1
|
Feng Z, Pan Y, Liu Y, Zhao J, Peng X, Lu G, Shi W, Zhang D, Cui S. Screening and Analysis of Serum Protein Biomarkers Infected by Coronavirus Disease 2019 (COVID-19). Trop Med Infect Dis 2022; 7:tropicalmed7120397. [PMID: 36548652 PMCID: PMC9788497 DOI: 10.3390/tropicalmed7120397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 11/04/2022] [Accepted: 11/22/2022] [Indexed: 11/29/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19) has spread widely around the world, and in-depth research on COVID-19 is necessary for biomarkers and target drug discovery. This analysis collected serum from six COVID-19-infected patients and six healthy people. The protein changes in the infected and healthy control serum samples were evaluated by liquid chromatography-tandem mass spectrometry (LC-MS/MS) and high-performance liquid chromatography (HPLC). The differential protein signature in both groups was retrieved and analyzed by the Kyoto Encyclopedia of Gene and Genomes (KEGG), Gene ontology, COG/KOG, protein-protein interaction, and protein domain interactions tools. We shortlisted 24 differentially expressed proteins between both groups. Ten genes were significantly up-regulated in the infection group, and fourteen genes were significantly down-regulated. The GO and KEGG pathway enrichment analysis suggested that the chromosomal part and chromosome were the most enriched items. The oxytocin signaling pathway was the most enriched item of KEGG analysis. The netrin module (non-TIMP type) was the most enriched protein domain in this study. Functional analysis of S100A9, PIGR, C4B, IL-6R, IGLV3-19, IGLV3-1, and IGLV5-45 revealed that SARS-CoV-2 was closely related to immune response.
Collapse
|
2
|
Zhou D, Rudnicki M, Chua GT, Lawrance SK, Zhou B, Drew JL, Barbar-Smiley F, Armstrong TK, Hilt ME, Birmingham DJ, Passler W, Auletta JJ, Bowden SA, Hoffman RP, Wu YL, Jarjour WN, Mok CC, Ardoin SP, Lau YL, Yu CY. Human Complement C4B Allotypes and Deficiencies in Selected Cases With Autoimmune Diseases. Front Immunol 2021; 12:739430. [PMID: 34764957 PMCID: PMC8577214 DOI: 10.3389/fimmu.2021.739430] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Accepted: 09/24/2021] [Indexed: 11/13/2022] Open
Abstract
Human complement C4 is one of the most diverse but heritable effectors for humoral immunity. To help understand the roles of C4 in the defense and pathogenesis of autoimmune and inflammatory diseases, we determined the bases of polymorphisms including the frequent genetic deficiency of C4A and/or C4B isotypes. We demonstrated the diversities of C4A and C4B proteins and their gene copy number variations (CNVs) in healthy subjects and patients with autoimmune disease, such as type 1 diabetes, systemic lupus erythematosus (SLE) and encephalitis. We identified subjects with (a) the fastest migrating C4B allotype, B7, or (b) a deficiency of C4B protein caused by genetic mutation in addition to gene copy-number variation. Those variants and mutants were characterized, sequenced and specific techniques for detection developed. Novel findings were made in four case series. First, the amino acid sequence determinant for C4B7 was likely the R729Q variation at the anaphylatoxin-like region. Second, in healthy White subject MS630, a C-nucleotide deletion at codon-755 led to frameshift mutations in his single C4B gene, which was a private mutation. Third, in European family E94 with multiplex lupus-related mortality and low serum C4 levels, the culprit was a recurrent haplotype with HLA-A30, B18 and DR7 that segregated with two defective C4B genes and identical mutations at the donor splice site of intron-28. Fourth, in East-Asian subject E133P with anti-NMDA receptor encephalitis, the C4B gene had a mutation that changed tryptophan-660 to a stop-codon (W660x), which was present in a haplotype with HLA-DRB1*04:06 and B*15:27. The W660x mutation is recurrent among East-Asians with a frequency of 1.5% but not detectable among patients with SLE. A meticulous annotation of C4 sequences revealed clusters of variations proximal to sites for protein processing, activation and inactivation, and binding of interacting molecules.
