1
|
Ahmad Z, Alanazi AK. Polymer thin film-embedded metal oxide-modified electrochemical paper-based sensor for glycine detection. RSC Adv 2025; 15:15630-15638. [PMID: 40365205 PMCID: PMC12067406 DOI: 10.1039/d5ra01870f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2025] [Accepted: 04/25/2025] [Indexed: 05/15/2025] Open
Abstract
This work describes the design and selectivity of a simple electrochemical paper-based analytical sensor (ePAS) for the detection of an amino acid (glycine) using Whatman No. 1 filter paper as the substrate material. A simple wax fabrication method was used to create hydrophobic and hydrophilic channels to control the sample flow. For electrochemical analysis, the carbon and silver ink electrodes were printed on a paper. The working and counter electrodes were made from carbon ink, and the reference and connective pads were made of silver/silver chloride ink. A sensing material composed of methoxy poly(ethylene glycol)-block-poly(l-glutamic acid) and cadmium oxide quantum dots was utilized for the detection of glycine. The proposed ePAS exhibited potential electrocatalytic activity toward the oxidation of glycine. The electrochemical studies showed a higher sensitivity for glycine in a basic medium in a potential window of -0.4 to +0.6 V. The detection limit for glycine under optimized conditions achieved with this sensor was 75.8 μM, while the limit of quantification was 229.7 μM. The sensor showed high sensitivity and reproducibility for up to 25 cycles and directly quantified the amino acids in the samples. The sensor could be reused, making it more economical and environmentally friendly.
Collapse
Affiliation(s)
- Zaheer Ahmad
- Department of Chemistry, GPGC Timergara Dir Lower Khyber Pakhtunkhwa Pakistan
- Higher Education, Archives and Libraries Department Government of Khyber Pakhtunkhwa Pakistan
| | - Abdullah K Alanazi
- Department of Chemistry, College of Science, Taif University P.O. Box 11099 Taif 21944 Saudi Arabia
| |
Collapse
|
2
|
Hamidizadeh M, Martins RF, Bier FF. Point-of-Care Diagnostics Using Self-heating Elements from Smart Food Packaging: Moving Towards Instrument-Free Nucleic Acid-Based Detection. Mol Diagn Ther 2025; 29:67-80. [PMID: 39550729 PMCID: PMC11742007 DOI: 10.1007/s40291-024-00753-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/22/2024] [Indexed: 11/18/2024]
Abstract
Compromising between accuracy and rapidity is an important issue in analytics and diagnostics, often preventing timely and appropriate reactions to disease. This issue is particularly critical for infectious diseases, where reliable and rapid diagnosis is crucial for effective treatment and easier containment, thereby reducing economic and societal impacts. Diagnostic technologies are vital in disease modeling, tracking, treatment decision making, and epidemic containment. At the point-of-care level in modern healthcare, accurate diagnostics, especially those involving genetic-level analysis and nucleic acid amplification techniques, are still needed. However, implementing these techniques in remote or non-laboratory settings poses challenges because of the need for trained personnel and specialized equipment, as all nucleic acid-based diagnostic techniques, such as polymerase chain reaction and isothermal nucleic acid amplification, require temperature cycling or elevated and stabilized temperatures. However, in smart food packaging, there are approved and commercially available methods that use temperature regulation to enable autonomous heat generation without external sources, such as chemical heaters with phase change materials. These approaches could be applied in diagnostics, facilitating point-of-care, electricity-free molecular diagnostics, especially with nucleic acid-based detection methods such as isothermal nucleic acid amplification. In this review, we explore the potential interplay between self-heating elements, isothermal nucleic acid amplification techniques, and phase change materials. This paves the way for the development of truly portable, electricity-free, point-of-care diagnostic tools, particularly advantageous for on-site detection in resource-limited remote settings and for home use.
Collapse
Affiliation(s)
- Mojdeh Hamidizadeh
- Institute of Biochemistry and Biology, Chair of Molecular Bioanalytics and Bioelectronics, University of Potsdam, Potsdam, Germany.
| | - Renata F Martins
- Institute of Molecular Diagnostics and Bioanalytics (IMDB) gGmbH, Potsdam, Germany
| | - Frank F Bier
- Institute of Biochemistry and Biology, Chair of Molecular Bioanalytics and Bioelectronics, University of Potsdam, Potsdam, Germany
- Institute of Molecular Diagnostics and Bioanalytics (IMDB) gGmbH, Potsdam, Germany
| |
Collapse
|
3
|
Kothawade S, Padwal V. Cutting-edge 3D printing in immunosensor design for early cancer detection. Mikrochim Acta 2024; 192:42. [PMID: 39738752 DOI: 10.1007/s00604-024-06880-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Accepted: 12/05/2024] [Indexed: 01/02/2025]
Abstract
Cancer is a major cause of death globally, and early detection is a key to improving outcomes. Traditional diagnostic methods have limitations such as being invasive and lacking sensitivity. Immunosensors, which detect cancer biomarkers using antibodies, offer a solution with high sensitivity and selectivity. When combined with 3D printing, these immunosensors can be customized to detect specific cancer markers, creating rapid, cost-effective, and scalable diagnostic tools. The article reviews the principles behind immunosensors, different 3D fabrication methods such as Fused Deposition Modeling (FDM) and Stereolithography (SLA), and discusses how functionalization strategies, such as surface modifications, can enhance the sensitivity of these devices. The integration of 3D printing allows for the creation of complex sensor structures, offering advantages such as customization, rapid prototyping, and multi-material printing. These advancements make immunosensors arrays highly promising for early cancer detection, tumor profiling, and personalized medicine. The article also explores challenges like scalability, material biocompatibility, and the need for clinical validation. Future perspectives suggest the potential of integrating nanomaterials, multiplexed detection, and wearable technology to further improve the performance and accessibility of these diagnostic tools.
Collapse
Affiliation(s)
- Sachin Kothawade
- Department of Pharmaceutics, SCSSS's Sitabai, Thite College of Pharmacy, Shirur-412210, Dist-Pune, Maharashtra, India.
| | - Vijaya Padwal
- Department of Pharmaceutics, SCSSS's Sitabai, Thite College of Pharmacy, Shirur-412210, Dist-Pune, Maharashtra, India
| |
Collapse
|
4
|
Gu Z, Chang H, Yang G, Xu B, Miao B, Li J. An integrated electronic tag-based vertical flow assay (e-VFA) with micro-sieve and AlGaN/GaN HEMT sensors for multi-target detection in actual saliva. Analyst 2024; 149:4267-4275. [PMID: 38904993 DOI: 10.1039/d4an00510d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
Vertical flow assay (VFA) is an effective point-of-care (POC) diagnostic tool for widespread application. Nevertheless, the lack of multi-target detection and multi-signal readout capability still remains a challenge. Herein, a brand new VFA scheme for multi-target saliva detection based on electronic tags was proposed, where AlGaN/GaN HEMT sensors modified with different bio-receptors as electronic tags endowed the VFA with multi-target detection capability. In addition, the use of electronic tags instead of optical tags allowed the VFA to simultaneously carry out direct multi-target readouts, which ensure effective POC diagnostics for saliva analysis. Moreover, by integrating a hydrophilically optimized micro-sieve, impurities like sticky filaments, epidermal cells and other large-scale charged particles in saliva were effectively screened, which enabled the direct detection of saliva using AlGaN/GaN HEMT sensors. Glucose, urea, and cortisol were selected to verify the feasibility of the multi-target e-VFA scheme, and the results showed that the limit of detection (LOD) was as low as 100 aM. The linear response was demonstrated in the dynamic range of 100 aM to 100 μM, and the specificity, long-term stability and validity of the actual saliva test were also verified. These results demonstrated that the as-proposed e-VFA has potential for application in saliva detection for simultaneous multi-target detection, and it is expected to achieve the real-time detection of more biological targets in saliva.
Collapse
Affiliation(s)
- Zhiqi Gu
- Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215125, People's Republic of China.
| | - Hui Chang
- Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215125, People's Republic of China.
- School of Nano Technology and Nano Bionics, University of Science and Technology of China, Hefei, 230026, People's Republic of China
| | - Guo Yang
- Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215125, People's Republic of China.
- School of Electrical and Mechanical Engineering, Changchun University of Science and Technology, Changchun 130022, China
| | - Boxuan Xu
- Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215125, People's Republic of China.
- The College of Materials Science and Engineering, Shanghai University, Shanghai, 200072, People's Republic of China
| | - Bin Miao
- Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215125, People's Republic of China.
| | - Jiadong Li
- Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215125, People's Republic of China.
| |
Collapse
|
5
|
Vealan K, Joseph N, Alimat S, Karumbati AS, Thilakavathy K. Lateral flow assay: a promising rapid point-of-care testing tool for infections and non-communicable diseases. ASIAN BIOMED 2023; 17:250-266. [PMID: 38161347 PMCID: PMC10754503 DOI: 10.2478/abm-2023-0068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
The point-of-care testing (POCT) approach has established itself as having remarkable importance in diagnosing various infectious and non-communicable diseases (NCDs). The POCT approach has succeeded in meeting the current demand for having diagnostic strategies that can provide fast, sensitive, and highly accurate test results without involving complicated procedures. This has been accomplished by introducing rapid bioanalytical tools or biosensors such as lateral flow assays (LFAs). The production cost of these tools is very low, allowing developing countries with limited resources to utilize them or produce them on their own. Thus, their use has grown in various fields in recent years. More importantly, LFAs have created the possibility for a new era of incorporating nanotechnology in disease diagnosis and have already attained significant commercial success worldwide, making POCT an essential approach not just for now but also for the future. In this review, we have provided an overview of POCT and its evolution into the most promising rapid diagnostic approach. We also elaborate on LFAs with a special focus on nucleic acid LFAs.
