1
|
Rivet V, Riviere S, Goulabchand R, Suzon B, Henneton P, Partouche L, Rullier P, Quellec AL, Konate A, Schiffmann A, Vincent T, Ziane R, Flori N, Picot MC, Sultan A, Maria ATJ, Guilpain P. High prevalence of malnutrition in systemic sclerosis: Results from a French monocentric cross-sectional study. Nutrition 2023; 116:112171. [PMID: 37837826 DOI: 10.1016/j.nut.2023.112171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 07/08/2023] [Accepted: 07/23/2023] [Indexed: 10/16/2023]
Abstract
OBJECTIVES Systemic sclerosis (SSc) can cause malnutrition due to frequent gastrointestinal involvement. However, prevalence of malnutrition in SSc is poorly known. The aim of this study was to evaluate the prevalence of malnutrition in SSc and its potential associations with disease features in patients from a tertiary referral center. METHODS All patients meeting American College of Rheumatology/European Alliance of Associations for Rheumatology criteria for SSc followed between January 1, 1985, and January 1, 2019, at the Department of Internal Medicine, Saint Eloi University Hospital, were included. Malnutrition was assessed using the 2020 French recommendations for SSc and the malnutrition universal screening tool score. Severe malnutrition was defined via the French Haute Autorité de Santé (National Health Authority) 2007 criteria. RESULTS A total of 120 patients were included, with mean age 64 (± 15) y and a female-to-male sex ratio of 5:1. According to 2020 French recommendations, 71 patients (59.2%) were malnourished and 30 (25%) had at least one criterion of severe malnutrition. With the malnutrition universal screening tool score, 41.7%, 20%, and 38.3%, respectively, had low, medium, and high risk of malnutrition. Multivariate analysis revealed the following results: 1) malnutrition was associated with cardiac involvement (P < 0.01); 2) a high malnutrition universal screening tool score was also associated with specific cardiac involvement (P < 0.01); and 3) severe malnutrition was strongly correlated with interincisal distance <35 mm (P = 0.02). CONCLUSIONS Malnutrition affects more than half of SSc patients and is associated with specific cardiac involvement. Interincisal distance <35 mm could be a red flag for severe malnutrition in SSc.
Collapse
Affiliation(s)
- Valérian Rivet
- Internal Medicine and Immunopathology Departement, Cancer University of Toulouse Oncopole, University Hospital Center of Toulouse, Toulouse, France
| | - Sophie Riviere
- Department of Internal Medicine: Multi-Organic Diseases, Saint-Eloi Hospital, University Hospital Center of Montpellier, Montpellier, France
| | - Radjiv Goulabchand
- Montpellier University Hospital, Montpellier, France; Departement of Internal Medicine, University Hospital Center of Nîmes, Nîmes, France
| | - Benoît Suzon
- Department of Internal Medicine, University Hospital of Martinique, Fort-de-France, Martine, France
| | - Pierrick Henneton
- Montpellier University Hospital, Montpellier, France; Vascular Department of Internal Medicine, Saint-Eloi Hospital, University Hospital Center of Montpellier, Montpellier, France
| | - Léo Partouche
- Department of Internal Medicine: Multi-Organic Diseases, Saint-Eloi Hospital, University Hospital Center of Montpellier, Montpellier, France
| | - Patricia Rullier
- Department of Internal Medicine: Multi-Organic Diseases, Saint-Eloi Hospital, University Hospital Center of Montpellier, Montpellier, France
| | - Alain Le Quellec
- Department of Internal Medicine: Multi-Organic Diseases, Saint-Eloi Hospital, University Hospital Center of Montpellier, Montpellier, France; Montpellier University Hospital, Montpellier, France
| | - Amadou Konate
- Department of Internal Medicine: Multi-Organic Diseases, Saint-Eloi Hospital, University Hospital Center of Montpellier, Montpellier, France
| | - Aurélie Schiffmann
- Department of Internal Medicine: Multi-Organic Diseases, Saint-Eloi Hospital, University Hospital Center of Montpellier, Montpellier, France
| | - Thierry Vincent
- Immunology Laboratory, Department of Immunology, Saint-Eloi Hospital, CHRU Montpellier, France
| | - Rahima Ziane
- Department of Internal Medicine: Multi-Organic Diseases, Saint-Eloi Hospital, University Hospital Center of Montpellier, Montpellier, France
| | - Nicolas Flori
- Gastroenterology Unit, Department of Gastroenterology and Nutrition, Cancer Institute of Montpellier, Montpellier, France
| | - Marie Christine Picot
- Montpellier University Hospital, Montpellier, France; Clinical Research and Epidemiology Unit, Medical Information Department, INSERM, Clinical Investigator Center, University Hospital Center of Montpellier, Montpellier, France
| | - Ariane Sultan
- Montpellier University Hospital, Montpellier, France; Diabetes Nutrition Unit, Endocrinology Department, Lapeyronie Hospital, University Hospital Center of Montpellier, Montpellier, France; PhyMedExp, Montpellier University, INSERM, CNRS, University Hospital Center of Montpellier, Montpellier, France
| | - Alexandre Thibaut Jacques Maria
- Department of Internal Medicine: Multi-Organic Diseases, Saint-Eloi Hospital, University Hospital Center of Montpellier, Montpellier, France; Montpellier University Hospital, Montpellier, France; Department of Internal Medicine and Immuno-Oncology (MEDI²O), Institute for Regenerative Medicine and Biotherapy (IRMB), Saint-Eloi Hospital, University Hospital Center of Montpellier, Montpellier, France.