Collapse
Affiliation(s)
- Danlei Zhou
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH, United States.,Division of Rheumatology, Nationwide Children's Hospital, Columbus, OH, United States
| | - Michael Rudnicki
- Department of Internal Medicine IV - Nephrology and Hypertension, Medical University Innsbruck, Innsbruck, Austria
| | - Gilbert T Chua
- Department of Paediatrics and Adolescent Medicine, Queen Mary Hospital, The University of Hong Kong, Hong Kong, Hong Kong, SAR China
| | - Simon K Lawrance
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH, United States.,Department of Biology & Earth Science, Otterbein University, Westerville, OH, United States
| | - Bi Zhou
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH, United States.,Division of Rheumatology, Nationwide Children's Hospital, Columbus, OH, United States
| | - Joanne L Drew
- Division of Rheumatology, Nationwide Children's Hospital, Columbus, OH, United States
| | - Fatima Barbar-Smiley
- Division of Rheumatology, Nationwide Children's Hospital, Columbus, OH, United States.,Department of Pediatrics, The Ohio State University, Columbus, OH, United States
| | - Taylor K Armstrong
- Barbara Davis Center for Childhood Diabetes, University of Colorado, Aurora, CO, United States
| | - Miranda E Hilt
- Department of Biology & Earth Science, Otterbein University, Westerville, OH, United States
| | - Daniel J Birmingham
- Department of Internal Medicine, The Ohio State University, Columbus, OH, United States
| | - Werner Passler
- Division of Nephrology and Dialysis, City Hospital, Bolzano, Italy
| | - Jeffrey J Auletta
- Department of Pediatrics, The Ohio State University, Columbus, OH, United States.,Division of Hematology/Oncology, Nationwide Children's Hospital, Columbus, OH, United States
| | - Sasigarn A Bowden
- Department of Pediatrics, The Ohio State University, Columbus, OH, United States.,Division of Endocrinology, Nationwide Children's Hospital, Columbus, OH, United States
| | - Robert P Hoffman
- Department of Pediatrics, The Ohio State University, Columbus, OH, United States.,Division of Endocrinology, Nationwide Children's Hospital, Columbus, OH, United States
| | - Yee Ling Wu
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, IL, United States
| | - Wael N Jarjour
- Department of Internal Medicine, The Ohio State University, Columbus, OH, United States
| | - Chi Chiu Mok
- Department of Medicine, Tuen Mun Hospital, Hong Kong, Hong Kong, SAR China
| | - Stacy P Ardoin
- Division of Rheumatology, Nationwide Children's Hospital, Columbus, OH, United States.,Department of Pediatrics, The Ohio State University, Columbus, OH, United States.,Department of Internal Medicine, The Ohio State University, Columbus, OH, United States
| | - Yu Lung Lau
- Department of Paediatrics and Adolescent Medicine, Queen Mary Hospital, The University of Hong Kong, Hong Kong, Hong Kong, SAR China
| | - Chack Yung Yu
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH, United States.,Division of Rheumatology, Nationwide Children's Hospital, Columbus, OH, United States.,Department of Pediatrics, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
3
|
