1
|
Wang Q, Wu Y, Ouyang L, Min X, Zheng M, Gao L, Chen X, Hu Z, Yang S, Jiang W, Jia S, Lu Q, Zhao M. Single-cell analyses of intestinal epithelium reveal the dysregulation of gut immune microenvironment in systemic lupus erythematosus. J Transl Med 2025; 23:118. [PMID: 39871323 PMCID: PMC11773722 DOI: 10.1186/s12967-025-06147-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 01/16/2025] [Indexed: 01/29/2025] Open
Abstract
BACKGROUND The small intestine harbors a rich array of intestinal intraepithelial lymphocytes (IELs) that interact with structural cells to collectively sustain gut immune homeostasis. Dysregulation of gut immune homeostasis was implicated in the pathogenesis of multiple autoimmune diseases, however, whether this homeostasis is disrupted in a lupus autoimmune background remains unclear. METHODS We performed single-cell RNA sequencing (scRNA-seq) analyses to elucidate immune and structural milieu in the intestinal epithelium of MRL/Lpr lupus mice (Lpr mice) and MRL/Mpj control mice (Mpj mice). Comprehensive analyses including unsupervised clustering, trajectories, and cellular communication were performed. The primary findings from scRNA-seq were further validated by quantitative polymerase chain reaction (qPCR), flow cytometry, and in vivo experiments including selenium supplementation. RESULTS We observed a significant reduction in CD8αα + IELs, accompanied by a marked increase in CD8αβ + IELs in Lpr mice. Additionally, subsets of CD8 + IELs exhibiting significantly enhanced effector functions were found to be markedly enriched in Lpr mice. Intercellular communication patterns within intestinal epithelial immune and structural cells were found to be specifically altered in Lpr mice. Moreover, scRNA-seq revealed significantly decreased intestinal TCRγδ T cells (γδT) associated with reduced aryl-hydrocarbon receptor repressor (AHRR) expression and subsequent oxidative stress and ferroptosis in Lpr mice. Antioxidant selenium effectively reversed the loss of γδT in Lpr mice, improved the gut barrier, and alleviated lupus symptoms. CONCLUSIONS Our high-resolution single-cell atlas enhances the understanding of the immune and structural milieu of intestinal epithelium in lupus and provides new insights into lupus pathogenesis mediated by intestinal immune dysregulation.
Collapse
Affiliation(s)
- Qiaolin Wang
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, 210042, China
- Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, 210042, China
| | - Yutong Wu
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, 210042, China
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Lianlian Ouyang
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Xiaoli Min
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, 210042, China
- Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, 210042, China
| | - Meiling Zheng
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, 210042, China
- Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, 210042, China
| | - Lingyu Gao
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, 210042, China
- Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, 210042, China
| | - Xiaoyun Chen
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, 210042, China
- Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, 210042, China
| | - Zhi Hu
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, 210042, China
- Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, 210042, China
| | - Shuang Yang
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Wenjuan Jiang
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, 210042, China
- Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, 210042, China
| | - Sujie Jia
- Department of Pharmacy, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, 210042, China
| | - Qianjin Lu
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, 210042, China.
- Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, 210042, China.
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, Second Xiangya Hospital, Central South University, Changsha, 410011, China.
| | - Ming Zhao
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, 210042, China.
- Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, 210042, China.
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, Second Xiangya Hospital, Central South University, Changsha, 410011, China.
