1
|
Luo J, Zhou Y, Wang M, Zhang J, Jiang E. Inflammasomes: potential therapeutic targets in hematopoietic stem cell transplantation. Cell Commun Signal 2024; 22:596. [PMID: 39695742 DOI: 10.1186/s12964-024-01974-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Accepted: 11/30/2024] [Indexed: 12/20/2024] Open
Abstract
The realm of hematopoietic stem cell transplantation (HSCT) has witnessed remarkable advancements in elevating the cure and survival rates for patients with both malignant and non-malignant hematologic diseases. Nevertheless, a considerable number of patients continue to face challenges, including transplant-related complications, infection, graft failure, and mortality. Inflammasomes, the multi-protein complexes of the innate immune system, respond to various danger signals by releasing inflammatory cytokines and even mediating cell death. While moderate activation of inflammasomes is essential for immune defense and homeostasis maintenance, excessive activation precipitates inflammatory damage. The intricate interplay between HSCT and inflammasomes arises from their pivotal roles in immune responses and inflammation. This review examines the molecular architecture and composition of various types of inflammasomes, highlighting their activation and effector mechanisms within the context of the HSCT process and its associated complications. Additionally, we summarize the therapeutic implications of targeting inflammasomes and related factors in HSCT.
Collapse
Affiliation(s)
- Jieya Luo
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Yunxia Zhou
- Tianjin Institutes of Health Science, Tianjin, 301600, China
- Haihe Laboratory of Cell Ecosystem, Tianjin Medical University, Tianjin, 300051, China
| | - Mingyang Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Junan Zhang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Erlie Jiang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China.
- Tianjin Institutes of Health Science, Tianjin, 301600, China.
| |
Collapse
|
2
|
Wang S, Cheng T, Chen X, Zeng C, Qin W, Xu Y. IFN-γ induces acute graft-versus-host disease by promoting HMGB1-mediated nuclear-to-cytoplasm translocation and autophagic degradation of p53. Clin Sci (Lond) 2024; 138:1287-1304. [PMID: 39312196 PMCID: PMC11479981 DOI: 10.1042/cs20241144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 09/03/2024] [Accepted: 09/23/2024] [Indexed: 10/12/2024]
Abstract
Acute graft-versus-host disease (aGVHD) poses a significant impediment to achieving a more favourable therapeutic outcome in allogeneic hematopoietic stem cell transplantation (allo-HSCT). Our prior investigations disclosed a correlation between p53 down-regulation in CD4+ T cells and the occurrence of aGVHD. Notably, the insufficiency of the CCCTC-binding factor (CTCF) emerged as a pivotal factor in repressing p53 expression. However, the existence of additional mechanisms contributing to the reduction in p53 expression remains unclear. Interferon (IFN)-γ, a pivotal proinflammatory cytokine, assumes a crucial role in regulating alloreactive T-cell responses and plays a complex part in aGVHD development. IFN-γ has the capacity to induce autophagy, a vital catabolic process facilitating protein degradation, in various cell types. Presently, whether IFN-γ participates in the development of aGVHD by instigating the autophagic degradation of p53 in CD4+ T cells remains an unresolved question. In the present study, we demonstrated that heightened levels of IFN-γ in the plasma during aGVHD promoted the activation, proliferation, and autophagic activity of CD4+ T cells. Furthermore, IFN-γ induced the nuclear-to-cytoplasm translocation and autophagy-dependent degradation of p53 in CD4+ T cells. The translocation and autophagic degradation of p53 were contingent upon HMGB1, which underwent up-regulation and translocation from the nucleus to the cytoplasm following IFN-γ stimulation. In conclusion, our data unveil a novel mechanism underlying p53 deficiency in CD4+ T cells among aGVHD patients. This deficiency is induced by IFN-γ and relies on autophagy, establishing a link between IFN-γ, HMGB1-mediated translocation, and the autophagic degradation of p53.
Collapse
Affiliation(s)
- Shiyu Wang
- Department of Hematology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Hematologic Diseases, the First Affiliated Hospital of Soochow University, Soochow, China
- National Clinical Research Center for Geriatric Diseases (Xiangya Hospital), Changsha, China
- Hunan Hematologic Neoplasms Clinical Medical Research Center, Changsha, China
| | - Tingting Cheng
- Department of Hematology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Hematologic Diseases, the First Affiliated Hospital of Soochow University, Soochow, China
- National Clinical Research Center for Geriatric Diseases (Xiangya Hospital), Changsha, China
- Hunan Hematologic Neoplasms Clinical Medical Research Center, Changsha, China
| | - Xu Chen
- Department of Hematology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Hematologic Diseases, the First Affiliated Hospital of Soochow University, Soochow, China
- National Clinical Research Center for Geriatric Diseases (Xiangya Hospital), Changsha, China
- Hunan Hematologic Neoplasms Clinical Medical Research Center, Changsha, China
| | - Cong Zeng
- Department of Hematology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Hematologic Diseases, the First Affiliated Hospital of Soochow University, Soochow, China
- National Clinical Research Center for Geriatric Diseases (Xiangya Hospital), Changsha, China
- Hunan Hematologic Neoplasms Clinical Medical Research Center, Changsha, China
| | - Wei Qin
- Department of Hematology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Hematologic Diseases, the First Affiliated Hospital of Soochow University, Soochow, China
- National Clinical Research Center for Geriatric Diseases (Xiangya Hospital), Changsha, China
- Hunan Hematologic Neoplasms Clinical Medical Research Center, Changsha, China
| | - Yajing Xu
- Department of Hematology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Hematologic Diseases, the First Affiliated Hospital of Soochow University, Soochow, China
- National Clinical Research Center for Geriatric Diseases (Xiangya Hospital), Changsha, China
- Hunan Hematologic Neoplasms Clinical Medical Research Center, Changsha, China
| |
Collapse
|
3
|
Zeng C, Cheng TT, Ma X, Liu Y, Hua J, Chen X, Wang SY, Xu YJ. The absence of AhR in CD4 + T cells in patients with acute graft-versus-host disease may be related to insufficient CTCF expression. Clin Epigenetics 2022; 14:109. [PMID: 36056390 PMCID: PMC9440523 DOI: 10.1186/s13148-022-01330-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 08/26/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Acute graft-versus-host disease (aGVHD) is a life-threatening complication of allogeneic hematopoietic stem cell transplantation (allo-HSCT). Accumulating evidence suggests that imbalanced Treg/Th17 ratio accelerates the progression of aGVHD. The aryl hydrocarbon receptor (AhR) is a basic helix-loop-helix transcription factor activated through cognate ligand binding. Current evidence supports that AhR plays a critical regulatory role in the differentiation of Treg and Th17 cells. However, the relationship between AhR and aGVHD remains unclear. RESULTS Our results showed that AhR expression was downregulated significantly in CD4+ T cells from patients with aGVHD compared with the non-aGVHD group. We also discovered that after activating AhR deficient CD4+ T cells, the expression levels of the activation markers-CD40L, CD134 and CD137 and cell proliferation activity were significantly higher than those of AhR-expressing CD4+ T cells. Restoring the expression of AhR in aGVHD CD4+ T cells resulted in significantly increased percentage of Tregs and associated gene transcripts, including Foxp3, IL-10 and CD39. In contrast, Th17 cell amounts and the transcription of related genes, including RORγt, IL-17A and IL-17F, were significantly reduced. We confirmed that CTCF recruited EP300 and TET2 to bind to the AhR promoter region and promoted AhR expression by mediating histone H3K9/K14 hyperacetylation and DNA demethylation in this region. The low expression of CTCF caused histone hypoacetylation and DNA hypermethylation of the AhR promoter, resulting in insufficient expression in aGVHD CD4+ T cells. CONCLUSIONS CTCF is an important inducer of AhR transcription. Insufficient expression of CTCF leads to excessive AhR downregulation, resulting in substantial CD4+ T cell activation and Th17/Treg ratio increase, thereby mediating the occurrence of aGVHD.