Khan A, Shang N, Petukhova L, Zhang J, Shen Y, Hebbring SJ, Moncrieffe H, Kottyan LC, Namjou-Khales B, Knevel R, Raychaudhuri S, Karlson EW, Harley JB, Stanaway IB, Crosslin D, Denny JC, Elkind MS, Gharavi AG, Hripcsak G, Weng C, Kiryluk K. Medical Records-Based Genetic Studies of the Complement System. J Am Soc Nephrol 2021; 32:2031-2047. [PMID: 33941608 PMCID: PMC8455263 DOI: 10.1681/asn.2020091371] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 03/09/2021] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Genetic variants in complement genes have been associated with a wide range of human disease states, but well-powered genetic association studies of complement activation have not been performed in large multiethnic cohorts. METHODS We performed medical records-based genome-wide and phenome-wide association studies for plasma C3 and C4 levels among participants of the Electronic Medical Records and Genomics (eMERGE) network. RESULTS In a GWAS for C3 levels in 3949 individuals, we detected two genome-wide significant loci: chr.1q31.3 (CFH locus; rs3753396-A; β=0.20; 95% CI, 0.14 to 0.25; P=1.52x10-11) and chr.19p13.3 (C3 locus; rs11569470-G; β=0.19; 95% CI, 0.13 to 0.24; P=1.29x10-8). These two loci explained approximately 2% of variance in C3 levels. GWAS for C4 levels involved 3998 individuals and revealed a genome-wide significant locus at chr.6p21.32 (C4 locus; rs3135353-C; β=0.40; 95% CI, 0.34 to 0.45; P=4.58x10-35). This locus explained approximately 13% of variance in C4 levels. The multiallelic copy number variant analysis defined two structural genomic C4 variants with large effect on blood C4 levels: C4-BS (β=-0.36; 95% CI, -0.42 to -0.30; P=2.98x10-22) and C4-AL-BS (β=0.25; 95% CI, 0.21 to 0.29; P=8.11x10-23). Overall, C4 levels were strongly correlated with copy numbers of C4A and C4B genes. In comprehensive phenome-wide association studies involving 102,138 eMERGE participants, we cataloged a full spectrum of autoimmune, cardiometabolic, and kidney diseases genetically related to systemic complement activation. CONCLUSIONS We discovered genetic determinants of plasma C3 and C4 levels using eMERGE genomic data linked to electronic medical records. Genetic variants regulating C3 and C4 levels have large effects and multiple clinical correlations across the spectrum of complement-related diseases in humans.
Collapse
Affiliation(s)
- Atlas Khan
- Division of Nephrology, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York
| | - Ning Shang
- Department of Biomedical Informatics, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York
| | - Lynn Petukhova
- Department of Dermatology, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, New York
| | - Jun Zhang
- Division of Nephrology, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York
| | - Yufeng Shen
- Department of Systems Biology, Vagelos College of Physicians and Surgeons, Columbia University Medical Center, New York, New York
| | - Scott J. Hebbring
- Center for Human Genetics, Marshfield Clinic Research Foundation, Marshfield, Wisconsin
| | - Halima Moncrieffe
- Department of Pediatrics, Center for Autoimmune Genomics and Etiology, Cincinnati Children’s Hospital Medical Center, University of Cincinnati, Cincinnati, Ohio
| | - Leah C. Kottyan
- Department of Pediatrics, Center for Autoimmune Genomics and Etiology, Cincinnati Children’s Hospital Medical Center, University of Cincinnati, Cincinnati, Ohio
| | - Bahram Namjou-Khales
- Department of Pediatrics, Center for Autoimmune Genomics and Etiology, Cincinnati Children’s Hospital Medical Center, University of Cincinnati, Cincinnati, Ohio
| | - Rachel Knevel
- Department of Rheumatology, Leiden University Medical Center, Leiden, The Netherlands
| | - Soumya Raychaudhuri
- Center for Data Sciences, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts
- Division of Rheumatology, Immunology, and Allergy, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts
- Division of Genetics, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts
- Department of Biomedical Informatics, Harvard Medical School, Boston, Massachusetts
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts
- Centre for Genetics and Genomics Versus Arthritis, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom
| | - Elizabeth W. Karlson
- Division of Rheumatology, Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts
| | - John B. Harley
- Department of Pediatrics, Center for Autoimmune Genomics and Etiology, Cincinnati Children’s Hospital Medical Center, University of Cincinnati, Cincinnati, Ohio
| | - Ian B. Stanaway
- Department of Biomedical Informatics Medical Education, School of Medicine, University of Washington, Seattle, Washington
| | - David Crosslin
- Department of Biomedical Informatics Medical Education, School of Medicine, University of Washington, Seattle, Washington
| | - Joshua C. Denny
- Department of Biomedical Informatics, Vanderbilt University, Nashville, Tennessee
| | - Mitchell S.V. Elkind
- Department of Neurology, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, New York
| | - Ali G. Gharavi
- Division of Nephrology, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York
| | - George Hripcsak
- Department of Biomedical Informatics, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York
| | - Chunhua Weng
- Department of Biomedical Informatics, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York
| | - Krzysztof Kiryluk
- Division of Nephrology, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York
| |
Collapse
|
4
|
Liesmaa I, Paakkanen R, Järvinen A, Valtonen V, Lokki ML. Clinical features of patients with homozygous complement C4A or C4B deficiency. PLoS One 2018; 13:e0199305. [PMID: 29928053 PMCID: PMC6013154 DOI: 10.1371/journal.pone.0199305] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 06/05/2018] [Indexed: 12/28/2022] Open
Abstract
INTRODUCTION Homozygous deficiencies of complement C4A or C4B are detected in 1-10% of populations. In genome-wide association studies C4 deficiencies are missed because the genetic variation of C4 is complex. There are no studies where the clinical presentation of these patients is analyzed. This study was aimed to characterize the clinical features of patients with homozygous C4A or C4B deficiency. MATERIAL AND METHODS Thirty-two patients with no functional C4A, 87 patients with no C4B and 120 with normal amount of C4 genes were included. C4A and C4B numbers were assessed with genomic quantitative real-time PCR. Medical history was studied retrospectively from patients' files. RESULTS Novel associations between homozygous C4A deficiency and lymphoma, coeliac disease and sarcoidosis were detected. These conditions were present in 12.5%, (4/32 in patients vs. 0.8%, 1/120, in controls, OR = 17.00, 95%CI = 1.83-158.04, p = 0.007), 12.5% (4/32 in patients vs. 0%, 0/120 in controls, OR = 1.14, 95%CI = 1.00-1.30, p = 0.002) and 12.5%, respectively (4/32 in patients vs. 2.5%, 3/120 in controls, OR = 5.571, 95%CI = 1.79-2.32, p = 0.036). In addition, C4A and C4B deficiencies were both associated with adverse drug reactions leading to drug discontinuation (34.4%, 11/32 in C4A-deficient patients vs. 14.2%, 17/120 in controls, OR = 3.174, 95%CI = 1.30-7.74, p = 0.009 and 28.7%, 25/87 in C4B-deficient patients, OR = 2.44, 95%CI = 1.22-4.88, p = 0.010). CONCLUSION This reported cohort of homozygous deficiencies of C4A or C4B suggests that C4 deficiencies may have various unrecorded disease associations. C4 gene should be considered as a candidate gene in studying these selected disease associations.