| | - Philippe Guilpain
- Department of Internal Medicine: Multi-Organic Diseases, Saint-Eloi Hospital, University Hospital Center of Montpellier, Montpellier, France; Montpellier University Hospital, Montpellier, France
| |
Collapse
|
2
|
RuizdelRio J, Muñoz P, Carreira P, Maestro D, Pablos JL, Palanca A, Merino J, Serrano-Mollar A, Merino R, Tamayo E, Lopez-Hoyos M, Diaz-Gonzalez F, Martinez-Taboada V, Villar AV. Profibrotic Role of Inducible Heat Shock Protein 90α Isoform in Systemic Sclerosis. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 209:38-48. [PMID: 35715007 DOI: 10.4049/jimmunol.2100430] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 04/22/2022] [Indexed: 11/19/2022]
Abstract
Systemic sclerosis (SSc) is an autoimmune disease that affects skin and multiple internal organs. TGF-β, a central trigger of cutaneous fibrosis, activates fibroblasts with the involvement of the stress-inducible chaperone heat shock protein 90 isoform α (Hsp90α). Available evidence supports overexpression and secretion of Hsp90α as a feature in profibrotic pathological conditions. The aim of this work is to investigate the expression and function of Hsp90α in experimental models of skin fibrosis such as human fibroblasts, C57BL/6 mice, and in human SSc. For this purpose, we generated a new experimental model based on doxorubicin administration with improved characteristics with respect to the bleomycin model. We visualized disease progression in vivo by fluorescence imaging. In this work, we obtained Hsp90α mRNA overexpression in human skin fibroblasts, in bleomycin- and doxorubicin-induced mouse fibrotic skin, and in lungs of bleomycin- and doxorubicin-treated mice. Hsp90α-deficient mice showed significantly decreased skin thickness compared with wild-type mice in both animal models. In SSc patients, serum Hsp90α levels were increased in patients with lung involvement and in patients with the diffuse form of SSc (dSSc) compared with patients with the limited form of SSc. The serum Hsp90α levels of patients dSSc were correlated with the Rodnan score and the forced vital capacity variable. These results provide new supportive evidence of the contribution of the Hsp90α isoform in the development of skin fibrosis. In SSc, these results indicated that higher serum levels were associated with dSSc and lung fibrosis.