| |
Collapse
|
2
|
Arumugam P, Saha K, Nighot P. Intestinal Epithelial Tight Junction Barrier Regulation by Novel Pathways. Inflamm Bowel Dis 2025; 31:259-271. [PMID: 39321109 DOI: 10.1093/ibd/izae232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Indexed: 09/27/2024]
Abstract
Intestinal epithelial tight junctions (TJs), a dynamically regulated barrier structure composed of occludin and claudin family of proteins, mediate the interaction between the host and the external environment by allowing selective paracellular permeability between the luminal and serosal compartments of the intestine. TJs are highly dynamic structures and can undergo constant architectural remodeling in response to various external stimuli. This is mediated by an array of intracellular signaling pathways that alters TJ protein expression and localization. Dysfunctional regulation of TJ components compromising the barrier homeostasis is an important pathogenic factor for pathological conditions including inflammatory bowel disease (IBD). Previous studies have elucidated the significance of TJ barrier integrity and key regulatory mechanisms through various in vitro and in vivo models. In recent years, considerable efforts have been made to understand the crosstalk between various signaling pathways that regulate formation and disassembly of TJs. This review provides a comprehensive view on the novel mechanisms that regulate the TJ barrier and permeability. We discuss the latest evidence on how ion transport, cytoskeleton and extracellular matrix proteins, signaling pathways, and cell survival mechanism of autophagy regulate intestinal TJ barrier function. We also provide a perspective on the context-specific outcomes of the TJ barrier modulation. The knowledge on the diverse TJ barrier regulatory mechanisms will provide further insights on the relevance of the TJ barrier defects and potential target molecules/pathways for IBD.
Collapse
Affiliation(s)
- Priya Arumugam
- Division of Gastroenterology and Hepatology, Department of Medicine, Pennsylvania State College of Medicine, Hershey, PA, USA
| | - Kushal Saha
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Prashant Nighot
- Division of Gastroenterology and Hepatology, Department of Medicine, Pennsylvania State College of Medicine, Hershey, PA, USA
| |
Collapse
|
3
|
Spencer J, Jain S. Could tolerance to DNA be broken in the gut in systemic lupus erythematosus? Immunol Lett 2024; 270:106937. [PMID: 39490628 DOI: 10.1016/j.imlet.2024.106937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/14/2024] [Accepted: 10/25/2024] [Indexed: 11/05/2024]
Abstract
The bacteria in the human colon outnumber the total number of nucleated cells in the human body by approximately 10:1. The DNA that the bacteria contain is enriched around 20-fold in immune stimulatory CpG motifs compared to the DNA of host cells. In addition, this DNA can have alternative more immunogeneic DNA structures and it may be presented to the immune system alongside other proinflammatory bacterial innate ligands such as LPS. To ensure that this immunostimulatory combination is not pathogenic, the luminal boundary of host tissues in the human gastrointestinal tract is protected by cells secreting bactericides together with the secreted enzyme DNASE1L3 that can break down bacterial DNA. Cells with RNA encoding DNASE1L3 are particularly abundant in the gut-associated lymphoid tissue where bacteria are specifically sampled into the body, alongside B cells noted for their T independent function. Importantly, individuals with loss of function mutations in DNASE1L3 develop anti-DNA antibodies and lupus symptoms. In this review, we explore the possibility that a perfect storm might break tolerance to DNA: when bacterial DNA from microbiota that is not digested by DNASE1L3 directly encounters B cells that are not necessarily restricted by T cell dependence.
Collapse
Affiliation(s)
- Jo Spencer
- School of Immunology and Microbial Sciences, King's College London, London, UK.