Collapse
Affiliation(s)
- Cong Zeng
- Department of Hematology, Xiangya Hospital, Central South University, Changsha, Hunan, China.,National Clinical Research Center for Geriatric Diseases, Xiangya Hospital, Changsha, China.,Hunan Hematology Oncology Clinical Medical Research Center, Changsha, China
| | - Ting-Ting Cheng
- Department of Hematology, Xiangya Hospital, Central South University, Changsha, Hunan, China.,National Clinical Research Center for Geriatric Diseases, Xiangya Hospital, Changsha, China.,Hunan Hematology Oncology Clinical Medical Research Center, Changsha, China
| | - Xia Ma
- Department of Hematology, Xiangya Hospital, Central South University, Changsha, Hunan, China.,National Clinical Research Center for Geriatric Diseases, Xiangya Hospital, Changsha, China.,Hunan Hematology Oncology Clinical Medical Research Center, Changsha, China
| | - Yi Liu
- Department of Hematology, Xiangya Hospital, Central South University, Changsha, Hunan, China.,National Clinical Research Center for Geriatric Diseases, Xiangya Hospital, Changsha, China.,Hunan Hematology Oncology Clinical Medical Research Center, Changsha, China
| | - Juan Hua
- Department of Hematology, Xiangya Hospital, Central South University, Changsha, Hunan, China.,National Clinical Research Center for Geriatric Diseases, Xiangya Hospital, Changsha, China.,Hunan Hematology Oncology Clinical Medical Research Center, Changsha, China
| | - Xu Chen
- Department of Hematology, Xiangya Hospital, Central South University, Changsha, Hunan, China.,National Clinical Research Center for Geriatric Diseases, Xiangya Hospital, Changsha, China.,Hunan Hematology Oncology Clinical Medical Research Center, Changsha, China
| | - Shi-Yu Wang
- Department of Hematology, Xiangya Hospital, Central South University, Changsha, Hunan, China.,National Clinical Research Center for Geriatric Diseases, Xiangya Hospital, Changsha, China.,Hunan Hematology Oncology Clinical Medical Research Center, Changsha, China
| | - Ya-Jing Xu
- Department of Hematology, Xiangya Hospital, Central South University, Changsha, Hunan, China. .,National Clinical Research Center for Geriatric Diseases, Xiangya Hospital, Changsha, China. .,Hunan Hematology Oncology Clinical Medical Research Center, Changsha, China. .,National Clinical Research Center for Hematologic Diseases, The First Affiliated Hospital of Soochow University, Suzhou, China.
| |
Collapse
|
4
|
Zhang G, Yang P, Liu X, Liu H, Wang J, Wang J, Xiao J, Nie D, Ma L. HMGB1 is increased in patients with immune thrombocytopenia and negatively associates with Tregs. Thromb Res 2022; 213:128-136. [DOI: 10.1016/j.thromres.2022.02.021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 02/21/2022] [Accepted: 02/23/2022] [Indexed: 12/24/2022]
|
5
|
Pan J, Alexan B, Dennis D, Bettina C, Christoph LIM, Tang Y. microRNA-193-3p attenuates myocardial injury of mice with sepsis via STAT3/HMGB1 axis. J Transl Med 2021; 19:386. [PMID: 34503521 PMCID: PMC8428118 DOI: 10.1186/s12967-021-03022-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 08/04/2021] [Indexed: 12/16/2022] Open
Abstract
OBJECTIVE Little is known regarding the functional role of microRNA-193-3p (miR-193-3p) in sepsis. Hence, the aim of the present study was to investigate the effect of miR-193-3p on myocardial injury in mice with sepsis and its mechanism through the regulation of signal transducers and activators of transcription 3 (STAT3). METHODS The mice model of sepsis was established by cecal ligation and puncture (CLP), septic mice were injected with miR-193-3p agomir, miR-193-3p antagomir or siRNA-STAT3. The expression of miR-193-3p, STAT3 and HMGB1 in the myocardial tissue of septic mice were detected. Cardiac ultrasound, hemodynamics, myocardial injury markers, inflammatory factors and cardiomyocyte apoptosis in septic mice were measured. RESULTS MiR-193-3p expression was reduced while STAT3 expression was increased in septic mice. Down-regulated STAT3 or up-regulated miR-193-3p improved cardiac function, attenuated myocardial injury, inflammation and cardiomyocyte apoptosis in septic mice. Knockdown STAT3 reversed the role of inhibited miR-193-3p for mice with sepsis. miR-193-3p targeted STAT3, thereby inhibiting HMGB1 expression. CONCLUSION This study provides evidence that miR-193-3p targets STAT3 expression to reduce HMGB1 expression, thereby reducing septic myocardial damage. MiR-193-3p might be a potential candidate marker and therapeutic target for sepsis.
Collapse
Affiliation(s)
- Jianyuan Pan
- Department of Cardiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, 230001, Anhui, China
- Institute of Experimental Cardiology, Internal Medicine VIII, Heidelberg University, Heidelberg, Germany
| | - Buse Alexan
- Institute of Experimental Cardiology, Internal Medicine VIII, Heidelberg University, Heidelberg, Germany
| | - Dorn Dennis
- Institute of Experimental Cardiology, Internal Medicine VIII, Heidelberg University, Heidelberg, Germany
- Anatomy and Developmental Biology, European Center for Angioscience, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
| | - Chiristine Bettina
- Institute of Experimental Cardiology, Internal Medicine VIII, Heidelberg University, Heidelberg, Germany
- Anatomy and Developmental Biology, European Center for Angioscience, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
| | - Laeuf Ilona Mariya Christoph
- Anatomy and Developmental Biology, European Center for Angioscience, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
| | - Yongqin Tang
- Anatomy and Developmental Biology, European Center for Angioscience, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany.