Collapse
Affiliation(s)
- Kumaravel Vealan
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, UPM Serdang43400, Malaysia
| | - Narcisse Joseph
- Department of Medical Microbiology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, UPM Serdang43400, Malaysia
| | - Sharizah Alimat
- Department of Chemistry Malaysia, Ministry of Science, Technology and Innovation, Petaling Jaya46661, Selangor, Malaysia
| | - Anandi S. Karumbati
- Centre for Chemical Biology and Therapeutics, Institute for Stem Cell Science and Regenerative Medicine, Bangalore560065, India
| | - Karuppiah Thilakavathy
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, UPM Serdang43400, Malaysia
- Malaysian Research Institute on Ageing (MyAgeing), Universiti Putra Malaysia, UPM Serdang43400, Selangor, Malaysia
| |
Collapse
|
6
|
Fernández Encinas L, Lluch N, Wu AHB, Kaski JC, Badimon L, Cubedo J. A Novel ELISA for the Quantification of Serum Levels of 2 Glycosylated Variants of Apolipoprotein J: Biomarkers for Myocardial Ischemia. J Appl Lab Med 2023; 8:917-930. [PMID: 37473435 DOI: 10.1093/jalm/jfad034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 03/27/2023] [Indexed: 07/22/2023]
Abstract
BACKGROUND Previous studies have pointed out a potential role of ApoJ-Glyc as a biomarker of cardiac ischemia. The aim of this study was to validate the analytical performance of 2 novel ELISAs against 2 different glycosylated ApoJ variants, ApoJ-GlycA2 and ApoJ-GlycA6. METHODS The analytical measuring range, limit of blank (LoB), lower limit of quantification (LoQ), precision, accuracy, recovery, cross-reactivity, and stability were evaluated in serum samples. RESULTS The analytical measuring range was 500-16 000 ng/mL for ApoJ-GlycA2 and 125-4000 ng/mL for ApoJ-GlycA6, with a LoB of 455 ng/mL and 121 ng/mL for ApoJ-GlycA2 and ApoJ-GlycA6, respectively. The LoQ was 500 ng/mL for ApoJ-GlycA2 and 125 ng/mL for ApoJ-GlycA6. The assay performance fulfills the acceptance criteria established in the European Medicines Agency Guideline on bioanalytical method validation. Specifically, the calibration range variability is <15% for ApoJ-GlycA2 and ApoJ-GlycA6; the accuracy is <15% for ApoJ-GlycA2 and ApoJ-GlycA6; the between- and within-run precision is <15% for ApoJ-GlycA6 and ≤20% for ApoJ-GlycA2; and the total allowable error is <30% for ApoJ-GlycA2 and ApoJ-GlycA6. Cross-reactivity studies revealed the absence of cross-reactivity with endogenous components of the matrix (using ApoJ-depleted serum), with nonglycosylated ApoJ and with transferrin (as a high abundant N-glycosylated serum protein). Both ApoJ-GlycA2 and ApoJ-GlycA6 measurements were stable after storage of serum samples at -80°C for 24 months. CONCLUSIONS The newly developed ELISAs to quantify ApoJ-GlycA2 and ApoJ-GlycA6 serum levels showed an acceptable analytical performance according to European Medicines Agency guidelines on bioanalytical method validation in terms of precision, accuracy, recovery, cross-reactivity, and stability.
Collapse
Affiliation(s)
| | - Nuria Lluch
- R&D department, GlyCardial Diagnostics, S.L., Barcelona, Spain
| | - Alan H B Wu
- Clinical Chemistry and Toxicology Laboratories, San Francisco General Hospital and Department of Laboratory Medicine, University of California, San Francisco, CA, United States
| | - Juan Carlos Kaski
- R&D department, GlyCardial Diagnostics, S.L., Barcelona, Spain
- Molecular and Clinical Sciences Research Institute, St George's, University of London, London, United Kingdom
| | - Lina Badimon
- R&D department, GlyCardial Diagnostics, S.L., Barcelona, Spain
- Cardiovascular Research Center-ICCC, Research Institute-Hospital de la Santa Creu i Sant Pau, IIB-Sant Pau, Barcelona, Spain
| | - Judit Cubedo
- R&D department, GlyCardial Diagnostics, S.L., Barcelona, Spain
| |
Collapse
|
7
|
Mahdavi A, Leclercq M, Bodein A, Gotti C, Greffard K, Bilodeau JF, Droit A, Lebel M, Rudkowska I. High dairy products intake modifies the correlation between α-tocopherol levels and serum proteins related to lipid metabolism in subjects at risk of type 2 diabetes. J Funct Foods 2023. [DOI: 10.1016/j.jff.2022.105375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
8
|
Lian C, Young D, Randall RE, Samuel IDW. Organic Light-Emitting Diode Based Fluorescence-Linked Immunosorbent Assay for SARS-CoV-2 Antibody Detection. BIOSENSORS 2022; 12:1125. [PMID: 36551092 PMCID: PMC9775261 DOI: 10.3390/bios12121125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/22/2022] [Accepted: 11/24/2022] [Indexed: 06/17/2023]
Abstract
Immunodiagnostics have been widely used in the detection of disease biomarkers. The conventional immunological tests in central laboratories require expensive equipment and, for non-specialists, the tests are technically demanding and time-consuming, which has prevented their use by the public. Thus, point-of-care tests (POCT), such as lateral flow immunoassays, are being, or have been, developed as more convenient and low-cost methods for immunodiagnostics. However, the sensitivity of such tests is often a concern. Here, a fluorescence-linked immunosorbent assay (FLISA) using organic light-emitting diodes (OLEDs) as excitation light sources was investigated as a way forward for the development of compact and sensitive POCTs. Phycoerythrin (PE) was selected as the fluorescent dye, and OLEDs were designed with different emission spectra. The leakage light of different OLEDs for exciting PE was then investigated to reduce the background noise and improve the sensitivity of the system. Finally, as proof-of-principle that OLED-based technology can be successfully further developed for POCT, antibodies to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in human serum was detected by OLED-FLISA.
Collapse
Affiliation(s)
- Cheng Lian
- Organic Semiconductor Centre, SUPA, School of Physics and Astronomy, University of St Andrews, St Andrews KY16 9SS, UK
| | - Dan Young
- Centre for Biomolecular Sciences, School of Biology, University of St Andrews, St Andrews KY16 9ST, UK
| | - Richard E. Randall
- Centre for Biomolecular Sciences, School of Biology, University of St Andrews, St Andrews KY16 9ST, UK
| | - Ifor D. W. Samuel
- Organic Semiconductor Centre, SUPA, School of Physics and Astronomy, University of St Andrews, St Andrews KY16 9SS, UK
| |
Collapse
|
9
|
Recent progress in microfluidic biosensors with different driving forces. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
10
|
Li Y, Fan H, Ding J, Xu J, Liu C, Wang H. Microfluidic devices: The application in TME modeling and the potential in immunotherapy optimization. Front Genet 2022; 13:969723. [PMID: 36159996 PMCID: PMC9493116 DOI: 10.3389/fgene.2022.969723] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 08/17/2022] [Indexed: 11/13/2022] Open
Abstract
With continued advances in cancer research, the crucial role of the tumor microenvironment (TME) in regulating tumor progression and influencing immunotherapy outcomes has been realized over the years. A series of studies devoted to enhancing the response to immunotherapies through exploring efficient predictive biomarkers and new combination approaches. The microfluidic technology not only promoted the development of multi-omics analyses but also enabled the recapitulation of TME in vitro microfluidic system, which made these devices attractive across studies for optimization of immunotherapy. Here, we reviewed the application of microfluidic systems in modeling TME and the potential of these devices in predicting and monitoring immunotherapy effects.
Collapse
Affiliation(s)
| | | | | | | | | | - Huiyu Wang
- *Correspondence: Chaoying Liu, ; Huiyu Wang,
| |
Collapse
|
11
|
The Future of Biomarkers in Veterinary Medicine: Emerging Approaches and Associated Challenges. Animals (Basel) 2022; 12:ani12172194. [PMID: 36077913 PMCID: PMC9454634 DOI: 10.3390/ani12172194] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 08/20/2022] [Accepted: 08/22/2022] [Indexed: 11/30/2022] Open
Abstract
Simple Summary In this review we seek to outline the role of new technologies in biomarker discovery, particularly within the veterinary field and with an emphasis on ‘omics’, as well as to examine why many biomarkers-despite much excitement-have not yet made it to clinical practice. Further we emphasise the critical need for close collaboration between clinicians, researchers and funding bodies and the need to set clear goals for biomarker requirements and realistic application in the clinical setting, ensuring that biomarker type, method of detection and clinical utility are compatible, and adequate funding, time and sample size are available for all phases of development. Abstract New biomarkers promise to transform veterinary practice through rapid diagnosis of diseases, effective monitoring of animal health and improved welfare and production efficiency. However, the road from biomarker discovery to translation is not always straightforward. This review focuses on molecular biomarkers under development in the veterinary field, introduces the emerging technological approaches transforming this space and the role of ‘omics platforms in novel biomarker discovery. The vast majority of veterinary biomarkers are at preliminary stages of development and not yet ready to be deployed into clinical translation. Hence, we examine the major challenges encountered in the process of biomarker development from discovery, through validation and translation to clinical practice, including the hurdles specific to veterinary practice and to each of the ‘omics platforms–transcriptomics, proteomics, lipidomics and metabolomics. Finally, recommendations are made for the planning and execution of biomarker studies with a view to assisting the success of novel biomarkers in reaching their full potential.
Collapse
|
12
|
Esmek FM, Erichlandwehr T, Brkovic N, Pranzner NP, Teuber JP, Fernandez-Cuesta I. Pillar-structured 3D inlets fabricated by dose-modulated e-beam lithography and nanoimprinting for DNA analysis in passive, clogging-free, nanofluidic devices. NANOTECHNOLOGY 2022; 33:385301. [PMID: 35696945 DOI: 10.1088/1361-6528/ac780d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 06/13/2022] [Indexed: 06/15/2023]
Abstract
We present the fabrication of three-dimensional inlets with gradually decreasing widths and depths and with nanopillars on the slope, all defined in just one lithography step. In addition, as an application, we show how these micro- and nanostructures can be used for micro- and nanofluidics and lab-on-a-chip devices to facilitate the flow and analyze single molecules of DNA. For the fabrication of 3D inlets in a single layer process, dose-modulated electron beam lithography was used, producing depths between 750 nm and 50 nm along a 30 μm long inlet, which is additionally structured with nanometer-scale pillars randomly distributed on top, as a result of incomplete exposure and underdevelopment of the resist. The fabrication conditions affect the slope of the inlet, the nanopillar density and coverage. The key parameters are the dose used for the electron beam exposure and the development conditions, like the developer's dilution, stirring and development time. The 3D inlets with nanostructured pillars were integrated into fluidic devices, acting as a transition between micro and nanofluidic structures for pre-stretching and unfolding DNA molecules, avoiding the intrusion of folded molecules and clogging the analysis channel. After patterning these structures in silicon, they can be replicated in polymer by UV nanoimprinting. We show here how the inlets with pillars slow down the molecules before they enter the nanochannels, resulting in a 3-fold decrease in speed, which would translate to an improvement in the resolution for DNA optical mapping.