| | - Sahil Jain
- School of Immunology and Microbial Sciences, King's College London, London, UK; Louise Coote Lupus Unit, Guy's and St Thomas' NHS Foundation Trust, London, UK
| |
Collapse
|
4
|
Waterman HR, Dufort MJ, Posso SE, Ni M, Li LZ, Zhu C, Raj P, Smith KD, Buckner JH, Hamerman JA. Lupus IgA1 autoantibodies synergize with IgG to enhance plasmacytoid dendritic cell responses to RNA-containing immune complexes. Sci Transl Med 2024; 16:eadl3848. [PMID: 38959329 PMCID: PMC11418372 DOI: 10.1126/scitranslmed.adl3848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 06/12/2024] [Indexed: 07/05/2024]
Abstract
Autoantibodies to nuclear antigens are hallmarks of systemic lupus erythematosus (SLE) where they contribute to pathogenesis. However, there remains a gap in our knowledge regarding how different isotypes of autoantibodies contribute to this autoimmune disease, including the production of the critical type I interferon (IFN) cytokines by plasmacytoid dendritic cells (pDCs) in response to immune complexes (ICs). We focused on IgA, which is the second-most prevalent isotype in serum and, along with IgG, is deposited in glomeruli in individuals with lupus nephritis. We show that individuals with SLE have serum IgA autoantibodies against most nuclear antigens, correlating with IgG against the same antigen. We investigated whether IgA autoantibodies against a major SLE autoantigen, Smith ribonucleoprotein (Sm/RNP), played a role in IC activation of pDCs. We found that pDCs expressed the IgA-specific Fc receptor, FcαR, and IgA1 autoantibodies synergized with IgG in RNA-containing ICs to generate robust primary blood pDC IFN-α responses in vitro. pDC responses to these ICs required both FcαR and FcγRIIa, showing synergy between these Fc receptors. Sm/RNP IC binding to and internalization by pDCs were greater when ICs contained both IgA1 and IgG. Circulating pDCs from individuals with SLE had higher binding of IgA1-containing ICs and higher expression of FcαR than pDCs from healthy control individuals. Although pDC FcαR expression correlated with the blood IFN-stimulated gene signature in SLE, Toll-like receptor 7 agonists, but not IFN-α, up-regulated pDC FcαR expression in vitro. Together, we show a mechanism by which IgA1 autoantibodies contribute to SLE pathogenesis.
Collapse
Affiliation(s)
- Hayley R. Waterman
- Molecular and Cell Biology Program, University of Washington; Seattle, 98195, USA
- Center for Fundamental Immunology, Benaroya Research Institute; Seattle, 98101, USA
| | - Matthew J. Dufort
- Center for Systems Immunology, Benaroya Research Institute; Seattle, 98101, USA
| | - Sylvia E. Posso
- Center for Translational Immunology, Benaroya Research Institute, 98101, USA
| | - Minjian Ni
- Center for Fundamental Immunology, Benaroya Research Institute; Seattle, 98101, USA
| | - Lucy Z. Li
- Molecular and Cell Biology Program, University of Washington; Seattle, 98195, USA
- Center for Fundamental Immunology, Benaroya Research Institute; Seattle, 98101, USA
| | - Chengsong Zhu
- Department of Immunology, Microarray and Immune Phenotyping Core Facility, University of Texas Southwestern Medical Center; Dallas, 75390, USA
| | - Prithvi Raj
- Department of Immunology, Microarray and Immune Phenotyping Core Facility, University of Texas Southwestern Medical Center; Dallas, 75390, USA
| | - Kelly D. Smith
- Department of Laboratory Medicine and Pathology, University of Washington; Seattle, 98195, USA
| | - Jane H. Buckner
- Center for Translational Immunology, Benaroya Research Institute, 98101, USA
| | - Jessica A. Hamerman
- Molecular and Cell Biology Program, University of Washington; Seattle, 98195, USA
- Center for Fundamental Immunology, Benaroya Research Institute; Seattle, 98101, USA
- Department of Immunology, University of Washington; Seattle, 98195, USA
| |
Collapse
|
5
|
Bowes MM, Casares-Marfil D, Sawalha AH. Intestinal permeability correlates with disease activity and DNA methylation changes in lupus patients. Clin Immunol 2024; 262:110173. [PMID: 38460891 PMCID: PMC11009052 DOI: 10.1016/j.clim.2024.110173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/30/2024] [Accepted: 02/16/2024] [Indexed: 03/11/2024]
Abstract