- Department of General surgery, Chuzhou Hospital affiliated to Anhui Medical University, 230001, Anhui, China.
| |
Collapse
|
6
|
Chen W, Su G, Xu Y, Guo W, Bhansali R, Pan B, Kong Q, Cheng H, Cao J, Qi K, Zhu F, Li M, Zhu S, Zeng L, Li Z, Wu Q, Xu K. Caspase-1 inhibition ameliorates murine acute graft versus host disease by modulating the Th1/Th17/Treg balance. Int Immunopharmacol 2021; 94:107503. [PMID: 33647825 DOI: 10.1016/j.intimp.2021.107503] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 02/08/2021] [Accepted: 02/10/2021] [Indexed: 10/22/2022]
Abstract
Our previous studies have implicated Caspase-1 signaling in driving the proinflammatory state of acute graft versus host disease (aGVHD). Therefore, we aimed to elucidate the mechanism of Caspase-1 in in murine models of aGVHD through specific inhibition of its activity with the decoy peptide Ac-YVAD-CMK. We transplanted bone marrow from donor C57BL/6 (H-2b) mice into recipient BALB/c (H-2Kd) mice and randomized the recipients into the following treatment cohorts: (1) allogeneic hematopoietic stem cell transplantation and splenic cell infusion control (PBS group); (2) low dose Ac-YVAD-CMK (AC low group); (3) and high dose Ac-YVAD-CMK (AC high group). Indeed, we observed that Caspase-1 inhibition by Ac-YVAD-CMK ameliorated pathological damage and inflammation in the liver, lungs, and colon elicited by aGVHD. This was associated with reduced mortality secondary to aGVHD. Mechanistically, we found that Caspase-1 inhibition modulated donor T cell expansion, restored the balance of Th1/Th17/Treg subsets, and markedly decreased serum levels and aGVHD target organ mRNA expression of IL-1β, IL-18, and HMGB1. Thus, we demonstrate that inhibition of Caspase-1 by Ac-YVAD-CMK mitigates murine aGVHD by regulating Th1/Th17/Treg balance and attenuating its characteristic proinflammatory state.
Collapse
Affiliation(s)
- Wei Chen
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China; Blood Diseases Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China; Jiangsu Key Laboratory of Bone Marrow Stem Cells, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - GuiZhen Su
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China; The Third People's Hospital of Bengbu, Bengbu, Anhui, China
| | - Yan Xu
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China; Blood Diseases Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Wentong Guo
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China; Blood Diseases Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Rahul Bhansali
- Department of Medicine, Hospital of the University of Pennsylvania
| | - Bin Pan
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China; Blood Diseases Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - QingLing Kong
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China; Department of Medicine, Hospital of the University of Pennsylvania
| | - Hai Cheng
- Jiangsu Key Laboratory of Bone Marrow Stem Cells, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Jiang Cao
- Jiangsu Key Laboratory of Bone Marrow Stem Cells, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - KunMing Qi
- Jiangsu Key Laboratory of Bone Marrow Stem Cells, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Feng Zhu
- Jiangsu Key Laboratory of Bone Marrow Stem Cells, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Miao Li
- Xuzhou Children's Hospital, Xuzhou, Jiangsu, China
| | - ShengYun Zhu
- Jiangsu Key Laboratory of Bone Marrow Stem Cells, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - LingYu Zeng
- Jiangsu Key Laboratory of Bone Marrow Stem Cells, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - ZhenYu Li
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China; Blood Diseases Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China; Jiangsu Key Laboratory of Bone Marrow Stem Cells, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Qingyun Wu
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China; Blood Diseases Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China; Jiangsu Key Laboratory of Bone Marrow Stem Cells, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - KaiLin Xu
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China; Blood Diseases Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China; Jiangsu Key Laboratory of Bone Marrow Stem Cells, Xuzhou Medical University, Xuzhou, Jiangsu, China.
| |
Collapse
|
7
|
The Effect and Regulatory Mechanism of High Mobility Group Box-1 Protein on Immune Cells in Inflammatory Diseases. Cells 2021; 10:cells10051044. [PMID: 33925132 PMCID: PMC8145631 DOI: 10.3390/cells10051044] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 04/18/2021] [Accepted: 04/23/2021] [Indexed: 12/13/2022] Open
Abstract
High mobility group box-1 protein (HMGB1), a member of the high mobility group protein superfamily, is an abundant and ubiquitously expressed nuclear protein. Intracellular HMGB1 is released by immune and necrotic cells and secreted HMGB1 activates a range of immune cells, contributing to the excessive release of inflammatory cytokines and promoting processes such as cell migration and adhesion. Moreover, HMGB1 is a typical damage-associated molecular pattern molecule that participates in various inflammatory and immune responses. In these ways, it plays a critical role in the pathophysiology of inflammatory diseases. Herein, we review the effects of HMGB1 on various immune cell types and describe the molecular mechanisms by which it contributes to the development of inflammatory disorders. Finally, we address the therapeutic potential of targeting HMGB1.
Collapse
|
8
|
Hua J, Chen Y, Fu B, Chen X, Xu XJ, Yang SH, Chen C, Xu YJ. Downregulation of p53 by Insufficient CTCF in CD4 + T Cells Is an Important Factor Inducing Acute Graft-Versus-Host Disease. Front Immunol 2020; 11:568637. [PMID: 33133081 PMCID: PMC7550539 DOI: 10.3389/fimmu.2020.568637] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 08/26/2020] [Indexed: 01/10/2023] Open
Abstract
Recent evidence indicates that p53 plays a protective role against various systemic autoimmune diseases by suppressing pro-inflammatory cytokine production and reducing the number of pathogenic T cells. However, whether abnormal p53 expression participates in the development of acute graft-versus-host disease (aGVHD) remains unclear. In this study, we demonstrated that p53 was downregulated in CD4+ T cells from patients with aGVHD compared with the non-aGVHD group. Furthermore, we confirmed that low expression of CCCTC-binding factor (CTCF) in CD4+ T cells from aGVHD cases is an important factor affecting histone H3K9/K14 hypoacetylation in the p53 promoter and p53 downregulation. Restoring CTCF expression in CD4+ T cells from aGVHD patients increased p53 amounts and corrected the imbalance of Th17 cells/Tregs. Taken together, these results provide novel insights into p53 downregulation in CD4+ T cells from aGVHD patients.
Collapse
Affiliation(s)
- Juan Hua
- Department of Hematology, Xiangya Hospital, Central South University, Changsha, China
| | - Yan Chen
- Department of Hematology, Xiangya Hospital, Central South University, Changsha, China
| | - Bin Fu
- Department of Hematology, Xiangya Hospital, Central South University, Changsha, China
| | - Xu Chen
- Department of Hematology, Xiangya Hospital, Central South University, Changsha, China
| | - Xue-Jun Xu
- Department of Hematology, Xiangya Hospital, Central South University, Changsha, China
| | - Shuang-Hui Yang
- Department of Hematology, Xiangya Hospital, Central South University, Changsha, China
| | - Cong Chen
- Department of Hematology, Xiangya Hospital, Central South University, Changsha, China
| | - Ya-Jing Xu
- Department of Hematology, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
9
|
HMGB1 Recruits TET2/AID/TDG to Induce DNA Demethylation in STAT3 Promoter in CD4 + T Cells from aGVHD Patients. J Immunol Res 2020; 2020:7165230. [PMID: 33029541 PMCID: PMC7532413 DOI: 10.1155/2020/7165230] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 08/14/2020] [Accepted: 08/31/2020] [Indexed: 11/20/2022] Open
Abstract
STAT3 is highly expressed in aGVHD CD4+ T cells and plays a critical role in inducing or worsening aGVHD. In our preceding studies, DNA hypomethylation in STAT3 promoter was shown to cause high expression of STAT3 in aGVHD CD4+ T cells, and the process could be modulated by HMGB1, but the underlying mechanism remains unclear. TET2, AID, and TDG are indispensable in DNA demethylation; meanwhile, TET2 and AID also serve extremely important roles in immune response. So, we speculated these enzymes involved in the STAT3 promoter hypomethylation induced by HMGB1 in aGVHD CD4+ T cells. In this study, we found that the binding levels of TET2/AID/TDG to STAT3 promoter were remarkably increased in CD4+T cells from aGVHD patients and were significantly negatively correlated with the STAT3 promoter methylation level. Simultaneously, we revealed that HMGB1 could recruit TET2, AID, and TDG to form a complex in the STAT3 promoter region. Interference with the expression of TET2/AID/TDG inhibited the overexpression of STAT3 caused by HMGB1 downregulation of the STAT3 promoter DNA methylation. These data demonstrated a new molecular mechanism of how HMGB1 promoted the expression of STAT3 in CD4+ T cells from aGVHD patients.