Collapse
Affiliation(s)
- Inka Liesmaa
- Division of Infectious Diseases, Inflammation Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- * E-mail:
| | - Riitta Paakkanen
- Transplantation Laboratory, Medicum, University of Helsinki, Helsinki, Finland
- Division of Cardiology, Department of Medicine, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Asko Järvinen
- Division of Infectious Diseases, Inflammation Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Ville Valtonen
- Division of Infectious Diseases, Inflammation Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Marja-Liisa Lokki
- Transplantation Laboratory, Medicum, University of Helsinki, Helsinki, Finland
| |
Collapse
|
5
|
Mizuno M, Suzuki Y, Ito Y. Complement regulation and kidney diseases: recent knowledge of the double-edged roles of complement activation in nephrology. Clin Exp Nephrol 2017; 22:3-14. [DOI: 10.1007/s10157-017-1405-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 03/14/2017] [Indexed: 12/28/2022]
|
6
|
Vignesh P, Rawat A, Sharma M, Singh S. Complement in autoimmune diseases. Clin Chim Acta 2017; 465:123-130. [PMID: 28040558 DOI: 10.1016/j.cca.2016.12.017] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 12/15/2016] [Accepted: 12/17/2016] [Indexed: 12/18/2022]
Abstract
The complement system is an ancient and evolutionary conserved element of the innate immune mechanism. It comprises of more than 20 serum proteins most of which are synthesized in the liver. These proteins are synthesized as inactive precursor proteins which are activated by appropriate stimuli. The activated forms of these proteins act as proteases and cleave other components successively in amplification pathways leading to exponential generation of final effectors. Three major pathways of complement pathways have been described, namely the classical, alternative and lectin pathways which are activated by different stimuli. However, all the 3 pathways converge on Complement C3. Cleavage of C3 and C5 successively leads to the production of the membrane attack complex which is final common effector. Excessive and uncontrolled activation of the complement has been implicated in the host of autoimmune diseases. But the complement has also been bemusedly described as the proverbial "double edged sword". On one hand, complement is the final effector of tissue injury in autoimmune diseases and on the other, deficiencies of some components of the complement can result in autoimmune diseases. Currently available tools such as enzyme based immunoassays for functional assessment of complement pathways, flow cytometry, next generation sequencing and proteomics-based approaches provide an exciting opportunity to study this ancient yet mysterious element of innate immunity.
Collapse
Affiliation(s)
- Pandiarajan Vignesh
- Pediatric Allergy and Immunology Unit, Dept. of Pediatrics, Advanced Pediatrics Centre, PGIMER, Chandigarh, India
| | - Amit Rawat
- Pediatric Allergy and Immunology Unit, Dept. of Pediatrics, Advanced Pediatrics Centre, PGIMER, Chandigarh, India.
| | - Madhubala Sharma
- Pediatric Allergy and Immunology Unit, Dept. of Pediatrics, Advanced Pediatrics Centre, PGIMER, Chandigarh, India
| | - Surjit Singh
- Pediatric Allergy and Immunology Unit, Dept. of Pediatrics, Advanced Pediatrics Centre, PGIMER, Chandigarh, India
| |
Collapse
|
7
|
Zhu B, Zhu CF, Lin Y, Perkovic V, Li XF, Yang R, Tang XL, Zhu XL, Cheng XX, Li Q, Chen HY, Sun Y, Chen QW, Wang YJ. Clinical characteristics of IgA nephropathy associated with low complement 4 levels. Ren Fail 2014; 37:424-32. [PMID: 25539484 DOI: 10.3109/0886022x.2014.994408] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
OBJECTIVE C4 deficiency is the most commonly inherited immune disorder in human. The present study investigated the characteristics of the IgAN patients with low serum C4 levels. METHODS We performed a prospective observational study. Clinical as well as histopathologic parameters were assessed. A Kaplan-Meier survival analysis was performed concerning the primary outcome defined as the serum creatinine increased 1.5-fold from baseline. The prognostic significances of clinical and histopathologic parameters were determined using Cox proportional hazards models. RESULTS Five-hundred twelve biopsy proven IgAN cases were available for analysis with a median follow-up of 38.4 months. Ninety-nine cases (19.34%) presented with low C4 levels (LowC4 group) and the other 413 cases did not (NlowC4 group). At the time of renal biopsy, renal injury was lighter in the LowC4 group compared with the NlowC4 group. Renal C4 deposition was significantly decreased while IgM deposition was increased in the LowC4 group. A correlation analysis shows that lower C4 levels were associated with better renal presentations at biopsy. However, the risk of developing the primary outcome was significantly greater in those with low C4 levels. Specifically, during the follow-up period, the risk of developing primary outcome was nearly ten folds higher in those with low C4, compared to those without low C4. CONCLUSION There is a high prevalence of low C4 levels in IgAN patients. These patients with low C4 levels exhibited better renal presentations at the time of renal biopsy, whereas might be associated with a poor prognosis.
