1
|
Wang X, Chen L, Zhang W, Sun W, Huang J. Colorectal Cancer-Derived Exosomes Impair CD4 + T Cell Function and Accelerate Cancer Progression via Macrophage Activation. Cancer Biother Radiopharm 2025; 40:185-195. [PMID: 39263734 DOI: 10.1089/cbr.2024.0032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2024] Open
Abstract
Background: Exosomal programmed death ligand 1 (PD-L1), an exosomal membrane protein found in many tumor types, is consider to aid in regulation of the immune microenvironment. However, the functions and the mechanisms underlying the exosome-mediated regulation of the immune microenvironment in colorectal cancer (CRC) remain unknown. Methods: Western blotting was used to investigate the levels of exosomal PD-L1 in the peripheral blood of patients with CRC and healthy controls. A CRC mouse model was constructed by administering 10 mg/kg azoxymethane (AOM) and dextrane sodium sulfate (DSS) intraperitoneally. The mice were then administered the control or CRC-derived exosomes to examine the regulatory effect of the exosomes on macrophage infiltration and CRC development. In vitro studies, using a coculture system, and flow cytometry analysis were conducted to examine the relationship between the regulatory effect of CRC-derived exosomes on CD4+ T cells and tumor-associated macrophages. RNA-seq and reverse transcription-quantitative polymerase chain reaction assays were used to investigate the mechanisms underlying the regulatory effect of the CRC-derived exosomes on macrophage proliferation and the regulation of the immune microenvironment during CRC development. Results: In patients with CRC, higher levels of exosomal PD-L1 were associated with a more severe form of disease. The treatment of mice with AOM/DSS-induced CRC with CRC-derived exosomes resulted in high levels of macrophage proliferation, increased PD-L1 levels in macrophages, and accelerated CRC progression. Importantly, analysis of an in vitro coculture system and flow cytometry analysis showed that the CRC-derived exosomes transported PD-L1 into macrophages and impaired CD4+ T cell function. Preliminary data suggest that the NF-κb signaling pathway regulates the function of CRC-derived exosomal PD-L1-dependent macrophages. Conclusion: CRC-derived exosomes induce the proliferation of macrophages and increase their PD-L1 levels. They also impair CD4+ T cell function and promote CRC progression. Our findings reveal a novel exosomal PD-L1-mediated crosstalk between the CRC cells and immune cells in the CRC microenvironment.
Collapse
Affiliation(s)
- Xiaolong Wang
- Department of Gastrointestinal Surgery, Huadu District People's Hospital of Guangzhou, Guangzhou, China
- The Third School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Liang Chen
- Department of Gastrointestinal Surgery, Huadu District People's Hospital of Guangzhou, Guangzhou, China
| | - Wenwei Zhang
- Department of Gastrointestinal Surgery, Huadu District People's Hospital of Guangzhou, Guangzhou, China
| | - Wei Sun
- Department of Gastrointestinal Surgery, Huadu District People's Hospital of Guangzhou, Guangzhou, China
| | - Jianpeng Huang
- Department of Gastrointestinal Surgery, The Third People's Hospital of Shenzhen, Shenzhen, China
| |
Collapse
|
2
|
Dong X, Xu H, He B, Zhang M, Miu W, Huang Z, Chen C. FIBRINOGEN-LIKE PROTEIN 2 PROTECTS THE AGGRAVATION OF HYPERTRIGLYCERIDEMIA ON THE SEVERITY OF HYPERTRIGLYCERIDEMIA ACUTE PANCREATITIS BY REGULATING MACROPHAGES. Shock 2025; 63:327-337. [PMID: 39527492 DOI: 10.1097/shk.0000000000002503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
ABSTRACT Objective: The mechanisms underlying the increased severity of hypertriglyceridemia acute pancreatitis (HTG-AP) remain poorly understood. Fibrinogen-like protein 2 (FGL2) has been identified as a regulator of macrophage activity, mediating immune suppression. This study aims to examine the role of FGL2 in the susceptibility to severe conditions of HTG-AP. Methods: Both wild-type and FGL2 gene knockout C57BL/6 mice were utilized to establish HTG, AP, and HTG-AP models using P-407 and/or caerulein. Serum levels of triglycerides, total cholesterol, amylase, and lipase were assessed via biochemical analysis. Pancreatic and lung tissue injuries were evaluated using hematoxylin and eosin staining. TNF-α, IL-1β, and IL-6 levels in serum and pancreatic tissues were quantified using enzyme-linked immunosorbent assay. Immunohistochemistry was used to assess the expression of FGL2, the macrophage marker CD68, and M1/M2 macrophage markers iNOS/CD163. Results: The animal models were successfully established. Compared to wild-type mice, FGL2 knockout resulted in increased pathological injury scores in the pancreas and lungs, as well as elevated TNF-α, IL-1β, and IL-6 levels in serum and pancreatic tissue in the HTG group, with more pronounced effects observed in the HTG-AP group. The AP group alone did not exhibit significant changes due to FGL2 knockout. Further analysis revealed that FGL2 knockout increased CD68 expression but reduced CD163 expression in the pancreatic tissues in the HTG group. In the HTG-AP group, there was a marked increase in CD68 and iNOS expressions, coupled with a reduction in CD163 expression. Conclusion: FGL2 knockout in HTG and HTG-AP mice resulted in increased inflammatory responses and a significant imbalance in M2 macrophages. These findings suggest that FGL2 plays a crucial role in mitigating the aggravation of HTG on the severity of HTG-AP by modulating macrophage activity.