Collapse
|
10
|
Yuan S, Liu Z, Xu Z, Liu J, Zhang J. High mobility group box 1 (HMGB1): a pivotal regulator of hematopoietic malignancies. J Hematol Oncol 2020; 13:91. [PMID: 32660524 PMCID: PMC7359022 DOI: 10.1186/s13045-020-00920-3] [Citation(s) in RCA: 122] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 06/16/2020] [Indexed: 02/06/2023] Open
Abstract
High mobility group box 1 (HMGB1) is a nonhistone chromatin-associated protein that has been widely reported to play a pivotal role in the pathogenesis of hematopoietic malignancies. As a representative damage-associated molecular pattern (DAMP), HMGB1 normally exists inside cells but can be secreted into the extracellular environment through passive or active release. Extracellular HMGB1 binds with several different receptors and interactors to mediate the proliferation, differentiation, mobilization, and senescence of hematopoietic stem cells (HSCs). HMGB1 is also involved in the formation of the inflammatory bone marrow (BM) microenvironment by activating proinflammatory signaling pathways. Moreover, HMGB1-dependent autophagy induces chemotherapy resistance in leukemia and multiple myeloma. In this review, we systematically summarize the emerging roles of HMGB1 in carcinogenesis, progression, prognosis, and potential clinical applications in different hematopoietic malignancies. In summary, targeting the regulation of HMGB1 activity in HSCs and the BM microenvironment is highly beneficial in the diagnosis and treatment of various hematopoietic malignancies.
Collapse
Affiliation(s)
- Shunling Yuan
- Department of Clinical Laboratory, The First Affiliated Hospital, University of South China, Hengyang, 421001, Hunan, China
| | - Zhaoping Liu
- Department of Clinical Laboratory, The First Affiliated Hospital, University of South China, Hengyang, 421001, Hunan, China
| | - Zhenru Xu
- Department of Clinical Laboratory, The First Affiliated Hospital, University of South China, Hengyang, 421001, Hunan, China
| | - Jing Liu
- Hunan Province Key Laboratory of Basic and Applied Hematology, Molecular Biology Research Center & Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, 410078, Hunan, China.
| | - Ji Zhang
- Department of Clinical Laboratory, The First Affiliated Hospital, University of South China, Hengyang, 421001, Hunan, China.
| |
Collapse
|
11
|
Rapoport BL, Steel HC, Theron AJ, Heyman L, Smit T, Ramdas Y, Anderson R. High Mobility Group Box 1 in Human Cancer. Cells 2020; 9:E1664. [PMID: 32664328 PMCID: PMC7407638 DOI: 10.3390/cells9071664] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 07/03/2020] [Accepted: 07/06/2020] [Indexed: 12/12/2022] Open
Abstract
High mobility group box 1 (HMGB1) is an extremely versatile protein that is located predominantly in the nucleus of quiescent eukaryotic cells, where it is critically involved in maintaining genomic structure and function. During cellular stress, however, this multifaceted, cytokine-like protein undergoes posttranslational modifications that promote its translocation to the cytosol, from where it is released extracellularly, either actively or passively, according to cell type and stressor. In the extracellular milieu, HMGB1 triggers innate inflammatory responses that may be beneficial or harmful, depending on the magnitude and duration of release of this pro-inflammatory protein at sites of tissue injury. Heightened awareness of the potentially harmful activities of HMGB1, together with a considerable body of innovative, recent research, have revealed that excessive production of HMGB1, resulting from misdirected, chronic inflammatory responses, appears to contribute to all the stages of tumorigenesis. In the setting of established cancers, the production of HMGB1 by tumor cells per se may also exacerbate inflammation-related immunosuppression. These pro-inflammatory mechanisms of HMGB1-orchestrated tumorigenesis, as well as the prognostic potential of detection of elevated expression of this protein in the tumor microenvironment, represent the major thrusts of this review.
Collapse
Affiliation(s)
- Bernardo L. Rapoport
- Department of Immunology, Faculty of Health Sciences, University of Pretoria, Pretoria 0001, South Africa; (H.C.S.); (A.J.T.); (R.A.)
- The Medical Oncology Centre of Rosebank, Johannesburg 2196, South Africa; (L.H.); (T.S.)
| | - Helen C. Steel
- Department of Immunology, Faculty of Health Sciences, University of Pretoria, Pretoria 0001, South Africa; (H.C.S.); (A.J.T.); (R.A.)
| | - Annette J. Theron
- Department of Immunology, Faculty of Health Sciences, University of Pretoria, Pretoria 0001, South Africa; (H.C.S.); (A.J.T.); (R.A.)
| | - Liezl Heyman
- The Medical Oncology Centre of Rosebank, Johannesburg 2196, South Africa; (L.H.); (T.S.)
| | - Teresa Smit
- The Medical Oncology Centre of Rosebank, Johannesburg 2196, South Africa; (L.H.); (T.S.)
| | - Yastira Ramdas
- The Breast Care Centre, Netcare Milpark, 9 Guild Road, Parktown, Johannesburg 2193, South Africa;
| | - Ronald Anderson
- Department of Immunology, Faculty of Health Sciences, University of Pretoria, Pretoria 0001, South Africa; (H.C.S.); (A.J.T.); (R.A.)
| |
Collapse
|
12
|
Zhang J, Chen L, Wang F, Zou Y, Li J, Luo J, Khan F, Sun F, Li Y, Liu J, Chen Z, Zhang S, Xiong F, Yu Q, Li J, Huang K, Adam BL, Zhou Z, Eizirik DL, Yang P, Wang CY. Extracellular HMGB1 exacerbates autoimmune progression and recurrence of type 1 diabetes by impairing regulatory T cell stability. Diabetologia 2020; 63:987-1001. [PMID: 32072192 PMCID: PMC7145789 DOI: 10.1007/s00125-020-05105-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 01/15/2020] [Indexed: 01/07/2023]
Abstract
AIMS/HYPOTHESIS High-mobility group box 1 (HMGB1), an evolutionarily conserved chromosomal protein, was rediscovered to be a 'danger signal' (alarmin) that alerts the immune system once released extracellularly. Therefore, it has been recognised contributing to the pathogenesis of autoimmune diabetes, but its exact impact on the initiation and progression of type 1 diabetes, as well as the related molecular mechanisms, are yet to be fully characterised. METHODS In the current report, we employed NOD mice as a model to dissect the impact of blocking HMGB1 on the prevention, treatment and reversal of type 1 diabetes. To study the mechanism involved, we extensively examined the characteristics of regulatory T cells (Tregs) and their related signalling pathways upon HMGB1 stimulation. Furthermore, we investigated the relevance of our data to human autoimmune diabetes. RESULTS Neutralising HMGB1 both delayed diabetes onset and, of particular relevance, reversed diabetes in 13 out of 20 new-onset diabetic NOD mice. Consistently, blockade of HMGB1 prevented islet isografts from autoimmune attack in diabetic NOD mice. Using transgenic reporter mice that carry a Foxp3 lineage reporter construct, we found that administration of HMGB1 impairs Treg stability and function. Mechanistic studies revealed that HMGB1 activates receptor for AGE (RAGE) and toll-like receptor (TLR)4 to enhance phosphatidylinositol 3-kinase (PI3K)-Akt-mechanistic target of rapamycin (mTOR) signalling, thereby impairing Treg stability and functionality. Indeed, high circulating levels of HMGB1 in human participants with type 1 diabetes contribute to Treg instability, suggesting that blockade of HMGB1 could be an effective therapy against type 1 diabetes in clinical settings. CONCLUSIONS/INTERPRETATION The present data support the possibility that HMGB1 could be a viable therapeutic target to prevent the initiation, progression and recurrence of autoimmunity in the setting of type 1 diabetes.
