regulatory T cells during an experimental infection with sparganum (plerocercofid of Spirometra mansoni). Immunology 2013; 138:57-67. [PMID: 23078673 DOI: 10.1111/imm.12017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2011] [Revised: 09/20/2012] [Accepted: 09/20/2012] [Indexed: 12/26/2022] Open
Abstract
Regulatory T (Treg) cells are important in the regulation of immune response, but the exact regulation of Treg-cell function in vivo is still not well known. In the present study, we investigated the functional activity of CD4(+) CD25(+) Treg cells as well as the frequency and number of CD4(+) CD25(+) FoxP3(+) Treg cells in the spleens of experimentally infected mice with a tissue-migrating parasite, sparganum (plerocercoid of Spirometra mansoni) for 3 weeks. The results demonstrated fluctuations in the Treg-cell function during the parasite infection, being up-regulated at day 3, down-regulated until day 14, and thereafter up-regulated again at day 21. We also investigated the cytokine-producing capability of the splenocytes to study the pattern of immune response of the mice to the parasite. The results showed decreased capabilities of interleukin-2 (IL-2), interferon-γ (IFN-γ) and IL-17α production, whereas IL-4-producing and IL-10-producing capabilities were increased along with the parasitic infection. Meanwhile, IL-6-producing capability was increased to reach a peak at week 2, and thereafter was decreased to the baseline level. As a regulatory mechanism, we found that Treg-cell function was attenuated in the presence of the crude extracts of sparganum, but was enhanced in the presence of the excretory-secretory products, suggesting that sparganum products were involved in the triggering and regulation of immune response in the acute and chronic phases, respectively. Results show that Treg cells are central in the immune homeostasis in vivo that is maintained by host-parasite interactions during the parasitic infection.
Collapse
Affiliation(s)
- Hyung-Ran Kim
- Department of Microbiology, Ewha Womans University School of Medicine, Seoul, Korea
| | | | | | | | | | | | | |
Collapse
|
47
|
Sánchez-Fidalgo S, Cárdeno A, Sánchez-Hidalgo M, Aparicio-Soto M, Villegas I, Rosillo M, de la Lastra CA. Dietary unsaponifiable fraction from extra virgin olive oil supplementation attenuates acute ulcerative colitis in mice. Eur J Pharm Sci 2013; 48:572-81. [DOI: 10.1016/j.ejps.2012.12.004] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2012] [Revised: 12/01/2012] [Accepted: 12/03/2012] [Indexed: 02/07/2023]
|
48
|
Sánchez-Fidalgo S, Cárdeno A, Sánchez-Hidalgo M, Aparicio-Soto M, de la Lastra CA. Dietary extra virgin olive oil polyphenols supplementation modulates DSS-induced chronic colitis in mice. J Nutr Biochem 2013; 24:1401-13. [PMID: 23337347 DOI: 10.1016/j.jnutbio.2012.11.008] [Citation(s) in RCA: 110] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2012] [Revised: 11/25/2012] [Accepted: 11/27/2012] [Indexed: 12/13/2022]
Abstract
We evaluated the protective effect of dietary extra virgin olive oil (EVOO) polyphenol extract (PE) supplementation in the inflammatory response associated to chronic colitis model. Six-week-old mice were randomized in four dietary groups: standard diet (SD), EVOO diet and both enriched with PE (850 ppm) (SD+PE and EVOO+PE). After 30 days, animals that were exposed to dextran sodium sulfate (DSS) (3%) followed by 3 weeks of drinking water developed chronic colitis, which was evaluated by disease activity index (DAI) and histology. Cell proliferation was analyzed by immunohistochemical and changes in monocyte chemotactic protein (MCP)-1 and tumor necrosis factor (TNF)-α mRNA expression by quantitative real-time polymerase chain reaction. Colonic expression of inducible nitric oxide synthase (iNOS), cyclooxygenase (COX)-2, mitogen-activated protein kinases (MAPKs), IκBα inhibitory and peroxisome proliferator-activated receptor gamma (PPARγ) were determined by western blotting. SD-DSS group showed a significant increase of DAI, histological damage and cell proliferation, as well as an up-regulation of TNF-α, MCP-1, COX-2 and iNOS proteins. p38 and JNK MAPKs phosphorylation, IκBα degradation and PPARγ deactivation were also observed. However, in DSS-treated and EVOO+PE-fed mice, DAI and cell proliferation were significantly reduced, as well as MCP-1, TNF-α, COX-2 and iNOS expression levels. In addition, this dietary group, notably down-regulated JNK phosphorylation, prevented IκBα degradation and PPARγ deactivation. These results demonstrated, for the first time, that EVOO-PE supplementation possessed marked protective effects on experimental colitis through PPARγ up-regulation and nuclear transcription factor-kappa B and MAPK signaling pathway inhibition, decreasing the inflammatory cascade. We concluded that PE-enriched EVOO diet could be a beneficial functional food on ulcerative colitis.