Collapse
Affiliation(s)
- Jorge RuizdelRio
- Instituto de Biomedicina y Biotecnología de Cantabria, Consejo Superior de Investigaciones Científicas-Universidad de Cantabria, Santander, Spain.,Instituto de Investigación Marqués de Valdecilla (IDIVAL), Santander, Spain
| | - Pedro Muñoz
- Gerencia Atención Primaria, Servicio Cántabro de Salud, Santander, Spain
| | - Patricia Carreira
- Servicio de Reumatología, Instituto de Investigación Hospital 12 de Octubre (i+12), Madrid, Spain
| | - David Maestro
- Instituto de Biomedicina y Biotecnología de Cantabria, Consejo Superior de Investigaciones Científicas-Universidad de Cantabria, Santander, Spain.,Instituto de Investigación Marqués de Valdecilla (IDIVAL), Santander, Spain
| | - Jose L Pablos
- Servicio de Reumatología, Instituto de Investigación Hospital 12 de Octubre (i+12), Madrid, Spain
| | - Ana Palanca
- Instituto de Investigación Marqués de Valdecilla (IDIVAL), Santander, Spain.,Departamento de Anatomía y Biología Celular, Universidad de Cantabria, Santander, Spain
| | - Jesus Merino
- Instituto de Investigación Marqués de Valdecilla (IDIVAL), Santander, Spain.,Departamento de Biología Molecular, Universidad de Cantabria, Santander, Spain
| | - Anna Serrano-Mollar
- Departamento de Patología Experimental, Instituto de Investigaciones Biomédicas de Barcelona (IIBB-CSIC-IDIBAPS), Barcelona, Spain.,Centro de Investigaciones Biomédicas en Red de Enfermedades Respiratorias, Madrid, Spain
| | - Ramon Merino
- Instituto de Biomedicina y Biotecnología de Cantabria, Consejo Superior de Investigaciones Científicas-Universidad de Cantabria, Santander, Spain.,Departamento de Biología Molecular, Universidad de Cantabria, Santander, Spain.,SODERCAN, Santander, Spain
| | - Esther Tamayo
- Departamento de Biología Molecular, Universidad de Cantabria, Santander, Spain
| | - Marcos Lopez-Hoyos
- Servicio de Inmunología, Hospital Universitario Marqués de Valdecilla, Santander, Spain
| | - Federico Diaz-Gonzalez
- Facultad de Medicina, Universidad de La Laguna, Servicio de Reumatología, Hospital Universitario de Canarias, La Laguna, Santa Cruz de Tenerife, Spain
| | - Victor Martinez-Taboada
- Servicio de Reumatología, Hospital Universitario Marqués de Valdecilla, IDIVAL, Facultad de Medicina, Universidad de Cantabria, Santander, Spain; and
| | - Ana V Villar
- Instituto de Biomedicina y Biotecnología de Cantabria, Consejo Superior de Investigaciones Científicas-Universidad de Cantabria, Santander, Spain; .,Instituto de Investigación Marqués de Valdecilla (IDIVAL), Santander, Spain.,Departamento de Fisiología y Farmacología, Universidad de Cantabria, Santander, Spain
| |
Collapse
|
3
|
Barriga M, Benitez R, Robledo G, Caro M, O'Valle F, Campos-Salinas J, Delgado M. Neuropeptide Cortistatin Regulates Dermal and Pulmonary Fibrosis in an Experimental Model of Systemic Sclerosis. Neuroendocrinology 2022; 112:784-795. [PMID: 34649259 DOI: 10.1159/000520194] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 10/13/2021] [Indexed: 11/19/2022]
Abstract
INTRODUCTION Scleroderma, or systemic sclerosis, is a complex connective tissue disorder characterized by autoimmunity, vasculopathy, and progressive fibrosis of the skin and internal organs. Because its aetiology is unknown, the identification of genes/factors involved in disease severity, differential clinical forms, and associated complications is critical for understanding its pathogenesis and designing novel treatments. Neuroendocrine mediators in the skin emerge as potential candidates. We investigated the role played by the neuropeptide cortistatin in a preclinical model of scleroderma. METHODS Dermal fibrosis was induced by repetitive intradermal injections of bleomycin in wild-type and cortistatin-deficient mice. The histopathological signs and expression of fibrotic markers were evaluated in the skin and lungs. RESULTS An inverse correlation between cortistatin levels and fibrogenic activation exists in the damaged skin and dermal fibroblasts. Bleomycin-challenged skin lesions of mice that are partially and totally deficient in cortistatin showed exacerbated histopathological signs of scleroderma, characterized by thicker and more fibrotic dermal layer, enlarged epidermis, and increased inflammatory infiltration in comparison to those of wild-type mice. Cortistatin deficiency enhanced dermal collagen deposits, connective tissue growth factor expression, loss of microvessels, and predisposition to suffer severe complications that co-occur with dermal exposition to bleomycin, including pulmonary fibrotic disease and increased mortality. Treatment with cortistatin mitigated these pathological processes. DISCUSSION/CONCLUSION We identify cortistatin as an endogenous break of skin inflammation and fibrosis. Deficiency in cortistatin could be a marker of poor prognosis of scleroderma and associated complications. Cortistatin-based therapies emerge as attractive candidates to treat severe forms of systemic sclerosis and to manage fibrosis-related side effects of bleomycin chemotherapy in oncologic patients.