Collapse
Affiliation(s)
- Jing Zhang
- The Center for Biomedical Research, Tongji Hospital Research Building, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, Caidian, China
- Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Respiratory Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Longmin Chen
- The Center for Biomedical Research, Tongji Hospital Research Building, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, Caidian, China
- Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Respiratory Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Faxi Wang
- The Center for Biomedical Research, Tongji Hospital Research Building, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, Caidian, China
- Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Respiratory Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuan Zou
- The Center for Biomedical Research, Tongji Hospital Research Building, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, Caidian, China
- Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Respiratory Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jingyi Li
- The Center for Biomedical Research, Tongji Hospital Research Building, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, Caidian, China
| | - Jiahui Luo
- The Center for Biomedical Research, Tongji Hospital Research Building, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, Caidian, China
- Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Respiratory Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Faheem Khan
- The Center for Biomedical Research, Tongji Hospital Research Building, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, Caidian, China
| | - Fei Sun
- The Center for Biomedical Research, Tongji Hospital Research Building, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, Caidian, China
- Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Respiratory Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yang Li
- The Center for Biomedical Research, Tongji Hospital Research Building, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, Caidian, China
- Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Respiratory Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jing Liu
- The Center for Biomedical Research, Tongji Hospital Research Building, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, Caidian, China
- Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Respiratory Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhishui Chen
- The Center for Biomedical Research, Tongji Hospital Research Building, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, Caidian, China
- Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Tongji Hospital, Wuhan, China
| | - Shu Zhang
- The Center for Biomedical Research, Tongji Hospital Research Building, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, Caidian, China
- Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Respiratory Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fei Xiong
- The Center for Biomedical Research, Tongji Hospital Research Building, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, Caidian, China
- Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Respiratory Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qilin Yu
- The Center for Biomedical Research, Tongji Hospital Research Building, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, Caidian, China
| | - Jinxiu Li
- Shenzhen Third People's Hospital, Shenzhen, Guangdong, China
| | - Kun Huang
- Tongji School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bao-Ling Adam
- Department of Surgery, Medical College of Georgia at Augusta University, Augusta, GA, USA
| | - Zhiguang Zhou
- Diabetes Center, The Second Xiangya Hospital, Institute of Metabolism and Endocrinology, Central South University, Changsha, China
| | - Decio L Eizirik
- ULB Center for Diabetes Research, Université Libre de Bruxelles, Brussels, Belgium
| | - Ping Yang
- The Center for Biomedical Research, Tongji Hospital Research Building, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, Caidian, China.
- Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Respiratory Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Cong-Yi Wang
- The Center for Biomedical Research, Tongji Hospital Research Building, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, Caidian, China.
- Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Respiratory Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Tongji Hospital, Wuhan, China.
| |
Collapse
|
13
|
Wu XL, Zhuang HF, Zhao YN, Yu XL, Dai TY, Gao RL. Chinese Medicine Treatment on Graft-Versus-Host Disease after Allogeneic Hematopoietic Stem Cell Transplantation. Chin J Integr Med 2020; 26:324-329. [PMID: 32350801 DOI: 10.1007/s11655-020-3252-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/13/2019] [Indexed: 11/28/2022]
Abstract
Graft-versus-host disease (GVHD) is the most common complication after allogeneic hematopoietic stem cell transplantation, and also an important factor affecting the survival and quality of life in patients after transplantation. Currently, immunosuppressive therapy is commonly used for GVHD, but the curative effect is not ideal. How to effectively prevent and treat GVHD is one of the difficulties to be solved urgently in the field of transplantation. In this paper, we summarize the latest progress in pathogenesis, prevention and treatment of GVHD with Chinese medicine (CM). We hope it will provide ideas and methods for exploring the mechanism and establishing a new comprehensive therapy for GVHD with CM.
Collapse
Affiliation(s)
- Xiao-Long Wu
- Institute of Hematology Research, the First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310006, China
| | - Hai-Feng Zhuang
- Institute of Hematology Research, the First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310006, China
| | - Yan-Na Zhao
- Institute of Hematology Research, the First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310006, China
| | - Xiao-Ling Yu
- Institute of Hematology Research, the First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310006, China
| | - Tie-Ying Dai
- Institute of Hematology Research, the First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310006, China
| | - Rui-Lan Gao
- Institute of Hematology Research, the First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310006, China.
| |
Collapse
|
14
|
Alvarez F, Al-Aubodah TA, Yang YH, Piccirillo CA. Mechanisms of T REG cell adaptation to inflammation. J Leukoc Biol 2020; 108:559-571. [PMID: 32202345 DOI: 10.1002/jlb.1mr0120-196r] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 01/19/2020] [Accepted: 02/03/2020] [Indexed: 12/17/2022] Open
Abstract
Inflammation is an important defense mechanism. In this complex and dynamic process, drastic changes in the tissue micro-environment play key roles in dictating the nature of the evolving immune response. However, uncontrolled inflammation is detrimental, leading to unwanted cellular damage, loss of physiological functions, and even death. As such, the immune system possesses tools to limit inflammation while ensuring rapid and effective clearance of the inflammatory trigger. Foxp3+ regulatory T (TREG ) cells, a potently immunosuppressive CD4+ T cell subset, play a crucial role in immune tolerance by controlling the extent of the response to self and non-self Ags, all-the-while promoting a quick return to immune homeostasis. TREG cells adapt to changes in the local micro-environment enabling them to migrate, proliferate, survive, differentiate, and tailor their suppressive ability at inflamed sites. Several inflammation-associated factors can impact TREG cell functional adaptation in situ including locally released alarmins, oxygen availability, tissue acidity and osmolarity and nutrient availability. Here, we review some of these key signals and pathways that control the adaptation of TREG cell function in inflammatory settings.