OBJECTIVE Systemic lupus erythematosus (SLE or lupus) is a chronic autoimmune disease that can involve various organ systems. Several studies have suggested that increased intestinal permeability may play a role in the pathogenesis of lupus. The aim of this study was to elucidate the relationship between intestinal permeability, disease activity, and epigenetic changes in lupus patients. METHODS A total of 25 female lupus patients were included in this study. Systemic Lupus Erythematosus Disease Activity Index (SLEDAI) scores were used as indicator of disease activity. Plasma zonulin levels were measured, using an ELISA, as a marker of intestinal permeability. Genome-wide DNA methylation patterns were assessed in neutrophils for 19 of the lupus patients using the Infinium MethylationEPIC array. Linear regression and Pearson's correlation were used to evaluate the correlation between zonulin concentrations and SLEDAI scores. The relationship between DNA methylation levels and zonulin concentrations was assessed using beta regression, linear regression, and Pearson's correlation, adjusting for age and race. RESULTS Intestinal permeability positively correlated with disease activity in lupus patients (p-value = 7.60 × 10-3, r = 0.53). DNA methylation levels in 926 CpG sites significantly correlated with intestinal permeability. The highest correlation was identified in LRIG1 (cg14159396, FDR-adjusted p-value = 1.35 × 10-12, adjusted r2 = 0.92), which plays a role in intestinal homeostasis. Gene Ontologies related to cell-cell adhesion were enriched among the genes that were hypomethylated with increased intestinal permeability in lupus. CONCLUSION Our data suggest a correlation between increased intestinal permeability and disease activity in lupus patients. Further, increased intestinal permeability might be associated with epigenetic changes that could play a role in the pathogenesis of lupus.
Collapse
Affiliation(s)
- Mckenna M Bowes
- Division of Rheumatology, Department of Pediatrics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Desiré Casares-Marfil
- Division of Rheumatology, Department of Pediatrics, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Amr H Sawalha
- Division of Rheumatology, Department of Pediatrics, University of Pittsburgh, Pittsburgh, PA, USA; Division of Rheumatology and Clinical Immunology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA; Lupus Center of Excellence, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
6
|
Waterman HR, Dufort MJ, Posso SE, Ni M, Li LZ, Zhu C, Raj P, Smith KD, Buckner JH, Hamerman JA. Lupus IgA1 autoantibodies synergize with IgG to enhance pDC responses to RNA-containing immune complexes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.09.07.556743. [PMID: 37745328 PMCID: PMC10515763 DOI: 10.1101/2023.09.07.556743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Autoantibodies to nuclear antigens are hallmarks of the autoimmune disease systemic lupus erythematosus (SLE) where they contribute to pathogenesis. However, there remains a gap in our knowledge regarding how different isotypes of autoantibodies contribute to disease, including the production of the critical type I interferon (IFN) cytokines by plasmacytoid dendritic cells (pDCs) in response to immune complexes (ICs). We focused on IgA, which is the second most prevalent isotype in serum, and along with IgG is deposited in glomeruli in lupus nephritis. Here, we show that individuals with SLE have IgA autoantibodies against most nuclear antigens, correlating with IgG against the same antigen. We investigated whether IgA autoantibodies against a major SLE autoantigen, Smith ribonucleoproteins (Sm/RNPs), play a role in IC activation of pDCs. We found that pDCs express the IgA-specific Fc receptor, FcαR, and there was a striking ability of IgA1 autoantibodies to synergize with IgG in RNA-containing ICs to generate robust pDC IFNα responses. pDC responses to these ICs required both FcαR and FcγRIIa, showing a potent synergy between these Fc receptors. Sm/RNP IC binding to and internalization by pDCs were greater when ICs contained both IgA1 and IgG. pDCs from individuals with SLE had higher binding of IgA1-containing ICs and higher expression of FcαR than pDCs from healthy control individuals. Whereas pDC FcαR expression correlated with blood ISG signature in SLE, TLR7 agonists, but not IFNα, upregulated pDC FcαR expression in vitro. Together, we show a new mechanism by which IgA1 autoantibodies contribute to SLE pathogenesis.