Collapse
Affiliation(s)
- Franziska M Esmek
- Universität Hamburg, Institute of Nanostructure and Solid State Physics, HARBOR Bldg 610, Luruper Chaussee 149, Hamburg D-22761, Germany
| | - Tim Erichlandwehr
- Universität Hamburg, Institute of Nanostructure and Solid State Physics, HARBOR Bldg 610, Luruper Chaussee 149, Hamburg D-22761, Germany
| | - Nico Brkovic
- Universität Hamburg, Institute of Nanostructure and Solid State Physics, HARBOR Bldg 610, Luruper Chaussee 149, Hamburg D-22761, Germany
| | - Nathalie P Pranzner
- Universität Hamburg, Institute of Nanostructure and Solid State Physics, HARBOR Bldg 610, Luruper Chaussee 149, Hamburg D-22761, Germany
| | - Jeremy P Teuber
- Universität Hamburg, Institute of Nanostructure and Solid State Physics, HARBOR Bldg 610, Luruper Chaussee 149, Hamburg D-22761, Germany
| | - Irene Fernandez-Cuesta
- Universität Hamburg, Institute of Nanostructure and Solid State Physics, HARBOR Bldg 610, Luruper Chaussee 149, Hamburg D-22761, Germany
- Hamburg Centre for Ultrafast Imaging, Germany
| |
Collapse
|
13
|
Affiliation(s)
- Pankaj Kumar
- Nano-Bioconjugate Chemistry Lab, Cluster Innovation Centre, University of Delhi, Delhi - 110007, India
- Department of Chemistry, University of Delhi, Delhi - 110007, India
| | - Niloy Sarkar
- Nano-Bioconjugate Chemistry Lab, Cluster Innovation Centre, University of Delhi, Delhi - 110007, India
- Department of Environmental Studies, University of Delhi, Delhi - 110007, India
| | - Amit Singh
- Nano-Bioconjugate Chemistry Lab, Cluster Innovation Centre, University of Delhi, Delhi - 110007, India
- Department of Chemistry, University of Delhi, Delhi - 110007, India
| | - Mahima Kaushik
- Nano-Bioconjugate Chemistry Lab, Cluster Innovation Centre, University of Delhi, Delhi - 110007, India
| |
Collapse
|
14
|
Cu nO/Au heterostructure dendrimer anchored on Cu foam as dual functional catalytic nanozyme for glucose sensing by enzyme mimic cascade reaction. Anal Bioanal Chem 2022; 414:4655-4666. [PMID: 35534725 DOI: 10.1007/s00216-022-04085-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 02/24/2022] [Accepted: 04/11/2022] [Indexed: 11/01/2022]
Abstract
Multifunctional catalytic performance plays a crucial role in bio-applications through the diversity and durability of artificial nanozymes. An effective synergy with sufficient accessible active sites and high specific surface area is a challenge for composite catalysts, especially to avoid uncontrollable aggregation and structural instability. Here, we fabricated a CunO/Au heterostructure dendrimer on copper foam (CunO/Au HD/CF) as dual functional catalytic nanozyme to achieve enzyme mimic cascade reactions for efficient colorimetric analysis. A highly porous CF skeleton-based CuO nanowire array (CuO NWA) with a large specific surface area supported an efficient load capacity to assemble sufficient CunO/Au HD by electrodeposition. The bimetallic Au-Cu nanozyme successfully achieved an oxidase-like and peroxidase-like cascade catalysis by a target-responsive sensing mechanism. Due to the confirmed catalytic performance of selectivity, anti-interference ability, and reproducibility, a CunO/Au HD/CF-based quantitative analytical method was developed for glucose detection with a wide linear range and considerable detection limit of 8.4 μM. The robust nonenzymatic catalytic strategy for colorimetric detection not only confirmed the dual functional catalytic activity of CunO/Au HD/CF, but also showed great potential for applications in clinical diagnostics and biochemical analysis.
Collapse
|
15
|
Guliy OI, Zaitsev BD, Semyonov AP, Karavaeva OA, Fomin AS, Staroverov SA, Burov AM, Borodina IA. Sensor System Based on a Piezoelectric Resonator with a Lateral Electric Field for Virus Diagnostics. ULTRASOUND IN MEDICINE & BIOLOGY 2022; 48:901-911. [PMID: 35232607 DOI: 10.1016/j.ultrasmedbio.2022.01.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 01/20/2022] [Accepted: 01/21/2022] [Indexed: 06/14/2023]
Abstract
A sensor system based on a piezoelectric resonator with a lateral electric field in the frequency range 6-7 MHz of the electric field for virus detection is described. Through use of the transmissible virus causing gastroenteritis in pigs and specific antibodies, the possibility of detecting the virus in suspension in real time was determined. It was found that the frequency dependence of the real and imaginary parts of the electrical impedance of such a resonator loaded with a virus suspension changes significantly after the addition of specific antibodies to the suspension. No changes are observed if the antibodies are not specific. Thus, the results obtained illustrate the possibility of detecting viruses in situ, directly in the liquid phase, if the change in the real or imaginary parts of the electrical impedance after the addition of antibodies is used as an analytical signal. The possibility of virus detection in the presence of foreign viral particles has been illustrated.
Collapse
Affiliation(s)
- Olga I Guliy
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Saratov Scientific Center of the Russian Academy of Sciences, Saratov, Russia.
| | - Boris D Zaitsev
- Kotel'nikov Institute of Radio Engineering and Electronics of RAS, Saratov, Russia
| | - Alexander P Semyonov
- Kotel'nikov Institute of Radio Engineering and Electronics of RAS, Saratov, Russia
| | - Olga A Karavaeva
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Saratov Scientific Center of the Russian Academy of Sciences, Saratov, Russia
| | - Alexander S Fomin
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Saratov Scientific Center of the Russian Academy of Sciences, Saratov, Russia
| | - Sergey A Staroverov
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Saratov Scientific Center of the Russian Academy of Sciences, Saratov, Russia
| | - Andrey M Burov
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Saratov Scientific Center of the Russian Academy of Sciences, Saratov, Russia
| | - Irina A Borodina
- Kotel'nikov Institute of Radio Engineering and Electronics of RAS, Saratov, Russia
| |
Collapse
|
16
|
Galanis PP, Katis IN, He PJW, Iles AH, Kumar AJU, Eason RW, Sones CL. Laser-patterned paper-based flow-through filters and lateral flow immunoassays to enable the detection of C-reactive protein. Talanta 2022; 238:123056. [PMID: 34801912 DOI: 10.1016/j.talanta.2021.123056] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 10/13/2021] [Accepted: 11/07/2021] [Indexed: 12/24/2022]
Abstract
We report the use of a laser-based fabrication process in the creation of paper-based flow-through filters that when combined with a traditional lateral flow immunoassay provide an alternative pathway for the detection of a pre-determined analyte over a wide concentration range. The laser-patterned approach was used to create polymeric structures that alter the porosity of the paper to produce porous flow-through filters, with controllable levels of porosity. When located on the top of the front end of a lateral flow immunoassay the flow-through filters were shown to block particles (of known sizes of 200 nm, 500 nm, 1000 nm and 3000 nm) that exceed the effective pore size of the filter while allowing smaller particles to flow through onto a lateral flow immunoassay. The analyte detection is based on the use of a size-exclusive filter that retains a complex (∼3 μm in size) formed by the binding of the target analyte with two antibodies each of which is tagged with different-sized labels (40 nm Au-nanoparticles and 3 μm latex beads), and which is larger than the effective pore size of the filter. This method was tested for the detection of C-reactive protein in a broad concentration range from 10 ng/ml to 100,000 ng/ml with a limit-of-detection found at 13 ng/ml and unlike other reported methods used for analyte detection, with this technique we are able to counter the Hook effect which is a limiting factor in many lateral flow immunoassays.
Collapse
Affiliation(s)
- P P Galanis
- Optoelectronics Research Centre, University of Southampton, Highfield, Southampton, SO17 1BJ, UK.
| | - I N Katis
- Optoelectronics Research Centre, University of Southampton, Highfield, Southampton, SO17 1BJ, UK
| | - P J W He
- Optoelectronics Research Centre, University of Southampton, Highfield, Southampton, SO17 1BJ, UK
| | - A H Iles
- Optoelectronics Research Centre, University of Southampton, Highfield, Southampton, SO17 1BJ, UK
| | - A J U Kumar
- Optoelectronics Research Centre, University of Southampton, Highfield, Southampton, SO17 1BJ, UK
| | - R W Eason
- Optoelectronics Research Centre, University of Southampton, Highfield, Southampton, SO17 1BJ, UK
| | - C L Sones
- Optoelectronics Research Centre, University of Southampton, Highfield, Southampton, SO17 1BJ, UK
| |
Collapse
|
17
|
Kikkeri K, Wu D, Voldman J. A sample-to-answer electrochemical biosensor system for biomarker detection. LAB ON A CHIP 2021; 22:100-107. [PMID: 34889339 DOI: 10.1039/d1lc00910a] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Biomarker detection is critical for the diagnosis and treatment of numerous diseases. Typically, target biomarkers in blood samples are measured through tests conducted at centralized laboratories. Testing at central laboratories increases wait times for results, in turn increasing healthcare costs and negatively impacting patient outcomes. Alternatively, point-of-care platforms enable the rapid measurement of biomarkers, expand testing location capabilities and mitigate manual processing steps through integration and automation. However, many of these systems focus on sample detection rather than the equally important sample preparation. Here we present a fully integrated and automated sample-to-answer electrochemical biosensing platform which incorporates each aspect of the biomarker testing workflow from blood collection to sample preparation to assay operation and readout. The system combines a commercial microneedle blood sampling device with membrane-based plasma filtration upstream of a bead-based electrochemical immunoassay. We characterize the high separation efficiency (>99%) and low non-specific binding of the whole blood-to-plasma filtration membrane under a range of operating conditions. We demonstrate a full sample-to-answer workflow through the analysis of interlukin-6-spiked blood samples.
Collapse
Affiliation(s)
- Kruthika Kikkeri
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA.
| | - Dan Wu
- Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA
| | - Joel Voldman
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA.
| |
Collapse
|
18
|
A Smartphone-Based Detection Method of Colloidal Gold Immunochromatographic Strip. PHOTONICS 2021. [DOI: 10.3390/photonics8120576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The outbreak of the new coronavirus (SARS-CoV-2) infection has become a global public health crisis. Antigen detection strips (colloidal gold) can be widely used in novel coronavirus clinical screening and can even be extended to home self-testing, which provides a practical and effective way for people to obtain health status information away from the crowd. In this paper, a colloidal gold detection system without complex devices is proposed, which is based on smartphone usage along with a mobile-phone software embedded with normalization algorithms and a special designed background paper. The basic principle of the device relies on image processing. First, the data of the green channel of the image captured by a smartphone are selected to be processed. Second, the calibration curves are established using standard black and white card, and the calibration values under different detection environments are obtained by calibration curves. Finally, to verify the validity of the proposed method, various standard solutions with different concentrations are tested. Results show that this method can eliminate the influence of different environments on the test results, the test results in different detection environments have good stability and the variation coefficients are less than 5%. It fully proves that the detection system designed in this paper can detect the result of colloidal gold immunochromatographic strip in time, conveniently and accurately in different environments.
Collapse
|
19
|
Luo Y, Joung HA, Esparza S, Rao J, Garner O, Ozcan A. Quantitative particle agglutination assay for point-of-care testing using mobile holographic imaging and deep learning. LAB ON A CHIP 2021; 21:3550-3558. [PMID: 34292287 DOI: 10.1039/d1lc00467k] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Particle agglutination assays are widely adopted immunological tests that are based on antigen-antibody interactions. Antibody-coated microscopic particles are mixed with a test sample that potentially contains the target antigen, as a result of which the particles form clusters, with a size that is a function of the antigen concentration and the reaction time. Here, we present a quantitative particle agglutination assay that combines mobile lens-free microscopy and deep learning for rapidly measuring the concentration of a target analyte; as its proof-of-concept, we demonstrate high-sensitivity C-reactive protein (hs-CRP) testing using human serum samples. A dual-channel capillary lateral flow device is designed to host the agglutination reaction using 4 μL of serum sample with a material cost of 1.79 cents per test. A mobile lens-free microscope records time-lapsed inline holograms of the lateral flow device, monitoring the agglutination process over 3 min. These captured holograms are processed, and at each frame the number and area of the particle clusters are automatically extracted and fed into shallow neural networks to predict the CRP concentration. 189 measurements using 88 unique patient serum samples were utilized to train, validate and blindly test our platform, which matched the corresponding ground truth concentrations in the hs-CRP range (0-10 μg mL-1) with an R2 value of 0.912. This computational sensing platform was also able to successfully differentiate very high CRP concentrations (e.g., >10-500 μg mL-1) from the hs-CRP range. This mobile, cost-effective and quantitative particle agglutination assay can be useful for various point-of-care sensing needs and global health related applications.