Collapse
Affiliation(s)
- Fernando Alvarez
- Department of Microbiology and Immunology, McGill University, Montréal, Québec, Canada.,Program in Infectious Diseases and Immunology in Global Health, Centre for Translational Biology, Research Institute of the McGill University Health Centre, Montréal, Québec, Canada.,Centre of Excellence in Translational Immunology (CETI), Montréal, Québec, Canada
| | - Tho-Alfakar Al-Aubodah
- Department of Microbiology and Immunology, McGill University, Montréal, Québec, Canada.,Program in Infectious Diseases and Immunology in Global Health, Centre for Translational Biology, Research Institute of the McGill University Health Centre, Montréal, Québec, Canada.,Centre of Excellence in Translational Immunology (CETI), Montréal, Québec, Canada
| | - Yujian H Yang
- Program in Infectious Diseases and Immunology in Global Health, Centre for Translational Biology, Research Institute of the McGill University Health Centre, Montréal, Québec, Canada.,Centre of Excellence in Translational Immunology (CETI), Montréal, Québec, Canada.,Division of Experimental Medicine, Department of Medicine, McGill University, Montréal, Québec, Canada
| | - Ciriaco A Piccirillo
- Department of Microbiology and Immunology, McGill University, Montréal, Québec, Canada.,Program in Infectious Diseases and Immunology in Global Health, Centre for Translational Biology, Research Institute of the McGill University Health Centre, Montréal, Québec, Canada.,Centre of Excellence in Translational Immunology (CETI), Montréal, Québec, Canada.,Division of Experimental Medicine, Department of Medicine, McGill University, Montréal, Québec, Canada
| |
Collapse
|
15
|
Nobiletin suppresses IL-21/IL-21 receptor-mediated inflammatory response in MH7A fibroblast-like synoviocytes (FLS): An implication in rheumatoid arthritis. Eur J Pharmacol 2020; 875:172939. [PMID: 31978425 DOI: 10.1016/j.ejphar.2020.172939] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 12/17/2019] [Accepted: 01/17/2020] [Indexed: 12/12/2022]
Abstract
The mechanisms driving the development and progression of Rheumatoid arthritis (RA) are complex, novel targeted therapies are gaining traction as potential methods to prevent or slow the progression of RA. Nobiletin is a derivative of citrus fruit that has been shown to attenuate the development of osteoarthritis and inhibit the expression of proinflammatory cytokines. However, the exact mechanisms by which nobiletin exerts these chondroprotective effects remain poorly understood. In the present study, we investigated the impact of nobiletin in mediating the effects of interleukin-21 (IL-21) in MH7A fibroblast-like synoviocytes (FLS), the main cell type found in the articular synovium. Firstly, we demonstrate that nobiletin (25 μM and 50 μM) reduced the expression of the IL-21 receptor by 29% and 51%, respectively, in FLS. Additionally, our findings demonstrate that nobiletin potently ameliorated IL-21-induced increased production of reactive oxygen species and 4-hydroxynonenal, increased expression of interleukin 6 (IL-6), tumor necrosis factor-α (TNF-α), and high-mobility group box 1 (HMGB1), and decreased mitochondrial membrane potential. We also demonstrate the ability of nobiletin to attenuate IL-21-induced expression of matrix metalloproteinases 3 and 13 (MMP-3, MMP-13), key degradative enzymes involved in RA-associated cartilage destruction. Finally, we show that the effects of nobiletin are mediated through the JAK1/STAT3 pathway, as nobiletin significantly reduced the phosphorylation of both JAK1 and STAT3. Taken together, our findings indicate that nobiletin may offer a safe and effective treatment against the development and progression of RA induced by the expression of IL-21 and its receptor.
Collapse
|
16
|
Zhang YG, Zhu X, Lu R, Messer JS, Xia Y, Chang EB, Sun J. Intestinal epithelial HMGB1 inhibits bacterial infection via STAT3 regulation of autophagy. Autophagy 2019; 15:1935-1953. [PMID: 30894054 PMCID: PMC6844505 DOI: 10.1080/15548627.2019.1596485] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2018] [Revised: 02/20/2019] [Accepted: 03/01/2019] [Indexed: 12/30/2022] Open
Abstract
Extracellular HMGB1 (high mobility group box 1) is considered as a damage-associated molecular pattern protein. However, little is known about its intracellular role. We studied the mechanism whereby intestinal epithelial HMGB1 contributes to host defense, using cell culture, colonoids, conditional intestinal epithelial HMGB1-knockout mice with Salmonella-colitis, il10-/- mice, and human samples. We report that intestinal HMGB1 is an important contributor to host protection from inflammation and infection. We identified a physical interaction between HMGB1 and STAT3. Lacking intestinal epithelial HMGB1 led to redistribution of STAT3 and activation of STAT3 post bacterial infection. Indeed, Salmonella-infected HMGB1-deficient cells exhibited less macroautophagy/autophagy due to decreased expression of autophagy proteins and transcriptional repression by activated STAT3. Then, increased p-STAT3 and extranuclear STAT3 reduced autophagic responses and increased inflammation. STAT3 inhibition restored autophagic responses and reduced bacterial invasion in vitro and in vivo. Moreover, low level of HMGB1 was correlated with reduced nuclear STAT3 and enhanced p-STAT3 in inflamed intestine of il10-/- mice and inflammatory bowel disease (IBD) patients. We revealed that colonic epithelial HMGB1 was directly involved in the suppression of STAT3 activation and the protection of intestine from bacterial infection and injury. Abbreviations: ATG16L1: autophagy-related 16-like 1 (S. cerevisiae); DAMP: damage-associated molecular pattern; HBSS: Hanks balanced salt solution; HMGB1: high mobility group box 1; IBD: inflammatory bowel disease; IL1B/Il-1β: interleukin 1 beta; IL10: interleukin 10; IL17/IL-17: interleukin 17; MEFs: mouse embryonic fibroblasts; STAT3: signal transducer and activator of transcription 3; TLR: toll-like receptor; TNF/TNF-α: tumor necrosis factor.
Collapse
Affiliation(s)
- Yong-Guo Zhang
- Department of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Xiaorong Zhu
- Department of Medicine, Knapp Center for Biomedical Discovery, University of Chicago, Chicago, IL, USA
| | - Rong Lu
- Department of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Jeannette S. Messer
- Department of Medicine, Knapp Center for Biomedical Discovery, University of Chicago, Chicago, IL, USA
| | - Yinglin Xia
- Department of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Eugene B. Chang
- Department of Medicine, Knapp Center for Biomedical Discovery, University of Chicago, Chicago, IL, USA
| | - Jun Sun
- Department of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| |
Collapse
|
17
|
Frey-Jakobs S, Hartberger JM, Fliegauf M, Bossen C, Wehmeyer ML, Neubauer JC, Bulashevska A, Proietti M, Fröbel P, Nöltner C, Yang L, Rojas-Restrepo J, Langer N, Winzer S, Engelhardt KR, Glocker C, Pfeifer D, Klein A, Schäffer AA, Lagovsky I, Lachover-Roth I, Béziat V, Puel A, Casanova JL, Fleckenstein B, Weidinger S, Kilic SS, Garty BZ, Etzioni A, Grimbacher B. ZNF341 controls STAT3 expression and thereby immunocompetence. Sci Immunol 2019; 3:3/24/eaat4941. [PMID: 29907690 DOI: 10.1126/sciimmunol.aat4941] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 05/17/2018] [Indexed: 12/18/2022]
Abstract
Signal transducer and activator of transcription 3 (STAT3) is a central regulator of immune homeostasis. STAT3 levels are strictly controlled, and STAT3 impairment contributes to several diseases including the monogenic autosomal-dominant hyper-immunoglobulin E (IgE) syndrome (AD-HIES). We investigated patients of four consanguineous families with an autosomal-recessive disorder resembling the phenotype of AD-HIES, with symptoms of immunodeficiency, recurrent infections, skeletal abnormalities, and elevated IgE. Patients presented with reduced STAT3 expression and diminished T helper 17 cell numbers, in absence of STAT3 mutations. We identified two distinct homozygous nonsense mutations in ZNF341, which encodes a zinc finger transcription factor. Wild-type ZNF341 bound to and activated the STAT3 promoter, whereas the mutant variants showed impaired transcriptional activation, partly due to nuclear translocation failure. In summary, nonsense mutations in ZNF341 account for the STAT3-like phenotype in four autosomal-recessive kindreds. Thus, ZNF341 is a previously unrecognized regulator of immune homeostasis.