Collapse
Affiliation(s)
- Hayley R. Waterman
- Molecular and Cell Biology Program, University of Washington; Seattle, USA
- Center for Fundamental Immunology, Benaroya Research Institute; Seattle, USA
| | - Matthew J. Dufort
- Center for Systems Immunology, Benaroya Research Institute; Seattle, USA
| | - Sylvia E. Posso
- Center for Translational Immunology, Benaroya Research Institute
| | - Minjian Ni
- Center for Fundamental Immunology, Benaroya Research Institute; Seattle, USA
| | - Lucy Z. Li
- Molecular and Cell Biology Program, University of Washington; Seattle, USA
- Center for Fundamental Immunology, Benaroya Research Institute; Seattle, USA
| | - Chengsong Zhu
- Department of Immunology, Microarray and Immune Phenotyping Core Facility, University of Texas Southwestern Medical Center; Dallas, USA
| | - Prithvi Raj
- Department of Immunology, Microarray and Immune Phenotyping Core Facility, University of Texas Southwestern Medical Center; Dallas, USA
| | - Kelly D. Smith
- Department of Laboratory Medicine and Pathology, University of Washington; Seattle, USA
| | - Jane H. Buckner
- Center for Translational Immunology, Benaroya Research Institute
| | - Jessica A. Hamerman
- Molecular and Cell Biology Program, University of Washington; Seattle, USA
- Center for Fundamental Immunology, Benaroya Research Institute; Seattle, USA
- Department of Immunology, University of Washington; Seattle, USA
| |
Collapse
|
7
|
Gudi R, Johnson BM, Gaudreau MC, Sun W, Ball L, Vasu C. Intestinal permeability and inflammatory features of juvenile age correlate with the eventual systemic autoimmunity in lupus-prone female SWR × NZB F1 (SNF1) mice. Immunology 2024; 171:235-249. [PMID: 37947218 PMCID: PMC10842200 DOI: 10.1111/imm.13713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 10/29/2023] [Indexed: 11/12/2023] Open
Abstract
The incidence of systemic lupus erythematosus (SLE) is about nine times higher in women than in men, and the underlying mechanisms that contribute to this gender bias are not fully understood. Previously, using lupus-prone (SWR × NZB)F1 (SNF1) mice, we have shown that the intestinal immune system could play a role in the initiation and progression of disease in SLE, and depletion of gut microbiota produces more pronounced disease protection in females than in males. Here, we show that the gut permeability features of lupus-prone female SNF1 mice at juvenile ages directly correlate with the expression levels of pro-inflammatory factors, faecal IgA abundance and nAg reactivity and the eventual systemic autoantibody levels and proteinuria onset. Furthermore, we observed that the disease protection achieved in female SNF1 mice upon depletion of gut microbiota correlates with the diminished gut inflammatory protein levels, intestinal permeability and circulating microbial DNA levels. However, faecal microbiota transplant from juvenile male and females did not result in modulation of gut inflammatory features or permeability. Overall, these observations suggest that the early onset of intestinal inflammation, systemic autoantibody production and clinical stage disease in lupus-prone females is linked to higher gut permeability in them starting at as early as juvenile age. While the higher gut permeability in juvenile lupus-prone females is dependent on the presence of gut microbes, it appears to be independent of the composition of gut microbiota.