Collapse
Affiliation(s)
- Margarita Barriga
- Institute of Parasitology and Biomedicine Lopez-Neyra IPBLN-CSIC, Granada, Spain
| | - Raquel Benitez
- Institute of Parasitology and Biomedicine Lopez-Neyra IPBLN-CSIC, Granada, Spain
| | - Gema Robledo
- Institute of Parasitology and Biomedicine Lopez-Neyra IPBLN-CSIC, Granada, Spain
| | - Marta Caro
- Institute of Parasitology and Biomedicine Lopez-Neyra IPBLN-CSIC, Granada, Spain
| | - Francisco O'Valle
- Pathology Department, School of Medicine, IBIMER, CIBM, University of Granada and Biosanitary Research Institute IBS-Granada, Granada, Spain
| | - Jenny Campos-Salinas
- Institute of Parasitology and Biomedicine Lopez-Neyra IPBLN-CSIC, Granada, Spain
| | - Mario Delgado
- Institute of Parasitology and Biomedicine Lopez-Neyra IPBLN-CSIC, Granada, Spain
| |
Collapse
|
4
|
Regulatory Peptides in Asthma. Int J Mol Sci 2021; 22:ijms222413656. [PMID: 34948451 PMCID: PMC8707337 DOI: 10.3390/ijms222413656] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 12/18/2021] [Accepted: 12/19/2021] [Indexed: 02/07/2023] Open
Abstract
Numerous regulatory peptides play a critical role in the pathogenesis of airway inflammation, airflow obstruction and hyperresponsiveness, which are hallmarks of asthma. Some of them exacerbate asthma symptoms, such as neuropeptide Y and tachykinins, while others have ameliorating properties, such as nociception, neurotensin or β-defensin 2. Interacting with peptide receptors located in the lungs or on immune cells opens up new therapeutic possibilities for the treatment of asthma, especially when it is resistant to available therapies. This article provides a concise review of the most important and current findings regarding the involvement of regulatory peptides in asthma pathology.
Collapse
|
5
|
Hinchcliff M, Garcia-Milian R, Di Donato S, Dill K, Bundschuh E, Galdo FD. Cellular and Molecular Diversity in Scleroderma. Semin Immunol 2021; 58:101648. [PMID: 35940960 DOI: 10.1016/j.smim.2022.101648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
With the increasing armamentarium of high-throughput tools available at manageable cost, it is attractive and informative to determine the molecular underpinnings of patient heterogeneity in systemic sclerosis (SSc). Given the highly variable clinical outcomes of patients labelled with the same diagnosis, unravelling the cellular and molecular basis of disease heterogeneity will be crucial to predicting disease risk, stratifying management and ultimately informing a patient-centered precision medicine approach. Herein, we summarise the findings of the past several years in the fields of genomics, transcriptomics, and proteomics that contribute to unraveling the cellular and molecular heterogeneity of SSc. Expansion of these findings and their routine integration with quantitative analysis of histopathology and imaging studies into clinical care promise to inform a scientifically driven patient-centred personalized medicine approach to SSc in the near future.
Collapse
Affiliation(s)
- Monique Hinchcliff
- Yale School of Medicine, Department of Internal Medicine, Section of Rheumatology, Allergy & Immunology, USA.
| | | | - Stefano Di Donato
- Raynaud's and Scleroderma Programme, Leeds Institute of Rheumatic and Musculoskeletal Medicine and NIHR Biomedical Research Centre, University of Leeds, UK
| | | | - Elizabeth Bundschuh
- Yale School of Medicine, Department of Internal Medicine, Section of Rheumatology, Allergy & Immunology, USA
| | - Francesco Del Galdo
- Raynaud's and Scleroderma Programme, Leeds Institute of Rheumatic and Musculoskeletal Medicine and NIHR Biomedical Research Centre, University of Leeds, UK.
| |
Collapse
|
6
|
Stoyanova I, Lutz D. Ghrelin-Mediated Regeneration and Plasticity After Nervous System Injury. Front Cell Dev Biol 2021; 9:595914. [PMID: 33869167 PMCID: PMC8046019 DOI: 10.3389/fcell.2021.595914] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 02/24/2021] [Indexed: 12/17/2022] Open
Abstract
The nervous system is highly vulnerable to different factors which may cause injury followed by an acute or chronic neurodegeneration. Injury involves a loss of extracellular matrix integrity, neuronal circuitry disintegration, and impairment of synaptic activity and plasticity. Application of pleiotropic molecules initiating extracellular matrix reorganization and stimulating neuronal plasticity could prevent propagation of the degeneration into the tissue surrounding the injury. To find an omnipotent therapeutic molecule, however, seems to be a fairly ambitious task, given the complex demands of the regenerating nervous system that need to be fulfilled. Among the vast number of candidates examined so far, the neuropeptide and hormone ghrelin holds within a very promising therapeutic potential with its ability to cross the blood-brain barrier, to balance metabolic processes, and to stimulate neurorepair and neuroactivity. Compared with its well-established systemic effects in treatment of metabolism-related disorders, the therapeutic potential of ghrelin on neuroregeneration upon injury has received lesser appreciation though. Here, we discuss emerging concepts of ghrelin as an omnipotent player unleashing developmentally related molecular cues and morphogenic cascades, which could attenuate and/or counteract acute and chronic neurodegeneration.