Collapse
Affiliation(s)
- Stefanie Frey-Jakobs
- Center for Chronic Immunodeficiency, Medical Center University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
| | - Julia M Hartberger
- Center for Chronic Immunodeficiency, Medical Center University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
| | - Manfred Fliegauf
- Center for Chronic Immunodeficiency, Medical Center University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
| | - Claudia Bossen
- Center for Chronic Immunodeficiency, Medical Center University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
| | - Magdalena L Wehmeyer
- Center for Chronic Immunodeficiency, Medical Center University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
| | - Johanna C Neubauer
- Center for Chronic Immunodeficiency, Medical Center University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
| | - Alla Bulashevska
- Center for Chronic Immunodeficiency, Medical Center University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
| | - Michele Proietti
- Center for Chronic Immunodeficiency, Medical Center University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
| | - Philipp Fröbel
- Center for Chronic Immunodeficiency, Medical Center University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
| | - Christina Nöltner
- Center for Chronic Immunodeficiency, Medical Center University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
| | - Linlin Yang
- Center for Chronic Immunodeficiency, Medical Center University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
| | - Jessica Rojas-Restrepo
- Center for Chronic Immunodeficiency, Medical Center University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
| | - Niko Langer
- Center for Chronic Immunodeficiency, Medical Center University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
| | - Sandra Winzer
- Center for Chronic Immunodeficiency, Medical Center University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
| | - Karin R Engelhardt
- Primary Immunodeficiency Group, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - Cristina Glocker
- Center for Chronic Immunodeficiency, Medical Center University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
| | - Dietmar Pfeifer
- Department of Hematology, Oncology and Stem Cell Transplantation, Medical Center University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
| | - Adi Klein
- Department of Pediatrics, Hillel Yaffe Medical Center, Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Alejandro A Schäffer
- National Center for Biotechnology Information, National Institutes of Health, Department of Health and Human Services, Bethesda, MD 20894, USA
| | - Irina Lagovsky
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Felsenstein Medical Research Center, Rabin Medical Center, Petah Tikva, Israel
| | | | - Vivien Béziat
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, 75015 Paris, France.,Paris Descartes University, Imagine Institute, 75015 Paris, France
| | - Anne Puel
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, 75015 Paris, France.,Paris Descartes University, Imagine Institute, 75015 Paris, France.,St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY 10065, USA
| | - Jean-Laurent Casanova
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, 75015 Paris, France.,Paris Descartes University, Imagine Institute, 75015 Paris, France.,St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY 10065, USA.,Pediatric Hematology-Immunology Unit, Necker Hospital for Sick Children, Assistance Publique des Hôpitaux de Paris, 75015 Paris, France.,Howard Hughes Medical Institute, New York, NY 10065, USA
| | - Bernhard Fleckenstein
- Institute of Clinical and Molecular Virology, University of Erlangen-Nürnberg, Erlangen, Germany
| | - Stephan Weidinger
- Department of Dermatology, Venereology and Allergology, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Sara S Kilic
- Department of Pediatric Immunology, Uludag University Medical Faculty, Gorukle-Bursa, Turkey
| | - Ben-Zion Garty
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Allergy and Immunology Clinic, Schneider Children's Medical Center, Tel Aviv, Israel
| | - Amos Etzioni
- Ruth's Children Hospital, Rambam Health Care Campus and Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Bodo Grimbacher
- Center for Chronic Immunodeficiency, Medical Center University of Freiburg, Faculty of Medicine, University of Freiburg, Germany. .,Institute of Immunology and Transplantation, Royal Free Hospital and University College London, London, UK.,DZIF (German Center for Infection Research) Satellite Center Freiburg, Germany
| |
Collapse
|
18
|
Strohbuecker L, Koenen H, van Rijssen E, van Cranenbroek B, Fasse E, Joosten I, Körber A, Bergmann C. Increased dermal expression of chromatin-associated protein HMGB1 and concomitant T-cell expression of the DNA RAGE in patients with psoriasis vulgaris. PSORIASIS (AUCKLAND, N.Z.) 2019; 9:7-17. [PMID: 30859087 PMCID: PMC6385765 DOI: 10.2147/ptt.s190507] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
PURPOSE Psoriasis vulgaris (PV) is an autoimmune-related chronic inflammatory disease of the skin, with both vascular and metabolic effects. Aggravating factors have been identified that initiate and maintain inflammation, including expression of Th1-, Th17-, and Th22-cell derived cytokines. Recently, we showed that the evolutionarily ancient and highly conserved damage-associated molecular pattern molecule "high mobility group box 1 (HMGB1)" is significantly increased in the serum of PV patients with disease progression and is decreased under standard therapies. MATERIALS AND METHODS To better understand the role of HMGB1 in the pathogenesis of PV, we recruited 22 untreated psoriatic patients with either mild or severe disease, defined by the Psoriasis Area Severity Index. We assessed HMGB1 and receptor for advanced glycation end products (RAGE) expression in the skin by immunohistochemistry and analyzed the immune-phenotype of Treg and Th17 cells by flow cytometry. RESULTS We found increased staining for HMGB1 in the dermis of psoriatic plaques in comparison to uninvolved skin of patients with PV. In addition, the major histocompatibility complex class III-encoded DNA and HMGB1 RAGE, induced by HMGB1, were highly expressed on psoriatic CD8+ T cells and CD4+ Treg. High expression of HMGB1 in the lesional skin was associated with even higher expression of its receptor, RAGE, on the cell surface of keratino-cytes in patients with severe PV. CONCLUSION The presence of HMGB1 and RAGE signaling may impact orchestration of chronic inflammation in PV which might have implications for Treg and Th17 cells.