Collapse
Affiliation(s)
- Xiuli Dong
- Department of Gastroenterology and Hepatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Haibo Xu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Key Laboratory of Interventional Pulmonology of Zhejiang Province, Wenzhou, Zhejiang Province, China
| | - Baiqi He
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Key Laboratory of Interventional Pulmonology of Zhejiang Province, Wenzhou, Zhejiang Province, China
| | - Meijuan Zhang
- Department of Medical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Wanqi Miu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Key Laboratory of Interventional Pulmonology of Zhejiang Province, Wenzhou, Zhejiang Province, China
| | - Zhiming Huang
- Department of Gastroenterology and Hepatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Chengshui Chen
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Key Laboratory of Interventional Pulmonology of Zhejiang Province, Wenzhou, Zhejiang Province, China
| |
Collapse
|
4
|
Shen R, Ding Y, Dong Q, Wang Y, Yu J, Pan C, Cai Y, Li Z, Zhang J, Yu K, Zeng Q. IL-4-Induced Gene 1: A Potential Player in Myocardial Infarction. Rev Cardiovasc Med 2024; 25:337. [PMID: 39355609 PMCID: PMC11440439 DOI: 10.31083/j.rcm2509337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/18/2024] [Accepted: 05/06/2024] [Indexed: 10/03/2024] Open
Abstract
Myocardial infarction (MI), a severe outcome of cardiovascular disease, poses a serious threat to human health. Uncontrolled inflammation and excessive cardiomyocyte death, following an infarction event, significantly contribute to both the mortality rate and complications associated with MI. The protein IL-4-induced gene 1 (IL4I1 or FIG1) serves as a natural inhibitor of innate and adaptive immunity, playing a crucial role in CD4+ T cell differentiation, macrophage polarization, and ferroptosis inhibition. Previous studies have linked IL4I1 to acute MI. This review summarizes evidence from both basic and clinical research, highlighting IL4I1 as a critical immunoregulatory enzyme that not only regulates inflammatory responses, but also potentially mitigates MI-induced damage.
Collapse
Affiliation(s)
- Rui Shen
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022 Wuhan, Hubei, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022 Wuhan, Hubei, China
- Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022 Wuhan, Hubei, China
| | - Yan Ding
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022 Wuhan, Hubei, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022 Wuhan, Hubei, China
- Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022 Wuhan, Hubei, China
| | - Qian Dong
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022 Wuhan, Hubei, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022 Wuhan, Hubei, China
- Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022 Wuhan, Hubei, China
| | - Yue Wang
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022 Wuhan, Hubei, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022 Wuhan, Hubei, China
- Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022 Wuhan, Hubei, China
| | - Jian Yu
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022 Wuhan, Hubei, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022 Wuhan, Hubei, China
- Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022 Wuhan, Hubei, China
| | - Chengliang Pan
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022 Wuhan, Hubei, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022 Wuhan, Hubei, China
- Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022 Wuhan, Hubei, China
| | - Yifan Cai
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022 Wuhan, Hubei, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022 Wuhan, Hubei, China
- Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022 Wuhan, Hubei, China
| | - Zhiyang Li
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022 Wuhan, Hubei, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022 Wuhan, Hubei, China
- Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022 Wuhan, Hubei, China
| | - Jiangmei Zhang
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022 Wuhan, Hubei, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022 Wuhan, Hubei, China
- Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022 Wuhan, Hubei, China
| | - Kunwu Yu
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022 Wuhan, Hubei, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022 Wuhan, Hubei, China
- Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022 Wuhan, Hubei, China
| | - Qiutang Zeng
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022 Wuhan, Hubei, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022 Wuhan, Hubei, China
- Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022 Wuhan, Hubei, China
| |
Collapse
|
5
|