Collapse
Affiliation(s)
- Yi Luo
- Electrical & Computer Engineering Department, University of California, Los Angeles, California 90095, USA.
- California NanoSystems Institute (CNSI), University of California, Los Angeles, California 90095, USA
- Bioengineering Department, University of California, Los Angeles, California 90095, USA
| | - Hyou-Arm Joung
- Electrical & Computer Engineering Department, University of California, Los Angeles, California 90095, USA.
- California NanoSystems Institute (CNSI), University of California, Los Angeles, California 90095, USA
- Bioengineering Department, University of California, Los Angeles, California 90095, USA
| | - Sarah Esparza
- Bioengineering Department, University of California, Los Angeles, California 90095, USA
| | - Jingyou Rao
- Computer Science Department, University of California, Los Angeles, California 90095, USA
| | - Omai Garner
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, California 90095, USA
| | - Aydogan Ozcan
- Electrical & Computer Engineering Department, University of California, Los Angeles, California 90095, USA.
- California NanoSystems Institute (CNSI), University of California, Los Angeles, California 90095, USA
- Bioengineering Department, University of California, Los Angeles, California 90095, USA
| |
Collapse
|
20
|
Kirsanov D, Mukherjee S, Pal S, Ghosh K, Bhattacharyya N, Bandyopadhyay R, Jendrlin M, Radu A, Zholobenko V, Dehabadi M, Legin A. A Pencil-Drawn Electronic Tongue for Environmental Applications. SENSORS 2021; 21:s21134471. [PMID: 34210087 PMCID: PMC8272086 DOI: 10.3390/s21134471] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 06/18/2021] [Accepted: 06/25/2021] [Indexed: 11/16/2022]
Abstract
We report on the development of a simple and cost-effective potentiometric sensor array that is based on manual “drawing” on the polymeric support with the pencils composed of graphite and different types of zeolites. The sensor array demonstrates distinct sensitivity towards a variety of inorganic ions in aqueous media. This multisensor system has been successfully applied to quantitative analysis of 100 real-life surface waters sampled in Mahananda and Hooghly rivers in the West Bengal state (India). Partial least squares regression has been utilized to relate responses of the sensors to the values of different water quality parameters. It has been found that the developed sensor array, or electronic tongue, is capable of quantifying total hardness, total alkalinity, and calcium content in the samples, with the mean relative errors below 18%.
Collapse
Affiliation(s)
- Dmitry Kirsanov
- Institute of Chemistry, Mendeleev Center, St. Petersburg State University, Universitetskaya nab. 7/9, St Petersburg 199034, Russia; (M.D.); (A.L.)
- Laboratory of Artificial Sensory Systems, ITMO University, Kronversky pr. 49, St Petersburg 197101, Russia
- Correspondence:
| | - Subhankar Mukherjee
- Agri and Environmental Electronics (AEE) Group, Centre for Development of Advanced Computing (C-DAC), Sector—V, Salt Lake, Kolkata 700091, India; (S.M.); (S.P.); (K.G.); (N.B.)
| | - Souvik Pal
- Agri and Environmental Electronics (AEE) Group, Centre for Development of Advanced Computing (C-DAC), Sector—V, Salt Lake, Kolkata 700091, India; (S.M.); (S.P.); (K.G.); (N.B.)
| | - Koustuv Ghosh
- Agri and Environmental Electronics (AEE) Group, Centre for Development of Advanced Computing (C-DAC), Sector—V, Salt Lake, Kolkata 700091, India; (S.M.); (S.P.); (K.G.); (N.B.)
| | - Nabarun Bhattacharyya
- Agri and Environmental Electronics (AEE) Group, Centre for Development of Advanced Computing (C-DAC), Sector—V, Salt Lake, Kolkata 700091, India; (S.M.); (S.P.); (K.G.); (N.B.)
| | - Rajib Bandyopadhyay
- Department of Instrumentation & Electronics Engg, Jadavpur University, Salt Lake Campus, Block LB, Sector III, Kolkata 700098, India;
| | - Martin Jendrlin
- Lennard-Jones Laboratories, Birchall Centre, Keele University, Keele, Staffordshire ST5 5BG, UK; (M.J.); (A.R.); (V.Z.)
| | - Aleksandar Radu
- Lennard-Jones Laboratories, Birchall Centre, Keele University, Keele, Staffordshire ST5 5BG, UK; (M.J.); (A.R.); (V.Z.)
| | - Vladimir Zholobenko
- Lennard-Jones Laboratories, Birchall Centre, Keele University, Keele, Staffordshire ST5 5BG, UK; (M.J.); (A.R.); (V.Z.)
| | - Monireh Dehabadi
- Institute of Chemistry, Mendeleev Center, St. Petersburg State University, Universitetskaya nab. 7/9, St Petersburg 199034, Russia; (M.D.); (A.L.)
| | - Andrey Legin
- Institute of Chemistry, Mendeleev Center, St. Petersburg State University, Universitetskaya nab. 7/9, St Petersburg 199034, Russia; (M.D.); (A.L.)
- Laboratory of Artificial Sensory Systems, ITMO University, Kronversky pr. 49, St Petersburg 197101, Russia
| |
Collapse
|
21
|
Bharadwaj M, Bengtson M, Golverdingen M, Waling L, Dekker C. Diagnosing point-of-care diagnostics for neglected tropical diseases. PLoS Negl Trop Dis 2021; 15:e0009405. [PMID: 34138846 PMCID: PMC8211285 DOI: 10.1371/journal.pntd.0009405] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Inadequate and nonintegrated diagnostics are the Achilles' heel of global efforts to monitor, control, and eradicate neglected tropical diseases (NTDs). While treatment is often available, NTDs are endemic among marginalized populations, due to the unavailability or inadequacy of diagnostic tests that cause empirical misdiagnoses. The need of the hour is early diagnosis at the point-of-care (PoC) of NTD patients. Here, we review the status quo of PoC diagnostic tests and practices for all of the 24 NTDs identified in the World Health Organization's (WHO) 2021-2030 roadmap, based on their different diagnostic requirements. We discuss the capabilities and shortcomings of current diagnostic tests, identify diagnostic needs, and formulate prerequisites of relevant PoC tests. Next to technical requirements, we stress the importance of availability and awareness programs for establishing PoC tests that fit endemic resource-limited settings. Better understanding of NTD diagnostics will pave the path for setting realistic goals for healthcare in areas with minimal resources, thereby alleviating the global healthcare burden.
Collapse
Affiliation(s)
- Mitasha Bharadwaj
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Delft, The Netherlands
| | - Michel Bengtson
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Delft, The Netherlands
| | - Mirte Golverdingen
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Delft, The Netherlands
| | - Loulotte Waling
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Delft, The Netherlands
| | - Cees Dekker
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Delft, The Netherlands
| |
Collapse
|
22
|
Okuyama H, Tamaki T, Oshiba Y, Ueda H, Yamaguchi T. Numerical Modeling for Sensitive and Rapid Molecular Detection by Membrane-Based Immunosensors. Anal Chem 2021; 93:7210-7219. [PMID: 33956421 DOI: 10.1021/acs.analchem.1c00250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Rapid, simple, and sensitive point-of-care testing (POCT) has attracted attention in recent years due to its excellent potential for early disease diagnosis and health monitoring. The flow-through biosensor design is a candidate for POCT that utilizes the small-sized pores of a porous membrane as a recognition space where it emits a signal comparable to that of a conventional enzyme-linked immunosorbent assay within 35 min of detection time. In this paper, we present a numerical model for this immunosensing technology to systematically design an improved recognition system. The model considers mass transfer into the pore (convection and diffusion), the kinetics between the immobilized receptor and the target molecule, and the flow conditions, successfully leading to a bottleneck step (capture of secondary antibody) in sandwich-type detection. Our simulation results also show that this problem can be solved by adopting both appropriate receptors and analytical conditions. Eventually, the requirements to achieve the sensitivity required for POCT were fulfilled, which will allow for further development of immunosensing devices for disease detection.
Collapse
Affiliation(s)
- Hiroto Okuyama
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8503, Japan
| | - Takanori Tamaki
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8503, Japan
| | - Yuhei Oshiba
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8503, Japan
| | - Hiroshi Ueda
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8503, Japan
| | - Takeo Yamaguchi
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8503, Japan
| |
Collapse
|
23
|
Ceschin I, Ali T, Carvalho C, Uehara M, Motta P, Riboldi M. COVID-19: A review and considerations for the resumption of activities in an IVF laboratory and clinic in Brazil. JBRA Assist Reprod 2021; 25:293-302. [PMID: 33710841 PMCID: PMC8083870 DOI: 10.5935/1518-0557.20200102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
COVID-19 has caused radical effects on the daily lives of millions of people. The causal agent of the current pandemic is SARS-CoV-2, a virus that causes symptoms related to the respiratory system, leading to severe complications. In the in vitro fertilization (IVF) universe, there are several protocols for infection control and laboratory safety. Some professional associations have issued guidelines recommending measures involving patient flow and IVF practices. This study presents a review and considerations for the resumption of activities in IVF laboratories and clinics in Brazil during the COVID-19 pandemic, according to the guidelines and statements from professional organizations and societies in reproductive medicine.
Collapse
Affiliation(s)
- Ianaê Ceschin
- Feliccità Instituto de Fertilidade - Curitiba, Paraná, Brasil.,Centro de Estudos sobre o Genoma Humano e Células-Tronco (CEGH-CEL), Departamento de Biologia Evolutiva, Instituto de Biociências - Universidade de São Paulo, São Paulo, Brasil
| | - Taccyanna Ali
- Laboratório Igenomix - Laboratório de Genética e Medicina Reprodutiva - São Paulo, São Paulo, Brasil
| | - Cristina Carvalho
- Laboratório Igenomix - Laboratório de Genética e Medicina Reprodutiva - São Paulo, São Paulo, Brasil
| | - Mariane Uehara
- Laboratório Igenomix - Laboratório de Genética e Medicina Reprodutiva - São Paulo, São Paulo, Brasil
| | - Priscila Motta
- Laboratório Igenomix - Laboratório de Genética e Medicina Reprodutiva - São Paulo, São Paulo, Brasil
| | - Marcia Riboldi
- Laboratório Igenomix - Laboratório de Genética e Medicina Reprodutiva - São Paulo, São Paulo, Brasil
| |
Collapse
|
24
|
Castanheira A, Dos Santos MB, Rodriguez-Lorenzo L, Queirós R, Espiña B. A novel microfluidic system for the sensitive and cost-effective detection of okadaic acid in mussels. Analyst 2021; 146:2638-2645. [PMID: 33660716 DOI: 10.1039/d0an02092c] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Okadaic acid (OA) is produced by marine dinoflagellates and it can be easily accumulated in shellfish, causing intoxications when consumed by humans. Consequently, there is a need for sensitive, reliable and cost-effective methods to detect OA in real samples. In this work, we developed a novel and affordable microfluidic system to detect OA based on the protein phosphatase 1 inhibition colorimetric assay. This enzyme was immobilized in a microfluidic chamber by physisorption in an alumina sol-gel. The results show good enzyme stability over time when maintained at 4 °C. The developed system was sensitive for OA standard solutions, presenting a limit of detection (LOD) of 11.6 nM over a large linear range (43.4 to 3095.8 nM). Our method revealed an LOD as low as 0.2 μg kg-1 and a linear range between 1.47 and 506 μg kg-1 for extracted mussel matrix, detecting OA concentrations in contaminated mussels much lower than the regulated limit (160 μg kg-1). The enzyme stability and reusability along with the simplicity and low cost associated with microfluidics systems make this method very interesting from a commercial point of view.