Collapse
Affiliation(s)
- Lisa Strohbuecker
- Department of Dermatology, University Hospital Essen, 45147 Essen, Germany
| | - Hans Koenen
- Department of Laboratory Medicine, Laboratory of Medical Immunology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Esther van Rijssen
- Department of Laboratory Medicine, Laboratory of Medical Immunology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Bram van Cranenbroek
- Department of Laboratory Medicine, Laboratory of Medical Immunology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Esther Fasse
- Department of Laboratory Medicine, Laboratory of Medical Immunology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Irma Joosten
- Department of Laboratory Medicine, Laboratory of Medical Immunology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Andreas Körber
- Department of Dermatology, University Hospital Essen, 45147 Essen, Germany
| | - Christoph Bergmann
- Department of Otorhinolaryngology, University Hospital Essen, 45147 Essen, Germany,
| |
Collapse
|
19
|
Xu YJ, Chen FP, Chen Y, Fu B, Liu EY, Zou L, Liu LX. A Possible Reason to Induce Acute Graft-vs.-Host Disease After Hematopoietic Stem Cell Transplantation: Lack of Sirtuin-1 in CD4 + T Cells. Front Immunol 2018; 9:3078. [PMID: 30622543 PMCID: PMC6308326 DOI: 10.3389/fimmu.2018.03078] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 12/12/2018] [Indexed: 01/02/2023] Open
Abstract
Sirtuin 1 (SIRT1) is a critical suppressor of T cell immunity. However, whether SIRT1 is involved in the progression of acute graft-vs.-host disease (aGVHD) has still remained unclear. PI3K/Akt/mTOR pathway is a crucial element involved in the activation and functions of T cells. Over-activation of PI3K/Akt/mTOR signaling may be related to the occurrence of aGVHD. STAT3 activation requires phosphorylation and acetylation. A recent study showed that STAT3 hyperphosphorylation in CD4+ T cells may be a trigger of aGVHD. The role of the STAT3 acetylation in aGVHD pathogenesis is still unclear. The present study revealed that SIRT1 deficiency as a critical factor is involved in the excessive activation of mTOR pathway and upregulation of STAT3 acetylation and phosphorylation in CD4+ T cells from patients with aGVHD. Exorbitant activation of IL-1β signaling is the main reason for TAK1-dependent SIRT1 insufficiency. The findings of the present study might provide a new therapeutic target for treating aGVHD.
Collapse
Affiliation(s)
- Ya-Jing Xu
- Department of Hematology, Xiangya Hospital, Central South University, Changsha, China
| | - Fang-Ping Chen
- Department of Hematology, Xiangya Hospital, Central South University, Changsha, China
| | - Yan Chen
- Department of Hematology, Xiangya Hospital, Central South University, Changsha, China
| | - Bin Fu
- Department of Hematology, Xiangya Hospital, Central South University, Changsha, China
| | - En-Yi Liu
- Department of Hematology, Xiangya Hospital, Central South University, Changsha, China
| | - Lang Zou
- Department of Hematology, Xiangya Hospital, Central South University, Changsha, China
| | - Lin-Xin Liu
- Department of Hematology, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
20
|
Kumar S, Leigh ND, Cao X. The Role of Co-stimulatory/Co-inhibitory Signals in Graft-vs.-Host Disease. Front Immunol 2018; 9:3003. [PMID: 30627129 PMCID: PMC6309815 DOI: 10.3389/fimmu.2018.03003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 12/05/2018] [Indexed: 12/31/2022] Open
Abstract
Allogeneic hematopoietic cell transplantation (allo-HCT) is an effective immunotherapeutic approach for various hematologic and immunologic ailments. Despite the beneficial impact of allo-HCT, its adverse effects cause severe health concerns. After transplantation, recognition of host cells as foreign entities by donor T cells induces graft-vs.-host disease (GVHD). Activation, proliferation and trafficking of donor T cells to target organs and tissues are critical steps in the pathogenesis of GVHD. T cell activation is a synergistic process of T cell receptor (TCR) recognition of major histocompatibility complex (MHC)-anchored antigen and co-stimulatory/co-inhibitory signaling in the presence of cytokines. Most of the currently used therapeutic regimens for GVHD are based on inhibiting the allogeneic T cell response or T-cell depletion (TCD). However, the immunosuppressive drugs and TCD hamper the therapeutic potential of allo-HCT, resulting in attenuated graft-vs.-leukemia (GVL) effect as well as increased vulnerability to infection. In view of the drawback of overbroad immunosuppression, co-stimulatory, and co-inhibitory molecules are plausible targets for selective modulation of T cell activation and function that can improve the effectiveness of allo-HCT. Therefore, this review collates existing knowledge of T cell co-stimulation and co-inhibition with current research that may have the potential to provide novel approaches to cure GVHD without sacrificing the beneficial effects of allo-HCT.
Collapse
Affiliation(s)
- Sandeep Kumar
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| | - Nicholas D Leigh
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| | - Xuefang Cao
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States.,Department of Microbiology and Immunology, Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland, Baltimore, MD, United States
| |
Collapse
|
21
|
STAT5 and TET2 Cooperate to Regulate FOXP3-TSDR Demethylation in CD4 + T Cells of Patients with Colorectal Cancer. J Immunol Res 2018; 2018:6985031. [PMID: 30013992 PMCID: PMC6022275 DOI: 10.1155/2018/6985031] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Revised: 03/03/2018] [Accepted: 05/23/2018] [Indexed: 12/13/2022] Open
Abstract
The tumor-infiltrating Tregs are linked to colorectal cancer progression and outcome. FOXP3 is regarded as a critical developmental and functional factor for Tregs. FOXP3-TSDR demethylation is required for stable expression of FOXP3 and maintenance of Treg function. In our study, we found specific DNA hypomethylation of FOXP3-TSDR in CD4+ T cells from colon tumor tissues as compared with normal colonic tissues. Moreover, we also found that the expression of STAT5 and TET2 was increased in CD4+ T cells from colon tumor tissues, and the superfluous STAT5 and TET2 binding to FOXP3-TSDR resulted in DNA hypomethylation. In conclusion, we have demonstrated that excessive amounts of STAT5 may bind more TET2 to the FOXP3-TSDR and upregulate FOXP3 expression via DNA demethylation. Our study improved the mechanism of FOXP3-TSDR hypomethylation in tumor-infiltrating CD4+ T cells of CRC patients.
Collapse
|
22
|
Apostolova P, Zeiser R. The role of danger signals and ectonucleotidases in acute graft-versus-host disease. Hum Immunol 2016; 77:1037-1047. [PMID: 26902992 DOI: 10.1016/j.humimm.2016.02.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Revised: 02/09/2016] [Accepted: 02/18/2016] [Indexed: 12/28/2022]
Abstract
Allogeneic hematopoietic cell transplantation (allo-HCT) represents the only curative treatment approach for many patients with benign or malignant diseases of the hematopoietic system. However, post-transplant morbidity and mortality are significantly increased by the development of acute graft-versus-host disease (GvHD). While alloreactive T cells act as the main cellular mediator of the GvH reaction, recent evidence suggests a critical role of the innate immune system in the early stages of GvHD initiation. Danger-associated molecular patterns released from the intracellular space as well as from the extracellular matrix activate antigen-presenting cells and set pro-inflammatory pathways in motion. This review gives an overview about danger signals representing therapeutic targets with a clinical perspective with a particular focus on extracellular nucleotides and ectonucleotidases.
Collapse
Affiliation(s)
- Petya Apostolova
- Department of Hematology, Oncology and Stem Cell Transplantation, Freiburg University Medical Center, Albert-Ludwigs-University, Freiburg, Germany.
| | - Robert Zeiser
- Department of Hematology, Oncology and Stem Cell Transplantation, Freiburg University Medical Center, Albert-Ludwigs-University, Freiburg, Germany.
| |
Collapse
|