Collapse
Affiliation(s)
- Bin Zhu
- Department of Nephrology, Hangzhou Hospital of Traditional Chinese Medicine (Guangxing Hospital), Zhejiang Chinese Medical University , Hangzhou, Zhejiang Province , China
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Zhang WW, He X, Lv XP, Li Y, Li HT, Luo R, Li CP, He M. Screening of differentially expressed serum proteins in patients with HBV-related liver fibrosis by iTRAQ combined with mass spectrometry. Shijie Huaren Xiaohua Zazhi 2012; 20:2789-2794. [DOI: 10.11569/wcjd.v20.i29.2789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To screen differentially expressed serum proteins in patients with hepatitis B virus (HBV)-related liver fibrosis using isobaric tags for relative and absolute quantitation (iTRAQ) combined with mass spectrometry.
METHODS: Thirty patients with HBV-related liver fibrosis and 30 healthy volunteers were selected, and their serum samples, after removal of 14 kinds of high-abundant proteins, were used for screening serum differentially expressed serum proteins using iTRAQ labeling and MALDI-TOF-MS. Differentially expressed serum proteins were then analyzed using biological methods.
RESULTS: A total of 274 serum proteins were identified in both healthy volunteers and patients with HBV-related liver fibrosis by mass spectrometry, of which 20 were differentially expressed between the two groups of subjects. Of the 20 differentially expressed serum proteins, 13 were up-regulated and 7 down-regulated. These differentially expressed proteins are involved in 48 biological processes, 8 cellular components, and 12 molecular pathways. APOC3, CLU, C4B, CRP, and APOE were found to be located in the connected nodes of the protein functional interaction network.
CONCLUSION: Serum proteins of APOC3, CLU, C4B, CRP and APOE may play an important role in the development and progression of HBV-related liver fibrosis.
Collapse
|
9
|
Yang X, Sun J, Gao Y, Tan A, Zhang H, Hu Y, Feng J, Qin X, Tao S, Chen Z, Kim ST, Peng T, Liao M, Lin X, Zhang Z, Tang M, Li L, Mo L, Liang Z, Shi D, Huang Z, Huang X, Liu M, Liu Q, Zhang S, Trent JM, Zheng SL, Xu J, Mo Z. Genome-wide association study for serum complement C3 and C4 levels in healthy Chinese subjects. PLoS Genet 2012; 8:e1002916. [PMID: 23028341 PMCID: PMC3441730 DOI: 10.1371/journal.pgen.1002916] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2012] [Accepted: 07/06/2012] [Indexed: 12/26/2022] Open
Abstract
Complement C3 and C4 play key roles in the main physiological activities of complement system, and their deficiencies or over-expression are associated with many clinical infectious or immunity diseases. A two-stage genome-wide association study (GWAS) was performed for serum levels of C3 and C4. The first stage was conducted in 1,999 healthy Chinese men, and the second stage was performed in an additional 1,496 subjects. We identified two SNPs, rs3753394 in CFH gene and rs3745567 in C3 gene, that are significantly associated with serum C3 levels at a genome-wide significance level (P = 7.33×10−11 and P = 1.83×10−9, respectively). For C4, one large genomic region on chromosome 6p21.3 is significantly associated with serum C4 levels. Two SNPs (rs1052693 and rs11575839) were located in the MHC class I area that include HLA-A, HLA-C, and HLA-B genes. Two SNPs (rs2075799 and rs2857009) were located 5′ and 3′ of C4 gene. The other four SNPs, rs2071278, rs3763317, rs9276606, and rs241428, were located in the MHC class II region that includes HLA-DRA, HLA-DRB, and HLA-DQB genes. The combined P-values for those eight SNPs ranged from 3.19×10−22 to 5.62×10−97. HBsAg-positive subjects have significantly lower C3 and C4 protein concentrations compared with HBsAg-negative subjects (P<0.05). Our study is the first GWAS report which shows genetic components influence the levels of complement C3 and C4. Our significant findings provide novel insights of their related autoimmune, infectious diseases, and molecular mechanisms. The complement system plays important roles in the innate and adaptive immune functions. C3 and C4 participate in almost all physiological activities and activated pathways as key complement members and host defense proteins. Identifying the genes that influence serum levels of C3 and C4 may help to elucidate the factors and mechanisms underlying the complement system. The genome-wide association studies (GWAS) have shown great success in revealing robust associations in both quantitative and qualitative traits. In this study, we performed a two-stage GWAS in a large cohort from the Chinese male population to examine the roles of common genetic variants on serum C3 and C4 levels. Our research identified genetic determinants associated with the quantitative levels of C3 and C4. Overall, our study highlights an intricate regulation of complement levels and potentially reveals novel mechanisms that may be followed up with additional functional studies.