Collapse
Affiliation(s)
- Radhika Gudi
- Department of Microbiology and Immunology, College of Medicine, Medical University of South Carolina, Charleston, SC-29425
| | - Benjamin M. Johnson
- Department of Microbiology and Immunology, College of Medicine, Medical University of South Carolina, Charleston, SC-29425
| | - Marie-Claude Gaudreau
- Department of Microbiology and Immunology, College of Medicine, Medical University of South Carolina, Charleston, SC-29425
| | - Wei Sun
- Department of Microbiology and Immunology, College of Medicine, Medical University of South Carolina, Charleston, SC-29425
| | - Lauren Ball
- Department of Pharmacology, College of Medicine, Medical University of South Carolina, Charleston, SC-29425
| | - Chenthamarakshan Vasu
- Department of Microbiology and Immunology, College of Medicine, Medical University of South Carolina, Charleston, SC-29425
| |
Collapse
|
8
|
Wang Q, Lu Q, Jia S, Zhao M. Gut immune microenvironment and autoimmunity. Int Immunopharmacol 2023; 124:110842. [PMID: 37643491 DOI: 10.1016/j.intimp.2023.110842] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 08/14/2023] [Accepted: 08/19/2023] [Indexed: 08/31/2023]
Abstract
A variety of immune cells or tissues are present in the gut to form the gut immune microenvironment by interacting with gut microbiota, and to maintain the gut immune homeostasis. Accumulating evidence indicated that gut microbiota dysbiosis might break the homeostasis of the gut immune microenvironment, which was associated with many health problems including autoimmune diseases. Moreover, disturbance of the gut immune microenvironment can also induce extra-intestinal autoimmune disorders through the migration of intestinal pro-inflammatory effector cells from the intestine to peripheral inflamed sites. This review discussed the composition of the gut immune microenvironment and its association with autoimmunity. These findings are expected to provide new insights into the pathogenesis of various autoimmune disorders, as well as novel strategies for the prevention and treatment against related diseases.
Collapse
Affiliation(s)
- Qiaolin Wang
- Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing 210042, China; Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing 210042, China
| | - Qianjin Lu
- Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing 210042, China; Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing 210042, China
| | - Sujie Jia
- Department of Pharmacy, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing 210042, China.
| | - Ming Zhao
- Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing 210042, China; Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing 210042, China.
| |
Collapse
|
9
|
Abstract
PURPOSE OF REVIEW Autoantibodies are cornerstone biomarkers in systemic lupus erythematosus (SLE), an autoimmune disease characterized by autoantibody-mediated tissue damage. Autoantibodies can inform about disease susceptibility, clinical course, outcomes and the cause of SLE. Identifying pathogenic autoantibodies in SLE, however, remains a significant challenge. This review summarizes recent advances in the field of autoantibodies in SLE. RECENT FINDINGS High-throughput technologies and innovative hypothesis have been applied to identify autoantibodies linked to pathogenic pathways in SLE. This work has led to the discovery of functional autoantibodies targeting key components is SLE pathogenesis (e.g. DNase1L3, cytokines, extracellular immunoregulatory receptors), as well as the identification of endogenous retroelements and interferon-induced proteins as sources of autoantigens in SLE. Others have reinvigorated the study of mitochondria, which has antigenic parallels with bacteria, as a trigger of autoantibodies in SLE, and identified faecal IgA to nuclear antigens as potential biomarkers linking gut permeability and microbial translocation in SLE pathogenesis. Recent studies showed that levels of autoantibodies against dsDNA, C1q, chromatin, Sm and ribosomal P may serve as biomarkers of proliferative lupus nephritis, and identified novel autoantibodies to several unique species of Ro52 overexpressed by SLE neutrophils. SUMMARY Autoantibodies hold promise as biomarkers of pathogenic mechanisms in SLE.
Collapse
Affiliation(s)
- Eduardo Gómez-Bañuelos
- Division of Rheumatology, The Johns Hopkins University School of Medicine. Baltimore, MD, 21224. U.S.A
| | - Andrea Fava
- Division of Rheumatology, The Johns Hopkins University School of Medicine. Baltimore, MD, 21224. U.S.A
| | - Felipe Andrade
- Division of Rheumatology, The Johns Hopkins University School of Medicine. Baltimore, MD, 21224. U.S.A
| |
Collapse
|