Collapse
Affiliation(s)
- Ana Castanheira
- INL-International Iberian Nanotechnology Laboratory, Avenida Mestre José Veiga s/n, 4715-330 Braga, Portugal.
| | | | - Laura Rodriguez-Lorenzo
- INL-International Iberian Nanotechnology Laboratory, Avenida Mestre José Veiga s/n, 4715-330 Braga, Portugal.
| | - Raquel Queirós
- INL-International Iberian Nanotechnology Laboratory, Avenida Mestre José Veiga s/n, 4715-330 Braga, Portugal.
| | - Begoña Espiña
- INL-International Iberian Nanotechnology Laboratory, Avenida Mestre José Veiga s/n, 4715-330 Braga, Portugal.
| |
Collapse
|
25
|
Sharafeldin M, Kadimisetty K, Bhalerao KS, Chen T, Rusling JF. 3D-Printed Immunosensor Arrays for Cancer Diagnostics. SENSORS 2020; 20:s20164514. [PMID: 32806676 PMCID: PMC7472114 DOI: 10.3390/s20164514] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/04/2020] [Accepted: 08/06/2020] [Indexed: 12/14/2022]
Abstract
Detecting cancer at an early stage of disease progression promises better treatment outcomes and longer lifespans for cancer survivors. Research has been directed towards the development of accessible and highly sensitive cancer diagnostic tools, many of which rely on protein biomarkers and biomarker panels which are overexpressed in body fluids and associated with different types of cancer. Protein biomarker detection for point-of-care (POC) use requires the development of sensitive, noninvasive liquid biopsy cancer diagnostics that overcome the limitations and low sensitivities associated with current dependence upon imaging and invasive biopsies. Among many endeavors to produce user-friendly, semi-automated, and sensitive protein biomarker sensors, 3D printing is rapidly becoming an important contemporary tool for achieving these goals. Supported by the widely available selection of affordable desktop 3D printers and diverse printing options, 3D printing is becoming a standard tool for developing low-cost immunosensors that can also be used to make final commercial products. In the last few years, 3D printing platforms have been used to produce complex sensor devices with high resolution, tailored towards researchers’ and clinicians’ needs and limited only by their imagination. Unlike traditional subtractive manufacturing, 3D printing, also known as additive manufacturing, has drastically reduced the time of sensor and sensor array development while offering excellent sensitivity at a fraction of the cost of conventional technologies such as photolithography. In this review, we offer a comprehensive description of 3D printing techniques commonly used to develop immunosensors, arrays, and microfluidic arrays. In addition, recent applications utilizing 3D printing in immunosensors integrated with different signal transduction strategies are described. These applications include electrochemical, chemiluminescent (CL), and electrochemiluminescent (ECL) 3D-printed immunosensors. Finally, we discuss current challenges and limitations associated with available 3D printing technology and future directions of this field.
Collapse
Affiliation(s)
- Mohamed Sharafeldin
- Department of Chemistry, University of Connecticut, Storrs, CT 06269, USA; (M.S.); (K.S.B.); (T.C.)
| | - Karteek Kadimisetty
- LifeSensors Inc., 271 Great Valley Parkway, Suite 100, Malvern, PA 19355, USA;
| | - Ketki S. Bhalerao
- Department of Chemistry, University of Connecticut, Storrs, CT 06269, USA; (M.S.); (K.S.B.); (T.C.)
| | - Tianqi Chen
- Department of Chemistry, University of Connecticut, Storrs, CT 06269, USA; (M.S.); (K.S.B.); (T.C.)
| | - James F. Rusling
- Department of Chemistry, University of Connecticut, Storrs, CT 06269, USA; (M.S.); (K.S.B.); (T.C.)
- Department of Surgery and Neag Cancer Center, UConn Health, Farmington, CT 06032, USA
- School of Chemistry, National University of Ireland at Galway, Galway H91 TK33, Ireland
- Correspondence:
| |
Collapse
|
26
|
Luo J, Chen C, Li Q. White blood cell counting at point-of-care testing: A review. Electrophoresis 2020; 41:1450-1468. [PMID: 32356920 DOI: 10.1002/elps.202000029] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 04/11/2020] [Accepted: 04/20/2020] [Indexed: 11/12/2022]
Abstract
White blood cells, which are also called leukocytes, are found in the immune system that are involved in protecting the body against infections and foreign invaders. Conventional methods of leukocyte analysis provide valuable and accurate information to medical specialists. Analyzing and diagnosing of a disease requires a combination of multiple biomarkers, in some cases, however, such as personal health care, this will occupy some medical resources and causes unnecessary consumption. Traditional method (such as flow cytometer) for WBC counting is time and labor consuming. Compared to gold standard (flow-based fraction/micropore filtration) or improved filtration methods for WBC counting, this is still a lengthy and time consuming process and can lead to membrane fouling due to the rapid accumulation of biological materials. Therefore, the analysis of WBC counts requires more compact and efficient equipment. The microfluidic technologies, powered by different field (force, thermal, acoustic, optical, magnetic) and other methods for leukocyte counting and analysis, are much cost-efficient and can be used in in-home or in resource-limited areas to achieve Point-of-Care (POC). In this review, we highlight the mainstream devices that have been commercialized and extensively employed for patients for WBC counting, Next, we present some recent development with regards to leucocyte counting (mainly microfluidic technologies) and comment on their relative merits. We aim to focus and discuss the possibility of achieving POC and help researchers to tackle individual challenges accordingly. Finally, we offer some technologies in addition to previous detection devices, such as image recognition technology and cloud computing, which we believe have great potential to further promote real-time detection and improve medical diagnosis.
Collapse
Affiliation(s)
- Jianke Luo
- College of Glasgow, University of Electronic Science and Technology of China, Chengdu, P. R. China
| | - Chunmei Chen
- Department of Laboratory Medicine, Health Industry Co., Ltd of the Fifth Xiangya Hospital, Hunan, P. R. China.,The Second Xiangya Hospital Central South University, Changsha, P. R. China
| | - Qing Li
- Department of Anesthesiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, P. R. China
| |
Collapse
|
27
|
Wajs E, Rughoobur G, Burling K, George A, Flewitt AJ, Gnanapragasam VJ. A novel split mode TFBAR device for quantitative measurements of prostate specific antigen in a small sample of whole blood. NANOSCALE 2020; 12:9647-9652. [PMID: 32319508 DOI: 10.1039/d0nr00416b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Easy monitoring of prostate specific antigen (PSA) directly from blood samples would present a significant improvement as compared to conventional diagnostic methods. In this work, a split mode thin film bulk acoustic resonator (TFBAR) device was employed for the first time for label-free measurements of PSA concentrations in the whole blood and without sample pre-treatment. The surface of the sensor was covalently modified with anti-PSA antibodies and demonstrated a very high sensitivity of 101 kHz mL ng-1 and low limit of detection (LOD) of 0.34 ng mL-1 in model spiked solutions. It has previously been widely believed that significant pre-processing of blood samples would be required for TFBAR biosensors. Importantly, this work demonstrates that this is not the case, and TFBAR technology provides a cost-effective means for point-of-care (POC) diagnostics and monitoring of PSA in hospitals and in doctors' offices. Additionally, the accuracy of the developed biosensor, with respect to a commercial auto analyser (Beckman Coulter Access), was evaluated to analyse clinical samples, giving well-matched results between the two methods, thus showing a practical application in quantitative monitoring of PSA levels in the whole blood with very good signal recovery.
Collapse
Affiliation(s)
- Ewelina Wajs
- Electrical Engineering, University of Cambridge, 9 JJ Thomson Avenue, Cambridge, CB3 0FA, UK.
| | | | | | | | | | | |
Collapse
|
28
|
Reduced nonspecific protein adsorption by application of diethyldithiocarbamate in receptor layer of diphtheria toxoid electrochemical immunosensor. Bioelectrochemistry 2020; 132:107415. [DOI: 10.1016/j.bioelechem.2019.107415] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Revised: 11/12/2019] [Accepted: 11/12/2019] [Indexed: 11/18/2022]
|
29
|
Li Y, Ma X, Wang W, Yan S, Liu F, Chu K, Xu G, Smith ZJ. Improving the limit of detection in portable luminescent assay readers through smart optical design. JOURNAL OF BIOPHOTONICS 2020; 13:e201900241. [PMID: 31602762 DOI: 10.1002/jbio.201900241] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 10/07/2019] [Accepted: 10/09/2019] [Indexed: 06/10/2023]
Abstract
Critical biomarkers of disease are increasingly being detected by point-of-care assays. Chemiluminescence (CL) and electrochemiluminescence (ECL) are often used in such assays due to their convenience and that they do not require light sources or other components that could complicate or add cost to the system. Reports of these assays often include readers built on a cellphone platform or constructed from low-cost components. However, the impact the optical design has on the limit of detection (LOD) in these systems remains unexamined. Here, we report a theoretical rubric to evaluate different optical designs in terms of maximizing the use of photons emitted from a CL or ECL assay to improve the LOD. We demonstrate that the majority of cellphone designs reported in the literature are not optimized, in part due to misunderstandings of the optical tradeoffs in collection systems, and in part due to limitations imposed on the designs arising from the use of a mobile phone with a very small lens aperture. Based on the theoretical rubric, we design a new portable reader built using off-the-shelf condenser optics, and demonstrate a nearly 10× performance enhancement compared to prior reports on an ECL assays running on a portable chip.