Collapse
Affiliation(s)
- Xiaobo Yang
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
- Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi, China
| | - Jielin Sun
- Center for Cancer Genomics, Wake Forest University School of Medicine, Winston-Salem, North Carolina, United States of America
| | - Yong Gao
- Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi, China
- Fudan-VARI Center for Genetic Epidemiology, School of Life Sciences, Fudan University, Shanghai, China
| | - Aihua Tan
- Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi, China
| | - Haiying Zhang
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
- Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi, China
| | - Yanling Hu
- Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi, China
- Medical Scientific Research Center, Guangxi Medical University, Nanning, Guangxi, China
| | - Junjie Feng
- Center for Cancer Genomics, Wake Forest University School of Medicine, Winston-Salem, North Carolina, United States of America
| | - Xue Qin
- Department of Clinical Laboratory, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Sha Tao
- Center for Cancer Genomics, Wake Forest University School of Medicine, Winston-Salem, North Carolina, United States of America
| | - Zhuo Chen
- Center for Cancer Genomics, Wake Forest University School of Medicine, Winston-Salem, North Carolina, United States of America
| | - Seong-Tae Kim
- Center for Cancer Genomics, Wake Forest University School of Medicine, Winston-Salem, North Carolina, United States of America
| | - Tao Peng
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
- Laboratory of Genomic Diversity, National Cancer Institute, National Institutes of Health, Frederick, Maryland, United States of America
| | - Ming Liao
- Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi, China
| | - Xiaoling Lin
- Fudan-VARI Center for Genetic Epidemiology, School of Life Sciences, Fudan University, Shanghai, China
| | - Zengfeng Zhang
- Department of Microbiology, School of Preclinical Medicine, Guangxi Medical University, Nanning, Guangxi, China
| | - Minzhong Tang
- College of Life Science and Bioengineering, Beijing University of Technology, Beijing, China
| | - Li Li
- Medical Scientific Research Center, Guangxi Medical University, Nanning, Guangxi, China
| | - Linjian Mo
- Institute of Urology and Nephrology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Zhengjia Liang
- Medical Examination Center, Fangchenggang First People's Hospital, Fangchenggang, Guangxi, China
| | - Deyi Shi
- Medical Examination Center, Fangchenggang First People's Hospital, Fangchenggang, Guangxi, China
| | - Zhang Huang
- Medical Examination Center, Fangchenggang First People's Hospital, Fangchenggang, Guangxi, China
| | - Xianghua Huang
- Medical Examination Center, Guigang People's Hospital, Guigang, Guangxi, China
| | - Ming Liu
- Medical Examination Center, Yulin First People's Hospital, Yulin, Guangxi, China
| | - Qian Liu
- Institute of Cardiovascular Diseases, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Shijun Zhang
- Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi, China
| | - Jeffrey M. Trent
- Center for Genetic Epidemiology, Van Andel Research Institute, Grand Rapids, Michigan, United States of America
| | - S. Lilly Zheng
- Center for Cancer Genomics, Wake Forest University School of Medicine, Winston-Salem, North Carolina, United States of America
| | - Jianfeng Xu
- Center for Cancer Genomics, Wake Forest University School of Medicine, Winston-Salem, North Carolina, United States of America
- Fudan-VARI Center for Genetic Epidemiology, School of Life Sciences, Fudan University, Shanghai, China