Collapse
Affiliation(s)
- Irina Stoyanova
- Department of Anatomy and Cell Biology, Medical University Varna, Varna, Bulgaria
| | - David Lutz
- Department of Neuroanatomy and Molecular Brain Research, Ruhr University Bochum, Bochum, Germany
| |
Collapse
|
7
|
Zhou M, Aziz M, Ochani M, Wang P. Correction of immunosuppression in aged septic rats by human ghrelin and growth hormone through the vagus nerve-dependent inhibition of TGF-β production. Mol Med 2020; 26:71. [PMID: 32677895 PMCID: PMC7364485 DOI: 10.1186/s10020-020-00195-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 07/03/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Co-administration of human ghrelin and growth hormone (GH) reverse immunosuppression in septic aged animals, but the mechanism remains elusive. Here, we hypothesize that ghrelin and GH co-treatment restores the immune response in aged septic rats by inhibiting the production of transforming growth factor-β (TGF-β), an immunoregulatory cytokine, through the vagus nerve. METHODS Male aged Fischer rats (22-23-month-old) were made septic by cecal ligation and puncture (CLP) with or without dissecting the vagus nerve (vagotomy). Human ghrelin and GH or vehicle (PBS) were administrated subcutaneously at 5 h post CLP. After 20 h of CLP, serum and spleens were harvested. RESULTS Serum TGF-β levels were increased in septic aged rats, while ghrelin and GH treatment significantly reduced its levels. Expression of TGF-β in the spleen was upregulated after sepsis, while ghrelin and GH treatment significantly inhibited its expression. TNF-α and IL-6 levels were significantly reduced after ex vivo LPS stimulation of splenocytes from rats that underwent CLP compared to sham rats; while these levels were significantly higher in splenocytes from ghrelin and GH-treated CLP rats compared to vehicle-treated CLP rats. Ghrelin and GH treatment reduced program death receptor-1 (PD-1) expression, increased human leukocyte antigen-DR (HLA-DR) expression, attenuated lymphopenia, and cleaved caspase-3 levels in the spleen of septic aged rats. Vagotomy diminished the beneficial effects of ghrelin and GH treatment in septic rats. In vitro, the addition of ghrelin, GH, or ghrelin and GH together had no effect on restoring immune response in splenocytes from CLP rats following LPS stimulation, indicating the requirement of the vagus nerve for ghrelin and GH's effect. CONCLUSIONS Ghrelin and GH attenuate immunosuppression in aged septic rats through the vagus nerve-dependent inhibition of TGF-β production.
Collapse
Affiliation(s)
- Mian Zhou
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, Manhasset, New York USA
| | - Monowar Aziz
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, Manhasset, New York USA
| | - Mahendar Ochani
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, Manhasset, New York USA
| | - Ping Wang
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, Manhasset, New York USA
- Departments of Surgery and Molecular Medicine, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Manhasset, New York USA
| |
Collapse
|
8
|
Abstract
Ghrelin, a gastric-derived acylated peptide, regulates energy homeostasis by transmitting information about peripheral nutritional status to the brain, and is essential for protecting organisms against famine. Ghrelin operates brain circuits to regulate homeostatic and hedonic feeding. Recent research advances have shed new light on ghrelin's multifaceted roles in cellular homeostasis, which could maintain the internal environment and overcome metaflammation in metabolic organs. Here, we highlight our current understanding of the regulatory mechanisms of the ghrelin system in energy metabolism and cellular homeostasis and its clinical trials. Future studies of ghrelin will further elucidate how the stomach regulates systemic homeostasis.