Collapse
Affiliation(s)
- Yaning Li
- University of Science and Technology of China, Department of Precision Machinery and Precision Instrumentation, Hefei, Anhui, China
- Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, University of Science and Technology of China, Hefei, Anhui, China
| | - Xiangui Ma
- A State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, China
- University of Science and Technology of China, School of Applied Chemistry and Engineering, Hefei, Anhui, China
| | - Wenhe Wang
- A State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, China
- University of Science and Technology of China, School of Applied Chemistry and Engineering, Hefei, Anhui, China
| | - Shaojie Yan
- University of Science and Technology of China, Department of Precision Machinery and Precision Instrumentation, Hefei, Anhui, China
- Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, University of Science and Technology of China, Hefei, Anhui, China
| | - Fangshuo Liu
- A State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, China
- University of Science and Technology of China, School of Applied Chemistry and Engineering, Hefei, Anhui, China
| | - Kaiqin Chu
- University of Science and Technology of China, Department of Precision Machinery and Precision Instrumentation, Hefei, Anhui, China
- Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, University of Science and Technology of China, Hefei, Anhui, China
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, China
| | - Guobao Xu
- A State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, China
- University of Science and Technology of China, School of Applied Chemistry and Engineering, Hefei, Anhui, China
| | - Zachary J Smith
- University of Science and Technology of China, Department of Precision Machinery and Precision Instrumentation, Hefei, Anhui, China
- Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, University of Science and Technology of China, Hefei, Anhui, China
| |
Collapse
|
30
|
Research and Application Progress of Paper-based Microfluidic Sample Preconcentration. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2019. [DOI: 10.1016/s1872-2040(19)61203-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
31
|
Okuyama H, Oshiba Y, Yamaguchi T. Flow-Based Immunosensing Using the Pore Channel of a Porous Membrane As a Reaction Space. Anal Chem 2019; 91:14178-14182. [DOI: 10.1021/acs.analchem.9b02489] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Hiroto Okuyama
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8503, Japan
| | - Yuhei Oshiba
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8503, Japan
| | - Takeo Yamaguchi
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8503, Japan
| |
Collapse
|
32
|
Petkovic K, Swallow A, Stewart R, Gao Y, Li S, Glenn F, Gotama J, Dell'Olio M, Best M, Doward J, Ovendon S, Zhu Y. An Integrated Portable Multiplex Microchip Device for Fingerprinting Chemical Warfare Agents. MICROMACHINES 2019; 10:E617. [PMID: 31527486 PMCID: PMC6780382 DOI: 10.3390/mi10090617] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Revised: 09/09/2019] [Accepted: 09/11/2019] [Indexed: 01/01/2023]
Abstract
The rapid and reliable detection of chemical and biological agents in the field is important for many applications such as national security, environmental monitoring, infectious diseases screening, and so on. Current commercially available devices may suffer from low field deployability, specificity, and reproducibility, as well as a high false alarm rate. This paper reports the development of a portable lab-on-a-chip device that could address these issues. The device integrates a polymer multiplexed microchip system, a contactless conductivity detector, a data acquisition and signal processing system, and a graphic/user interface. The samples are pre-treated by an on-chip capillary electrophoresis system. The separated analytes are detected by conductivity-based microsensors. Extensive studies are carried out to achieve satisfactory reproducibility of the microchip system. Chemical warfare agents soman (GD), sarin (GB), O-ethyl S-[2-diisoproylaminoethyl] methylphsophonothioate (VX), and their degradation products have been tested on the device. It was demonstrated that the device can fingerprint the tested chemical warfare agents. In addition, the detection of ricin and metal ions in water samples was demonstrated. Such a device could be used for the rapid and sensitive on-site detection of both chemical and biological agents in the future.
Collapse
Affiliation(s)
| | | | - Robert Stewart
- CSIRO Manufacturing, Bayview Ave, Clayton 3168, Australia
| | - Yuan Gao
- CSIRO Manufacturing, Bayview Ave, Clayton 3168, Australia
| | - Sheng Li
- CSIRO Manufacturing, Bayview Ave, Clayton 3168, Australia
| | - Fiona Glenn
- CSIRO Manufacturing, Bayview Ave, Clayton 3168, Australia
| | - Januar Gotama
- CSIRO Manufacturing, Bayview Ave, Clayton 3168, Australia
| | - Mel Dell'Olio
- CSIRO Manufacturing, Bayview Ave, Clayton 3168, Australia
| | - Michael Best
- CSIRO Manufacturing, Bayview Ave, Clayton 3168, Australia
| | - Justin Doward
- DST, 506 Lorimer Street, Fishermans Bend, VIC 3207, Australia
| | - Simon Ovendon
- DST, 506 Lorimer Street, Fishermans Bend, VIC 3207, Australia
| | - Yonggang Zhu
- CSIRO Manufacturing, Bayview Ave, Clayton 3168, Australia.
- Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong 518055, China.
- School of Science, RMIT University, Melbourne, VIC 3001, Australia.
| |
Collapse
|
33
|
Guliy OI, Velichko NS, Fedonenko YP, Bunin VD. Use of an electro-optical sensor and phage antibodies for immunodetection of Herbaspirillum. Talanta 2019; 202:362-368. [PMID: 31171196 DOI: 10.1016/j.talanta.2019.04.086] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 04/25/2019] [Accepted: 04/30/2019] [Indexed: 12/20/2022]
Abstract
A sheep single-chain antibody-fragment library (Griffin.1, UK) was used to obtain miniantibodies to the lipopolysaccharide of Herbaspirillum seropedicae Z78. Using electro-optical analysis and electron microscopy, we recorded a biospecific interaction of antigenic determinants on the cell surface with phage antibodies against the LPS of H. seropedicae Z78 (mini-AbsLPS). Control experiments were run to rule out nonspecific binding of the mini-AbsLPS to cells of Azospirillum brasilense Sp245. Use of the highly specific mini-AbsLPS enabled the lipopolysaccharide of H. seropedicae Z78 to be detected in a mixture of bacterial cells by electro-optical means (analysis time, ∼5 min). This report is the first to show the possibility of rapid detection of Herbaspirillum on the basis of electro-optical analysis coupled with the use of mini-AbsLPS. The results are promising for the development of biosensor-based methods to detect potentially human-harmful prokaryotes whose structures either have not been studied or are absent from commercial databases.
Collapse
Affiliation(s)
- O I Guliy
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences, Saratov 410049, Russia.
| | - N S Velichko
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences, Saratov 410049, Russia
| | - Yu P Fedonenko
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences, Saratov 410049, Russia
| | | |
Collapse
|
34
|
Chung S, Jennings CM, Yoon J. Distance versus Capillary Flow Dynamics‐Based Detection Methods on a Microfluidic Paper‐Based Analytical Device (μPAD). Chemistry 2019; 25:13070-13077. [DOI: 10.1002/chem.201901514] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 05/27/2019] [Indexed: 11/12/2022]
Affiliation(s)
- Soo Chung
- Department of Biosystems EngineeringThe University of Arizona Tucson AZ 85721 USA
| | | | - Jeong‐Yeol Yoon
- Department of Biosystems EngineeringThe University of Arizona Tucson AZ 85721 USA
- Department of Biomedical EngineeringThe University of Arizona Tucson AZ 85721 USA
| |
Collapse
|
35
|
Giannoulas G, Tsogas GZ, Giokas DL. Single-point calibration and standard addition assays on calibrant-loaded paper-based analytical devices. Talanta 2019; 201:149-155. [PMID: 31122405 DOI: 10.1016/j.talanta.2019.04.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Revised: 03/31/2019] [Accepted: 04/03/2019] [Indexed: 11/28/2022]
Abstract
This article describes a new, simplified approach for performing quantitative colorimetric assays on paper-based analytical devices that uses calibrant-loaded paper devices to perform external calibration and standard addition calibration using one calibration point. Calibrant-loaded devices consist of sensing areas pre-loaded with a colored product which is produced from the reaction of a standard solution of the analyte with the appropriate colorimetric reagents. When the sample is added into the calibrant-loaded sensing zone the analytical signal (i.e. color intensity) increases proportionally to the concentration of the analyte in the tested sample. The total measured signal corresponds to the sum of the concentration of the analyte in the sample and the standard solution pre-stored in the device and is used to calculate the concentration of the analyte in the sample based on the principles of linear calibration. The applicability of this approach was benchmarked in three colorimetric assays (i.e., for the determination of iron, nickel, and amino acids) that use different reaction chemistries. This work demonstrates a simplified calibration-free approach for assays performed on paper-based analytical devices that requires minimum experimental and computational effort, it can be used for either external or standard addition calibration and can be used to identify and eliminate the presence of interferences in a sample.
Collapse
Affiliation(s)
- George Giannoulas
- Department of Chemistry, University of Ioannina, 45110, Ioannina, Greece
| | - George Z Tsogas
- Department of Chemistry, University of Ioannina, 45110, Ioannina, Greece
| | | |
Collapse
|
36
|
Recent advances in immunodiagnostics based on biosensor technologies-from central laboratory to the point of care. Anal Bioanal Chem 2019; 411:7607-7621. [PMID: 31152226 DOI: 10.1007/s00216-019-01915-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 05/07/2019] [Accepted: 05/13/2019] [Indexed: 12/11/2022]
Abstract
Immunological methods are widely applied in medical diagnostics for the detection and quantification of a plethora of analytes. Associated analytical challenges usually require these assays to be performed in a central laboratory. During the last several years, however, the clinical demand for rapid immunodiagnostics to be performed in the immediate proximity of the patient has been constantly increasing. Biosensors constitute one of the key technologies enabling the necessary, yet challenging transition of immunodiagnostic tests from the central laboratory to the point of care. This review is intended to provide insights into the current state of this transition process with a focus on the role of biosensor-based systems. To begin with, an overview on standard immunodiagnostic tests presently employed in the central laboratory and at the point of care is given. The review then moves on to demonstrate how biosensor technologies are reshaping this landscape. Single analyte as well as multiplexed immunosensors applicable to point of care scenarios are presented. A section on the areas of clinical application then creates the bridge to day-to-day diagnostic practice. Finally, the depicted developments are critically weighed and future perspectives discussed in order to give the reader a firm idea on the forthcoming trends to be expected in this diagnostic field.
Collapse
|
37
|
Skuratovsky A, Klimenko AS, Porter MD. Investigation of Issues for the Accurate and Precise Measurement of an Analyte Using Surface-Enhanced Raman Scattering (SERS). APPLIED SPECTROSCOPY 2019; 73:444-453. [PMID: 30348009 DOI: 10.1177/0003702818811389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
This paper builds on an earlier examination of the influence of sampling size and analyte surface density on the accuracy and precision of measurements using surface-enhanced Raman scattering (SERS) to read out heterogeneous immunoassays. Quantitation using SERS typically relies on interrogating a small area on the sample surface by using a micrometer-sized laser spot for signal generation. The information obtained using such a small portion of sample is then projected as being representative of the much larger sample, which can compromise the accuracy and precision of the measurement due to undersampling. For a heterogeneous immunoassay interrogated by SERS, quantitation is, therefore, sensitive to the size of the analyzed area and the surface density of the measured analyte. To identify conditions in which sampling error poses a threat to accuracy and precision, a simulation of a SERS immunoassay was developed and compared to experimental results. The simulation randomly distributes adsorbates across the capture surface and then measures the density of adsorbates inside areas of analysis of different sizes. This approach mimics the analysis of a heterogeneous immunoassay when using a Raman microscope with different laser spot sizes. The results of the simulations, which were confirmed experimentally by comparison to an immunoassay of human immunoglobulin G (IgG) show that the accuracy and precision of the measurement improved with larger analysis areas and higher analyte concentrations due to the increased apparent homogeneity of the analyte within the area of analysis. By imposing a threshold on precision (5%), we also begin to establish a framework for the parameters necessary to achieve reliable quantitative measurements (e.g., laser spot size, analyte concentration, and sample volume).