Collapse
Affiliation(s)
- Susana Sánchez-Fidalgo
- Department of Pharmacology, School of Pharmacy, University of Seville, 41012 Seville, Spain
| | | | | | | | | |
Collapse
|
49
|
Abstract
This article focuses on the cellular, biochemical, and molecular pharmacology of antifolates and how a basic understanding of the mechanism of action of methotrexate, its cytotoxic determinants, mechanisms of resistance, and transport into and out of cells has led to the development of a new generation of antifolates, a process that continues in the laboratory and in the clinics. New approaches to folate-based cancer chemotherapy are described based on the targeted delivery of drugs to malignant cells.
Collapse
Affiliation(s)
- Michele Visentin
- Department of Medicine and the Albert Einstein Cancer Center, The Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | | | | |
Collapse
|
50
|
Hontecillas R, Bassaganya-Riera J. Expression of PPAR γ in intestinal epithelial cells is dispensable for the prevention of colitis by dietary abscisic acid. ACTA ACUST UNITED AC 2012; 7:e189-e195. [PMID: 23814701 DOI: 10.1016/j.clnme.2012.07.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND & AIMS Dietary abscisic acid (ABA) has shown efficacy in ameliorating experimental IBD in mice through mechanisms requiring expression of peroxisome proliferator activated-receptor γ (PPAR γ) in immune cells. The goal of this study was to determine whether PPAR γ expression in colonic epithelial cells is required for the anti-inflammatory actions of ABA. METHODS Conditional knockout mice expressing a transgenic recombinase in intestinal epithelial cells under the control of a villin promoter (PPAR γ flfl; Villin Cre+ or VC+) with defective expression of PPAR γ in intestinal cells (IEC) and PPAR γ-expressing wild type (PPAR γ flfl; Villin Cre- or VC-) mice in a C57BL/6 background were fed diets with and without ABA (0.1 g/kg) for 35 days and challenged with 2.5% dextran sodium sulfate (DSS) in the drinking water for 7 days. Clinical disease severity was assessed daily and colonic lesions on day 7 through macroscopic and histopathological examination. Immune cell phenotypes were examined systemically and at the mesenteric lymph nodes (MLN). Epithelial gene expression was assayed in the colon. RESULTS Dietary ABA-supplementation prevented colitis, reduced disease severity, improved colonic histopathology, and upregulated epithelial lanthionine synthetase C-like protein 2 (LANCL2) expression in VC+ mice. Dietary ABA significantly increased the percentages of MLN CD4+IL-10+ T cells, and blood CD4+CD25+FoxP3+ T cells and CD8+IL-10+ T cells. CONCLUSION Expression of PPAR γ in IECs was not required for the anti-inflammatory efficacy of ABA in IBD. LANCL2 in IECs and T cell-derived IL-10 may be implicated in the mechanism underlying ABA's immune modulatory activity in IBD.
Collapse
Affiliation(s)
- Raquel Hontecillas
- Nutritional Immunology and Molecular Medicine Laboratory, Center for Modeling Immunity to Enteric Pathogens, Virginia Bioinformatics Institute, Virginia Tech, Blacksburg, Virginia, 24060, United States of America
| | | |
Collapse
|