Collapse
Affiliation(s)
- Shigehisa Yanagi
- Divisions of Neurology, Respirology, Endocrinology and Metabolism, Department of Internal Medicine, Faculty of Medicine, University of Miyazaki, Kiyotake, Miyazaki 889-1692, Japan
| | - Takahiro Sato
- Molecular Genetics, Institute of Life Science, Kurume University, Kurume 839-0864, Japan
| | - Kenji Kangawa
- Department of Biochemistry, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka 565-8565, Japan
| | - Masamitsu Nakazato
- Divisions of Neurology, Respirology, Endocrinology and Metabolism, Department of Internal Medicine, Faculty of Medicine, University of Miyazaki, Kiyotake, Miyazaki 889-1692, Japan; AMED-CREST, Japan Agency for Medical Research and Development, Chiyoda-ku, Tokyo 100-0004, Japan.
| |
Collapse
|
9
|
Valatas V, Filidou E, Drygiannakis I, Kolios G. Stromal and immune cells in gut fibrosis: the myofibroblast and the scarface. Ann Gastroenterol 2017; 30:393-404. [PMID: 28655975 PMCID: PMC5479991 DOI: 10.20524/aog.2017.0146] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Accepted: 03/19/2017] [Indexed: 02/07/2023] Open
Abstract
Post-inflammatory scarring is the end-result of excessive extracellular matrix (ECM) accumulation and tissue architectural destruction. It represents a failure to effectively remodel ECM and achieve proper reinstitution and healing during chronic relapsing inflammatory processes. Scarring may affect the functionality of any organ, and in the case of inflammatory bowel disease (IBD)-associated fibrosis leads to stricture formation and often surgery to remove the affected bowel. The activated myofibroblast is the final effector cell that overproduces ECM under the influence of various mediators generated by an intense interplay of classic and non-classic immune cells. This review focuses on how proinflammatory mediators from various sources produced in different stages of intestinal inflammation can form profibrotic pathways that eventually lead to tissue scarring through sustained activation of myofibroblasts.
Collapse
Affiliation(s)
- Vassilis Valatas
- Laboratory of Gastroenterology, Faculty of Medicine, University of Crete, Heraklion (Vassilis Valatas, Ioannis Drygiannakis)
| | - Eirini Filidou
- Laboratory of Pharmacology, School of Medicine, Democritus University of Thrace, Dragana, Alexandroupolis (Eirini Filidou, George Kolios), Greece
| | - Ioannis Drygiannakis
- Laboratory of Gastroenterology, Faculty of Medicine, University of Crete, Heraklion (Vassilis Valatas, Ioannis Drygiannakis)
| | - George Kolios
- Laboratory of Pharmacology, School of Medicine, Democritus University of Thrace, Dragana, Alexandroupolis (Eirini Filidou, George Kolios), Greece
| |
Collapse
|
10
|
Lichtman MK, Otero-Vinas M, Falanga V. Transforming growth factor beta (TGF-β) isoforms in wound healing and fibrosis. Wound Repair Regen 2016; 24:215-22. [PMID: 26704519 DOI: 10.1111/wrr.12398] [Citation(s) in RCA: 403] [Impact Index Per Article: 44.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Revised: 11/19/2015] [Accepted: 12/22/2015] [Indexed: 12/12/2022]
Abstract
Scar formation, with persistent alteration of the normal tissue structure, is an undesirable and significant result of both wound healing and fibrosing disorders. There are few strategies to prevent or to treat scarring. The transforming growth factor beta (TGF-β) superfamily is an important mediator of tissue repair. Each TGF-β isoform may exert a different effect on wound healing, which may be context-dependent. In particular, TGF-β1 may mediate fibrosis in adults' wounds, while TGF-β3 may promote scarless healing in the fetus and reduced scarring in adults. Thus, TGF-β3 may offer a scar-reducing therapy for acute and chronic wounds and fibrosing disorders.
Collapse
Affiliation(s)
- Michael K Lichtman
- Department of Dermatology, Boston University School of Medicine, Boston, Massachusetts.,Veterans' Administration, Boston Healthcare System, Division of Dermatology, Boston University School of Medicine, Boston, Massachusetts
| | - Marta Otero-Vinas
- Department of Dermatology, Boston University School of Medicine, Boston, Massachusetts.,Department of Systems Biology, The Tissue Repair and Regeneration Laboratory, University of Vic-Central University of Catalonia, Vic, Spain
| | - Vincent Falanga
- Department of Dermatology, Boston University School of Medicine, Boston, Massachusetts.,Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts
| |
Collapse
|
11
|
Higuchi T, Kawaguchi Y, Takagi K, Tochimoto A, Ota Y, Katsumata Y, Ichida H, Hanaoka M, Kawasumi H, Tochihara M, Yamanaka H. Sildenafil attenuates the fibrotic phenotype of skin fibroblasts in patients with systemic sclerosis. Clin Immunol 2015; 161:333-8. [PMID: 26387628 DOI: 10.1016/j.clim.2015.09.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Revised: 09/15/2015] [Accepted: 09/16/2015] [Indexed: 01/22/2023]
Abstract
Systemic sclerosis (SSc) is a multi-organ fibrotic disease that affects the skin and various internal organs. Therapeutic strategies for tissue fibrosis have not been established; however, aberrantly activated fibroblasts in affected lesions are key targets for modulating fibrosis. Recently, increased intracellular cyclic GMP (cGMP) levels were demonstrated to improve fibrosis levels in various diseases. The purpose of this study was to assess the anti-fibrotic properties of cGMP in cultured fibroblasts from patients with SSc. The phosphodiesterase (PDE) 5 inhibitor sildenafil increased the intracellular cGMP levels in skin fibroblasts in a dose-dependent manner. Sildenafil treatment also significantly decreased the expression of several pro-fibrotic factors that were upregulated by TGF-β1 treatment in SSc skin fibroblasts. These inhibitory effects occurred via non-canonical TGF-β signaling. Our findings revealed that sildenafil might be a novel strategy to treat tissue fibrosis and vasculopathy in SSc.