Collapse
Affiliation(s)
| | - Anton S Klimenko
- 2 Department of Chemistry, University of Utah, Salt Lake City, UT, USA
| | - Marc D Porter
- 1 Department of Chemical Engineering, University of Utah, Salt Lake City, UT, USA
- 2 Department of Chemistry, University of Utah, Salt Lake City, UT, USA
- 3 Nano Institute of Utah, University of Utah, Salt Lake City, UT, USA
| |
Collapse
|
38
|
Chen CA, Yeh WS, Tsai TT, Li YD, Chen CF. Three-dimensional origami paper-based device for portable immunoassay applications. LAB ON A CHIP 2019; 19:598-607. [PMID: 30664133 DOI: 10.1039/c8lc01255e] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
In this study, we demonstrate a three-dimensional surface-modified origami-paper-based analytical device (3D-soPAD) for immunoassay applications. The platform enables the sequential steps of immunoassays to be easily performed using a folded, sliding paper design featuring multiple pre-stored reagents, allowing us to take advantage of the vertical diffusion of the analyte through the different paper layers. The cellulose substrate is composed of carboxymethyl cellulose modified with N-(3-dimethylaminopropyl)-N'-ethylcarbodiimide hydrochloride and N-hydroxysuccinimide, which provide covalent bonding sites for bio-recognition molecules. After the optimization of the operation parameters, we determined the detection limit of the 3D-soPAD for human immunoglobulin G (HIgG) which can be as low as 0.01 ng mL-1, with a total turnaround time of 7 min. In order to study the long-term storage of the platform, anti-HIgG horseradish peroxidase (aHIgG-HRP) conjugates were stored by freeze-drying in sugar matrices composed of 10% sucrose/10% trehalose (w/w%) on the paper device, retaining 80% of their activity after 75 days of storage at 4 °C. To evaluate the performance of the paper device using real samples, we demonstrated the detection of protein A (a biomarker for Staphylococcus aureus infection) in highly viscous human synovial fluid. These results show that the proposed 3D-soPAD platform can provide sensitive, high-throughput, and on-site prognosis of infection in resource-limited settings.
Collapse
Affiliation(s)
- Chung-An Chen
- Institute of Applied Mechanics, National Taiwan University, Taipei 106, Taiwan.
| | | | | | | | | |
Collapse
|
39
|
Hong W, Jeong SG, Shim G, Kim DY, Pack SP, Lee CS. Improvement in the Reproducibility of a Paper-based Analytical Device (PAD) Using Stable Covalent Binding between Proteins and Cellulose Paper. BIOTECHNOL BIOPROC E 2019; 23:686-692. [PMID: 32218682 PMCID: PMC7090440 DOI: 10.1007/s12257-018-0430-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 11/27/2018] [Accepted: 11/28/2018] [Indexed: 11/03/2022]
Abstract
Paper-based analytical devices (PADs) have been widely used in many fields because they are affordable and portable. For reproducible quantitative analysis, it is crucial to strongly immobilize proteins on PADs. Conventional techniques for immobilizing proteins on PADs are based on physical adsorption, but proteins can be easily removed by weak physical forces. Therefore, it is difficult to ensure the reproducibility of the analytical results of PADs using physical adsorption. To overcome this limitation, in this study, we showed a method of covalent binding of proteins to cellulose paper. This method consists of three steps, which include periodate oxidation of paper, the formation of a Schiff base, and reductive amination. We identified aldehyde and imine groups formed on paper using FT-IR analysis. This covalent bonding approach enhanced the binding force and binding capacity of proteins. We confirmed the activity of an immobilized antibody through a sandwich immunoassay. We expect that this immobilization method will contribute to the commercialization of PADs with high reproducibility and sensitivity.
Collapse
Affiliation(s)
- Woogyeong Hong
- Department of Chemical Engineering and Applied Chemistry, Chungnam National University, Seoul, Korea
| | - Seong-Geun Jeong
- Department of Chemical Engineering and Applied Chemistry, Chungnam National University, Seoul, Korea
| | - Gyurak Shim
- Department of Chemical Engineering and Applied Chemistry, Chungnam National University, Seoul, Korea
| | - Dae Young Kim
- New Drug Development Center, Osong Medical Innovation Foundation, Seoul, Korea
| | - Seung Pil Pack
- Department of Biotechnology and Bioinformatics, Korea University, Seoul, Korea
| | - Chang-Soo Lee
- Department of Chemical Engineering and Applied Chemistry, Chungnam National University, Seoul, Korea
| |
Collapse
|
40
|
He E, Cai L, Zheng F, Zhou Q, Guo D, Zhou Y, Zhang X, Li Z. Rapid Quantitative Fluorescence Detection of Copper Ions with Disposable Microcapsule Arrays Utilizing Functional Nucleic Acid Strategy. Sci Rep 2019; 9:36. [PMID: 30631123 PMCID: PMC6328549 DOI: 10.1038/s41598-018-36842-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 11/14/2018] [Indexed: 12/21/2022] Open
Abstract
In this work, an economical and easy-to-use microcapsule array fabricated by ice printing technique has been realized for ultrasensitive fluorescence quantification of copper ions employing functional nucleic acid strategy. With ice printing, the detection reagents are sealed by polystyrene (PS) film isolation and photopolymer, which guarantees a stable and contamination-free environment for functional nucleic acid reaction. Our microcapsule arrays have shown long-term stability (20 days) under -20 °C storage in frozen form before use. During the Cu2+ on-site detection, 1 μL sample is simply injected into the thawy microcapsule by a microliter syringe under room temperature, and after 20 minutes the fluorescence result can be obtained by an LED transilluminator. This method can realize the detection limit to 100 nM (100 fmol/μL) with high specificity.
Collapse
Affiliation(s)
- Enqi He
- State Key Laboratory of Tribology, Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, China.,Center for Nano and Micro Mechanics, Tsinghua University, Beijing, 100084, China
| | - Liangyuan Cai
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University, Beijing, 100871, China
| | - Fengyi Zheng
- National Key Laboratory of Science and Technology on Micro/Nano Fabrication, Institute of Microelectronics, Peking University, Beijing, 100871, China
| | - Qianyu Zhou
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University, Beijing, 100871, China
| | - Dan Guo
- State Key Laboratory of Tribology, Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, China
| | - Yinglin Zhou
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University, Beijing, 100871, China.
| | - Xinxiang Zhang
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University, Beijing, 100871, China.
| | - Zhihong Li
- National Key Laboratory of Science and Technology on Micro/Nano Fabrication, Institute of Microelectronics, Peking University, Beijing, 100871, China. .,Center for Nano and Micro Mechanics, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
41
|
Gebretsadik T, Belayneh T, Gebremichael S, Linert W, Thomas M, Berhanu T. Recent advances in and potential utilities of paper-based electrochemical sensors: beyond qualitative analysis. Analyst 2019; 144:2467-2479. [DOI: 10.1039/c8an02463d] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Paper based electrochemical sensors (PESs) are simple, low-cost, portable and disposable analytical sensing platforms that can be applied in clinical diagnostics, food quality control and environmental monitoring.
Collapse
Affiliation(s)
- Tesfay Gebretsadik
- Department of Industrial Chemistry
- Addis Ababa Science and Technology University
- Addis Ababa
- Ethiopia
| | - Tilahun Belayneh
- Department of Industrial Chemistry
- Addis Ababa Science and Technology University
- Addis Ababa
- Ethiopia
| | - Sosina Gebremichael
- Department of Industrial Chemistry
- Addis Ababa Science and Technology University
- Addis Ababa
- Ethiopia
| | - Wolfgang Linert
- Institute of Applied Synthetic Chemistry
- Vienna University of Technology
- A-1060 Vienna
- Austria
| | - Madhu Thomas
- Department of Industrial Chemistry
- Addis Ababa Science and Technology University
- Addis Ababa
- Ethiopia
| | - Tarekegn Berhanu
- Department of Industrial Chemistry
- Addis Ababa Science and Technology University
- Addis Ababa
- Ethiopia
| |
Collapse
|
42
|
Wang T, Xu G, Wu W, Wang X, Chen X, Zhou S, You F. A novel combination of quick response code and microfluidic paper-based analytical devices for rapid and quantitative detection. Biomed Microdevices 2018; 20:79. [DOI: 10.1007/s10544-018-0325-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
43
|
Nezami A, Dehghani S, Nosrati R, Eskandari N, Taghdisi SM, Karimi G. Nanomaterial-based biosensors and immunosensors for quantitative determination of cardiac troponins. J Pharm Biomed Anal 2018; 159:425-436. [DOI: 10.1016/j.jpba.2018.07.031] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 07/13/2018] [Accepted: 07/17/2018] [Indexed: 01/14/2023]
|
44
|
Espinosa RL, Laguna MF, Fernández F, Santamaria B, Sanza FJ, Maigler MV, Álvarez-Millán JJ, Canalejas-Tejero V, Holgado M. A Proof-of-Concept of Label-Free Biosensing System for Food Allergy Diagnostics in Biophotonic Sensing Cells: Performance Comparison with ImmunoCAP. SENSORS 2018; 18:s18082686. [PMID: 30111765 PMCID: PMC6111936 DOI: 10.3390/s18082686] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 08/03/2018] [Accepted: 08/13/2018] [Indexed: 01/11/2023]
Abstract
Food allergy is a common disease worldwide with over 6% of the population (200⁻250 million people) suffering from any food allergy nowadays. The most dramatic increase seems to be happening in children and young people. Therefore, improvements in the diagnosis efficiency of these diseases are needed. Immunoglobulin type E (IgE) biomarker determination in human serum is a typical in vitro test for allergy identification. In this work, we used a novel biosensor based on label-free photonic transducers called BICELLs (Biophotonic Sensing Cells) for IgE detection. These BICELLs have a thin film of nitrocellulose over the sensing surface, they can be vertical optically interrogated, and are suitable for being integrated on a chip. The BICELLs sensing surface sizes used were 100 and 800 µm in diameter. We obtained calibration curves with IgE standards by immobilizating anti-IgE antibodies and identified with standard IgE calibrators in minute sample amounts (3 µL). The results, in similar assay format, were compared with commercially available ImmunoCAP®. The versatility of the interferometric nitrocellulose-based sensing surface was demonstrated since the limit of detections for BICELLs and ImmunoCAP® were 0.7 and 0.35 kU/L, respectively.
Collapse
Affiliation(s)
- Rocio L Espinosa
- Center for Biomedical Technology, Optics, Photonics and Biophotonics Lab., Universidad Politécnica de Madrid, Campus Montegancedo, Pozuelo de Alarcón, 28223 Madrid, Spain.
| | - María Fe Laguna
- Center for Biomedical Technology, Optics, Photonics and Biophotonics Lab., Universidad Politécnica de Madrid, Campus Montegancedo, Pozuelo de Alarcón, 28223 Madrid, Spain.
- Department of Applied Physics and Materials Engineering, Escuela Técnica Superior de Ingenieros Industriales, Universidad Politécnica de Madrid, C/José Gutierrez Abascal 2, 28006 Madrid, Spain.
| | - Fátima Fernández
- CQS Laboratory, Calle Marie Curie, 5, Rivas-Vaciamadrid, 28521 Madrid, Spain.
| | - Beatriz Santamaria
- Center for Biomedical Technology, Optics, Photonics and Biophotonics Lab., Universidad Politécnica de Madrid, Campus Montegancedo, Pozuelo de Alarcón, 28223 Madrid, Spain.
- Department of Applied Physics and Materials Engineering, Escuela Técnica Superior de Ingenieros Industriales, Universidad Politécnica de Madrid, C/José Gutierrez Abascal 2, 28006 Madrid, Spain.
| | | | - Maria Victoria Maigler
- Center for Biomedical Technology, Optics, Photonics and Biophotonics Lab., Universidad Politécnica de Madrid, Campus Montegancedo, Pozuelo de Alarcón, 28223 Madrid, Spain.