He Y, Amer HM, Xu Z, Liu L, Wu S, He B, Liu J, Kai G. Exploration of the underlying mechanism of Astragaloside III in attenuating immunosuppression via network pharmacology and vitro/vivo pharmacological validation. JOURNAL OF ETHNOPHARMACOLOGY 2024; 330:118235. [PMID: 38648891 DOI: 10.1016/j.jep.2024.118235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 04/17/2024] [Accepted: 04/19/2024] [Indexed: 04/25/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Astragalus mongholicus Bunge (AM, recorded in http://www.worldfloraonline.org, 2023-08-03) is a kind of medicine food homology plant with a long medicinal history in China. Astragaloside III (AS-III) has immunomodulatory effects and is one of the most active components in AM. However, its underlying mechanism of action is still not fully explained. AIM OF THE STUDY The research was designed to discuss the protective effects of AS-III on immunosuppression and to elucidate its prospective mechanism. MATERIALS AND METHODS Molecular docking methods and network pharmacology analysis were used to comprehensively investigate potential targets and relative pathways for AS-III and immunosuppression. In order to study and verify the pharmacological activity and mechanism of AS-III in alleviating immunosuppression, immunosuppression mouse model induced by cyclophosphamide (CTX) in vivo and macrophage RAW264.7 cell model induced by hypoxia/lipopolysaccharide (LPS) in vitro were used. RESULTS A total of 105 common targets were obtained from the AS-III-related and immunosuppression-related target networks. The results of network pharmacology and molecular docking demonstrate that AS-III may treat immunosuppression through by regulating glucose metabolism-related pathways such as regulation of lipolysis in adipocytes, carbohydrate digestion and absorption, cGMP-PKG signaling pathway, central carbon metabolism in cancer together with HIF-1 pathway. The results of molecular docking showed that AS-III has good binding relationship with LDHA, AKT1 and HIF1A. In CTX-induced immunosuppressive mouse model, AS-III had a significant protective effect on the reduction of body weight, immune organ index and hematological indices. It can also protect immune organs from damage. In addition, AS-III could significantly improve the expression of key proteins involved in energy metabolism and serum inflammatory factors. To further validate the animal results, an initial inflammatory/immune response model of macrophage RAW264.7 cells was constructed through hypoxia and LPS. AS-III improved the immune function of macrophages, reduced the release of NO, TNF-α, IL-1β, PDHK-1, LDH, lactate, HK, PK and GLUT-1, and restored the decrease of ATP caused by hypoxia. Besides, AS-III was also demonstrated that it could inhibit the increase of HIF-1α, PDHK-1 and LDH by adding inhibitors and agonists. CONCLUSIONS In this study, the main targets of AS-III for immunosuppressive therapy were initially analyzed. AS-III was systematically confirmed to attenuates immunosuppressive state through the HIF-1α/PDHK-1 pathway. These findings offer an experimental foundation for the use of AS-III as a potential candidate for the treatment of immunosuppression.
Collapse
Affiliation(s)
- Yining He
- Zhejiang Key TCM Laboratory for Chinese Resource Innovation and Transformation, School of Pharmaceutical Sciences, Jinhua Academy, Zhejiang Chinese Medical University, Hangzhou, 311402, China
| | - Heba M Amer
- Medicinal and Aromatic Plants Research Dept, National Research Centre, 12622, Dokki, Cairo, Egypt
| | - Zonghui Xu
- Zhejiang Key TCM Laboratory for Chinese Resource Innovation and Transformation, School of Pharmaceutical Sciences, Jinhua Academy, Zhejiang Chinese Medical University, Hangzhou, 311402, China
| | - Lin Liu
- Zhejiang Key TCM Laboratory for Chinese Resource Innovation and Transformation, School of Pharmaceutical Sciences, Jinhua Academy, Zhejiang Chinese Medical University, Hangzhou, 311402, China
| | - Shujing Wu
- Zhejiang Key TCM Laboratory for Chinese Resource Innovation and Transformation, School of Pharmaceutical Sciences, Jinhua Academy, Zhejiang Chinese Medical University, Hangzhou, 311402, China
| | - Beihui He
- Zhejiang Key TCM Laboratory for Chinese Resource Innovation and Transformation, School of Pharmaceutical Sciences, Jinhua Academy, Zhejiang Chinese Medical University, Hangzhou, 311402, China
| | - Junqiu Liu
- Zhejiang Key TCM Laboratory for Chinese Resource Innovation and Transformation, School of Pharmaceutical Sciences, Jinhua Academy, Zhejiang Chinese Medical University, Hangzhou, 311402, China.
| | - Guoyin Kai
- Zhejiang Key TCM Laboratory for Chinese Resource Innovation and Transformation, School of Pharmaceutical Sciences, Jinhua Academy, Zhejiang Chinese Medical University, Hangzhou, 311402, China; The Third Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| |
Collapse
|