Collapse
Affiliation(s)
- Tomoaki Higuchi
- Institute of Rheumatology, Tokyo Women's Medical University, 10-22 Kawada-cho, Shinjuku-ku, Tokyo 162-0054, Japan
| | - Yasushi Kawaguchi
- Institute of Rheumatology, Tokyo Women's Medical University, 10-22 Kawada-cho, Shinjuku-ku, Tokyo 162-0054, Japan.
| | - Kae Takagi
- Institute of Rheumatology, Tokyo Women's Medical University, 10-22 Kawada-cho, Shinjuku-ku, Tokyo 162-0054, Japan
| | - Akiko Tochimoto
- Institute of Rheumatology, Tokyo Women's Medical University, 10-22 Kawada-cho, Shinjuku-ku, Tokyo 162-0054, Japan
| | - Yuko Ota
- Institute of Rheumatology, Tokyo Women's Medical University, 10-22 Kawada-cho, Shinjuku-ku, Tokyo 162-0054, Japan
| | - Yasuhiro Katsumata
- Institute of Rheumatology, Tokyo Women's Medical University, 10-22 Kawada-cho, Shinjuku-ku, Tokyo 162-0054, Japan
| | - Hisae Ichida
- Institute of Rheumatology, Tokyo Women's Medical University, 10-22 Kawada-cho, Shinjuku-ku, Tokyo 162-0054, Japan
| | - Masanori Hanaoka
- Institute of Rheumatology, Tokyo Women's Medical University, 10-22 Kawada-cho, Shinjuku-ku, Tokyo 162-0054, Japan
| | - Hidenaga Kawasumi
- Institute of Rheumatology, Tokyo Women's Medical University, 10-22 Kawada-cho, Shinjuku-ku, Tokyo 162-0054, Japan
| | - Mari Tochihara
- Institute of Rheumatology, Tokyo Women's Medical University, 10-22 Kawada-cho, Shinjuku-ku, Tokyo 162-0054, Japan
| | - Hisashi Yamanaka
- Institute of Rheumatology, Tokyo Women's Medical University, 10-22 Kawada-cho, Shinjuku-ku, Tokyo 162-0054, Japan
| |
Collapse
|
12
|
Angelino E, Reano S, Ferrara M, Agosti E, Graziani A, Filigheddu N. Antifibrotic activity of acylated and unacylated ghrelin. Int J Endocrinol 2015; 2015:385682. [PMID: 25960743 PMCID: PMC4415458 DOI: 10.1155/2015/385682] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Accepted: 04/01/2015] [Indexed: 12/15/2022] Open
Abstract
Fibrosis can affect almost all tissues and organs, it often represents the terminal stage of chronic diseases, and it is regarded as a major health issue for which efficient therapies are needed. Tissue injury, by inducing necrosis/apoptosis, triggers inflammatory response that, in turn, promotes fibroblast activation and pathological deposition of extracellular matrix. Acylated and unacylated ghrelin are the main products of the ghrelin gene. The acylated form, through its receptor GHSR-1a, stimulates appetite and growth hormone (GH) release. Although unacylated ghrelin does not bind or activate GHSR-1a, it shares with the acylated form several biological activities. Ghrelin peptides exhibit anti-inflammatory, antioxidative, and antiapoptotic activities, suggesting that they might represent an efficient approach to prevent or reduce fibrosis. The aim of this review is to summarize the available evidence regarding the effects of acylated and unacylated ghrelin on different pathologies and experimental models in which fibrosis is a predominant characteristic.