- BioOptical Detection SL, Centro de Empresas, Campus Montegancedo, 28223 Madrid, Spain.
| | | | - Víctor Canalejas-Tejero
- Center for Biomedical Technology, Optics, Photonics and Biophotonics Lab., Universidad Politécnica de Madrid, Campus Montegancedo, Pozuelo de Alarcón, 28223 Madrid, Spain.
| | - Miguel Holgado
- Center for Biomedical Technology, Optics, Photonics and Biophotonics Lab., Universidad Politécnica de Madrid, Campus Montegancedo, Pozuelo de Alarcón, 28223 Madrid, Spain.
- Department of Applied Physics and Materials Engineering, Escuela Técnica Superior de Ingenieros Industriales, Universidad Politécnica de Madrid, C/José Gutierrez Abascal 2, 28006 Madrid, Spain.
| |
Collapse
|
45
|
Patil SV, Borase HP, Patil CD, Suryawanshi RK, Koli SH, Patil VS, Mohite BV. Fabrication of Paper Sensor for Rapid Screening of Nanomaterial Synthesizing Potential of Plants. J CLUST SCI 2018. [DOI: 10.1007/s10876-018-1396-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
46
|
Salminen T, Juntunen E, Lahdenranta M, Martiskainen I, Talha SM, Pettersson K. Microparticle-based platform for point-of-care immunoassays. Anal Biochem 2018; 548:66-68. [PMID: 29486205 DOI: 10.1016/j.ab.2018.02.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 02/14/2018] [Accepted: 02/23/2018] [Indexed: 12/31/2022]
Abstract
There is a need for quantitative and sensitive, yet simple point-of-care immunoassays. We have developed a point-of-care microparticle-based immunoassay platform which combines the performance of a microtiter well-based assay with the usability of a rapid assay. The platform contained a separate reaction and detection chambers and microparticles for the solid-phase. Photoluminescent up-converting nanoparticles (UCNPs) were used as labels. The platform was tested with a cardiac troponin I assay, and a limit of detection of 19.7 ng/L was obtained. This study demonstrates the feasibility of developing point-of-care assays on the new platform for various analytes of interests.
Collapse
Affiliation(s)
- Teppo Salminen
- Department of Biotechnology, University of Turku, Turku, Finland.
| | - Etvi Juntunen
- Department of Biotechnology, University of Turku, Turku, Finland
| | | | | | - Sheikh M Talha
- Department of Biotechnology, University of Turku, Turku, Finland
| | - Kim Pettersson
- Department of Biotechnology, University of Turku, Turku, Finland
| |
Collapse
|
47
|
Sotnikov DV, Zherdev AV, Dzantiev BB. Theoretical and Experimental Comparison of Different Formats of Immunochromatographic Serodiagnostics. SENSORS 2017; 18:s18010036. [PMID: 29295582 PMCID: PMC5795850 DOI: 10.3390/s18010036] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 12/20/2017] [Accepted: 12/22/2017] [Indexed: 11/16/2022]
Abstract
In this study, a comparative theoretical and experimental analysis of two immuno-chromatographic serodiagnostics schemes, which differ in the immobilization of immunoreagents and the order of the formation of immune complexes, is performed. Based on the theoretical models, the assays are characterized to determine which scheme has a higher quantity of the detected complex and thus ensures the sensitivity of the analysis. The results show that for the effective detection of low-affinity antibodies, the scheme involving the immobilization of the antigen on gold nanoparticles and the antibody-binding protein on the test strip was more sensitive than the predominantly used scheme, which inverts the immunoreagents’ locations. The theoretical predictions were confirmed by the experimental testing of sera collected from tuberculosis patients.
Collapse
Affiliation(s)
- Dmitriy V Sotnikov
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Prospect 33, Moscow 119071, Russia.
| | - Anatoly V Zherdev
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Prospect 33, Moscow 119071, Russia.
| | - Boris B Dzantiev
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Prospect 33, Moscow 119071, Russia.
| |
Collapse
|
48
|
Kang D, Sun S, Kurnik M, Morales D, Dahlquist FW, Plaxco KW. New Architecture for Reagentless, Protein-Based Electrochemical Biosensors. J Am Chem Soc 2017; 139:12113-12116. [PMID: 28789522 DOI: 10.1021/jacs.7b05953] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Here we demonstrate a new class of reagentless, single-step sensors for the detection of proteins and peptides that is the electrochemical analog of fluorescence polarization (fluorescence anisotropy), a versatile optical approach widely employed to this same end. Our electrochemical sensors consist of a redox-reporter-modified protein (the "receptor") site-specifically anchored to an electrode via a short, flexible polypeptide linker. Interaction of the receptor with its binding partner alters the efficiency with which the reporter approaches the electrode surface, thus causing a change in redox current upon voltammetric interrogation. As our first proof-of-principle we employed the bacterial chemotaxis protein CheY as our receptor. Interaction with either of CheY's two binding partners, the P2 domain of the chemotaxis kinase, CheA, or the 16-residue "target region" of the flagellar switch protein, FliM, leads to easily measurable changes in output current that trace Langmuir isotherms within error of those seen in solution. Phosphorylation of the electrode-bound CheY decreases its affinity for CheA-P2 and enhances its affinity for FliM in a manner likewise consistent with its behavior in solution. As expected given the proposed sensor signaling mechanism, the magnitude of the binding-induced signal change depends on the placement of the redox reporter on the receptor. Following these preliminary studies with CheY, we also developed and characterized additional sensors aimed at the detection of specific antibodies using the relevant protein antigens as the receptor. These exhibit excellent detection limits for their targets without the use of reagents or wash steps. This novel, protein-based electrochemical sensing architecture provides a new and potentially promising approach to sensors for the single-step measurement of specific proteins and peptides.
Collapse
Affiliation(s)
- Di Kang
- Department of Chemistry and Biochemistry, ‡Interdepartmental Program in Biomolecular Science and Engineering, University of California, Santa Barbara , Santa Barbara, California 93106, United States
| | - Sheng Sun
- Department of Chemistry and Biochemistry, ‡Interdepartmental Program in Biomolecular Science and Engineering, University of California, Santa Barbara , Santa Barbara, California 93106, United States
| | - Martin Kurnik
- Department of Chemistry and Biochemistry, ‡Interdepartmental Program in Biomolecular Science and Engineering, University of California, Santa Barbara , Santa Barbara, California 93106, United States
| | - Demosthenes Morales
- Department of Chemistry and Biochemistry, ‡Interdepartmental Program in Biomolecular Science and Engineering, University of California, Santa Barbara , Santa Barbara, California 93106, United States
| | - Frederick W Dahlquist
- Department of Chemistry and Biochemistry, ‡Interdepartmental Program in Biomolecular Science and Engineering, University of California, Santa Barbara , Santa Barbara, California 93106, United States
| | - Kevin W Plaxco
- Department of Chemistry and Biochemistry, ‡Interdepartmental Program in Biomolecular Science and Engineering, University of California, Santa Barbara , Santa Barbara, California 93106, United States
| |
Collapse
|
49
|
Rodenko O, Eriksson S, Tidemand-Lichtenberg P, Troldborg CP, Fodgaard H, van Os S, Pedersen C. High-sensitivity detection of cardiac troponin I with UV LED excitation for use in point-of-care immunoassay. BIOMEDICAL OPTICS EXPRESS 2017; 8:3749-3762. [PMID: 28856047 PMCID: PMC5560838 DOI: 10.1364/boe.8.003749] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 07/06/2017] [Accepted: 07/17/2017] [Indexed: 06/07/2023]
Abstract
High-sensitivity cardiac troponin assay development enables determination of biological variation in healthy populations, more accurate interpretation of clinical results and points towards earlier diagnosis and rule-out of acute myocardial infarction. In this paper, we report on preliminary tests of an immunoassay analyzer employing an optimized LED excitation to measure on a standard troponin I and a novel research high-sensitivity troponin I assay. The limit of detection is improved by factor of 5 for standard troponin I and by factor of 3 for a research high-sensitivity troponin I assay, compared to the flash lamp excitation. The obtained limit of detection was 0.22 ng/L measured on plasma with the research high-sensitivity troponin I assay and 1.9 ng/L measured on tris-saline-azide buffer containing bovine serum albumin with the standard troponin I assay. We discuss the optimization of time-resolved detection of lanthanide fluorescence based on the time constants of the system and analyze the background and noise sources in a heterogeneous fluoroimmunoassay. We determine the limiting factors and their impact on the measurement performance. The suggested model can be generally applied to fluoroimmunoassays employing the dry-cup concept.
Collapse
Affiliation(s)
- Olga Rodenko
- Technical University of Denmark, Frederiksborgvej 399, 4000 Roskilde, Denmark
- Radiometer Medical ApS, Åkandevej 21, 2700 Brønshøj, Denmark
| | | | | | | | - Henrik Fodgaard
- Radiometer Medical ApS, Åkandevej 21, 2700 Brønshøj, Denmark
| | - Sylvana van Os
- Radiometer Medical ApS, Åkandevej 21, 2700 Brønshøj, Denmark
| | - Christian Pedersen
- Technical University of Denmark, Frederiksborgvej 399, 4000 Roskilde, Denmark
| |
Collapse
|
50
|
Walton BM, Jackson GW, Deutz N, Cote G. Surface-enhanced Raman spectroscopy competitive binding biosensor development utilizing surface modification of silver nanocubes and a citrulline aptamer. JOURNAL OF BIOMEDICAL OPTICS 2017; 22:75002. [PMID: 28732094 PMCID: PMC5521305 DOI: 10.1117/1.jbo.22.7.075002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 06/30/2017] [Indexed: 05/15/2023]
Abstract
A point-of-care (PoC) device with the ability to detect biomarkers at low concentrations in bodily fluids would have an enormous potential for medical diagnostics outside the central laboratory. One method to monitor analytes at low concentrations is by using surface-enhanced Raman spectroscopy (SERS). In this preliminary study toward using SERS for PoC biosensing, the surface of colloidal silver (Ag) nanocubes has been modified to test the feasibility of a competitive binding SERS assay utilizing aptamers against citrulline. Specifically, Ag nanocubes were functionalized with mercaptobenzoic acid, as well as a heterobifunctional polyethylene glycol linker that forms an amide bond with the amino acid citrulline. After the functionalization, the nanocubes were characterized by zeta-potential, transmission electron microscopy images, ultraviolet/visible spectroscopy, and by SERS. The citrulline aptamers were developed and tested using backscattering interferometry. The data show that our surface modification method does work and that the functionalized nanoparticles can be detected using SERS down to a 24.5 picomolar level. Last, we used microscale thermophoresis to show that the aptamers bind to citrulline with at least a 50 times stronger affinity than other amino acids. Download PDF SAVE FOR LATER
Collapse
Affiliation(s)
- Brian M. Walton
- Texas A&M University, Department of Biomedical Engineering, College Station, Texas, United States
| | - George W. Jackson
- BioTex, Inc., Houston, Texas, United States
- Base Pair Biotechnologies, Inc., Pearland, Texas, United States
| | - Nicolaas Deutz
- Texas A&M University, Center for Translational Research in Aging & Longevity, Department of Health and Kinesiology, Texas, United States
| | - Gerard Cote
- Texas A&M University, Department of Biomedical Engineering, College Station, Texas, United States
- Texas A&M University, Texas A&M Engineering Experiment Station Center for Remote Health Technologies and Systems, Department of Biomedical Engineering, College Station, Texas, United States
| |
Collapse
|