- Center for Genetic Epidemiology, Van Andel Research Institute, Grand Rapids, Michigan, United States of America
- Fudan University Institute of Urology, Huashan Hospital, Fudan University, Shanghai, China
| | - Zengnan Mo
- Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi, China
- Institute of Urology and Nephrology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
- * E-mail:
| |
Collapse
|
10
|
Boteva L, Morris D, Cortés-Hernández J, Martin J, Vyse T, Fernando M. Genetically determined partial complement C4 deficiency states are not independent risk factors for SLE in UK and Spanish populations. Am J Hum Genet 2012; 90:445-56. [PMID: 22387014 PMCID: PMC3309188 DOI: 10.1016/j.ajhg.2012.01.012] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2011] [Revised: 12/08/2011] [Accepted: 01/17/2012] [Indexed: 10/28/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is a chronic, multisystem autoimmune disease. Complete deficiency of complement component C4 confers strong genetic risk for SLE. Partial C4 deficiency states have also shown association with SLE, but despite much effort over the last 30 years, it has not been established whether this association is primarily causal or secondary to long-range linkage disequilibrium. The complement C4 locus, located in the major histocompatibility complex (MHC) class III region, exhibits copy-number variation (CNV) and C4 itself exists as two paralogs, C4A and C4B. In order to determine whether partial C4 deficiency is an independent genetic risk factor for SLE, we investigated C4 CNV in the context of HLA-DRB1 and MHC region SNP polymorphism in the largest and most comprehensive complement C4 study to date. Specifically, we genotyped 2,207 subjects of northern and southern European ancestry (1,028 SLE cases and 1,179 controls) for total C4, C4A, and C4B gene copy numbers, and the loss-of-function C4 exon 29 CT indel. We used multiple logistic regression to determine the independence of C4 CNV from known SNP and HLA-DRB1 associations. We clearly demonstrate that genetically determined partial C4 deficiency states are not independent risk factors for SLE in UK and Spanish populations. These results are further corroborated by the lack of association shown by the C4A exon 29 CT insertion in either cohort. Thus, although complete homozygous deficiency of complement C4 is one of the strongest genetic risk factors for SLE, partial C4 deficiency states do not independently predispose to the disease.
Collapse
Affiliation(s)
- Lora Boteva
- Division of Genetics and Molecular Medicine and Division of Immunology, Infection and Inflammatory Disease, Guy's Hospital, King's College London, London SE1 9RT, UK
| | - David L. Morris
- Division of Genetics and Molecular Medicine and Division of Immunology, Infection and Inflammatory Disease, Guy's Hospital, King's College London, London SE1 9RT, UK
| | - Josefina Cortés-Hernández
- Autoimmune Disease Research Unit, Vall d'Hebron University Hospital Research Institute, Universitat Autonoma, 08035 Barcelona, Spain
| | - Javier Martin
- Instituto de Parasitologia y Biomedicina “Lopez-Neyra,” Instituto de Parasitología y Biomedicina López-Neyra-Consejo Superior de Investigaciones Cientificas, 18100 Armilla, Granada, Spain
| | - Timothy J. Vyse
- Division of Genetics and Molecular Medicine and Division of Immunology, Infection and Inflammatory Disease, Guy's Hospital, King's College London, London SE1 9RT, UK
| | - Michelle M.A. Fernando
- Division of Genetics and Molecular Medicine and Division of Immunology, Infection and Inflammatory Disease, Guy's Hospital, King's College London, London SE1 9RT, UK
| |
Collapse
|