Collapse
Affiliation(s)
- Elia Angelino
- Department of Translational Medicine, University of Piemonte Orientale, Via Solaroli 17, 28100 Novara, Italy
| | - Simone Reano
- Department of Translational Medicine, University of Piemonte Orientale, Via Solaroli 17, 28100 Novara, Italy
| | - Michele Ferrara
- Department of Translational Medicine, University of Piemonte Orientale, Via Solaroli 17, 28100 Novara, Italy
| | - Emanuela Agosti
- Department of Translational Medicine, University of Piemonte Orientale, Via Solaroli 17, 28100 Novara, Italy
| | - Andrea Graziani
- Department of Translational Medicine, University of Piemonte Orientale, Via Solaroli 17, 28100 Novara, Italy
| | - Nicoletta Filigheddu
- Department of Translational Medicine, University of Piemonte Orientale, Via Solaroli 17, 28100 Novara, Italy
- *Nicoletta Filigheddu:
| |
Collapse
|
13
|
Sun GX, Ding R, Li M, Guo Y, Fan LP, Yue LS, Li LY, Zhao M. Ghrelin attenuates renal fibrosis and inflammation of obstructive nephropathy. J Urol 2014; 193:2107-15. [PMID: 25481038 DOI: 10.1016/j.juro.2014.11.098] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/26/2014] [Indexed: 10/24/2022]
Abstract
PURPOSE Ghrelin is a gastric peptide that modulates multiple biological functions, of which the stimulation of food intake is the most well-known function. Ghrelin also exerts potential anti-inflammatory and antifibrotic properties in different organs but to our knowledge whether ghrelin inhibits the progression of renal fibrosis is unknown. Thus, we investigated the effect and underlying mechanisms of ghrelin in a rat model of renal fibrosis. MATERIALS AND METHODS Male Sprague Dawley® rats were divided into 4 groups, including vehicle or ghrelin treated sham operated groups and vehicle or ghrelin treated unilateral ureteral obstruction groups. Kidneys harvested on postoperative day 7 or 14 were evaluated for renal inflammation, fibrosis and apoptosis, and the expression of profibrotic and proinflammatory factors. RESULTS Ghrelin inhibited renal fibrosis by attenuating collagen production, extracellular matrix deposition, and α-smooth muscle actin and fibronectin expression. Ghrelin administration decreased macrophage infiltration and several proinflammatory cytokines, including tumor necrosis factor-α, interleukin-1β and monocyte chemotactic protein-1, as well as phosphorylated nuclear factor-κB p65. Ghrelin also inhibited myofibroblast accumulation by blocking the transforming growth factor-β1/Smad3 signaling pathway. Furthermore, ghrelin attenuated renal tubular cell apoptosis and epithelial-mesenchymal transition processes induced by unilateral ureteral obstruction injury. CONCLUSIONS These findings indicate that ghrelin is a potent antifibrotic agent that may have therapeutic potential in patients with obstructive nephropathy.
Collapse
Affiliation(s)
- Guang-Xi Sun
- Department of Organ Transplantation and National Key Clinic Specialty, Neurosurgery Institute of Guangdong Province, Department of Neurosurgery (RD), Zhujiang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Rui Ding
- Department of Organ Transplantation and National Key Clinic Specialty, Neurosurgery Institute of Guangdong Province, Department of Neurosurgery (RD), Zhujiang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Ming Li
- Department of Organ Transplantation and National Key Clinic Specialty, Neurosurgery Institute of Guangdong Province, Department of Neurosurgery (RD), Zhujiang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Ying Guo
- Department of Organ Transplantation and National Key Clinic Specialty, Neurosurgery Institute of Guangdong Province, Department of Neurosurgery (RD), Zhujiang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Li-Pei Fan
- Department of Organ Transplantation and National Key Clinic Specialty, Neurosurgery Institute of Guangdong Province, Department of Neurosurgery (RD), Zhujiang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Liang-Sheng Yue
- Department of Organ Transplantation and National Key Clinic Specialty, Neurosurgery Institute of Guangdong Province, Department of Neurosurgery (RD), Zhujiang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Liu-Yang Li
- Department of Organ Transplantation and National Key Clinic Specialty, Neurosurgery Institute of Guangdong Province, Department of Neurosurgery (RD), Zhujiang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Ming Zhao
- Department of Organ Transplantation and National Key Clinic Specialty, Neurosurgery Institute of Guangdong Province, Department of Neurosurgery (RD), Zhujiang Hospital, Southern Medical University, Guangzhou, People's Republic of China.
| |
Collapse
|