1
|
Fu L, Wong BYL, Li Z, Horst RL, Williams R, Lee B, Miller J, Carpenter TO, Cole DEC. Genetic variants in the vitamin D pathway and their association with vitamin D metabolite levels: Detailed studies of an inner-city pediatric population suggest a modest but significant effect in early childhood. J Steroid Biochem Mol Biol 2023; 233:106369. [PMID: 37490983 DOI: 10.1016/j.jsbmb.2023.106369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 07/17/2023] [Accepted: 07/22/2023] [Indexed: 07/27/2023]
Abstract
OBJECTIVES In a large cohort of healthy infants and toddlers 6-36 months of age (n = 776), we have been exploring the potential role of genetic variation in predisposition to vitamin D insufficiency. The genes encoding the key cytochrome P450 hydroxylases (CYP2R1, CYP24A1, and CYP27B1) harbour recurrent mutations of uncertain effect. This study was undertaken to look for biochemically relevant associations of these variants with inter-individual differences in vitamin D metabolism in an at-risk pediatric population. METHODS Genotyping for CYP2R1-CT (c.-1127 C>T, rs10741657), CYP24A1-AG (c.-686A>G, rs111622401), and CYP27B1-CA (c.-1261 C>A, rs10877012) mutations were performed using SNaPshot assay, followed by Sanger sequencing confirmation. Vitamin D metabolites and vitamin D binding protein (DBP) were measured by established methods. RESULTS In a multivariate regression model, with corrections for co-variates, subjects with the homozygous CYP2R1-TT variant had significantly higher concentrations of 25(OH)D, free 25(OH)D, and 24,25(OH)2D levels. In subjects with the CYP24A1-AG mutation, concentrations of 25(OH)D were significantly higher. CONCLUSIONS The CYP2R1-TT and CYP24A1-AG variants have measurable effects on the vitamin D pathway. It seems unlikely that they will be clinically relevant in isolation, but they may be members of the large pool of infrequent mutations contributing to different risks for the vitamin D deficiency phenotype.
Collapse
Affiliation(s)
- Lei Fu
- Department of Laboratory Medicine and Molecular Diagnostics, Sunnybrook Health Sciences Centre, Toronto, ON, Canada; Sunnybrook Research Institute, Toronto, ON, Canada; Departments of Laboratory Medicine and Pathobiology, Toronto, ON, Canada
| | - Betty Y L Wong
- Department of Laboratory Medicine and Molecular Diagnostics, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| | - Zhenyu Li
- Departments of Laboratory Medicine and Pathobiology, Toronto, ON, Canada
| | | | - Rashida Williams
- Departments of Laboratory Medicine and Pathobiology, Toronto, ON, Canada
| | - Bonnie Lee
- Departments of Laboratory Medicine and Pathobiology, Toronto, ON, Canada
| | - Jessica Miller
- Departments of Laboratory Medicine and Pathobiology, Toronto, ON, Canada
| | - Thomas O Carpenter
- Departments of Pediatrics (Endocrinology), Yale University School of Medicine, New Haven, CT, USA; Orthopaedics and Rehabilitation, Yale University School of Medicine, New Haven, CT, USA.
| | - David E C Cole
- Pediatrics (Genetics), Toronto, ON, Canada; Medicine, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
2
|
Sheikhy A, Fallahzadeh A, Aghaei Meybodi HR, Hasanzad M, Tajdini M, Hosseini K. Personalized medicine in cardiovascular disease: review of literature. J Diabetes Metab Disord 2021; 20:1793-1805. [PMID: 34900826 DOI: 10.1007/s40200-021-00840-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 06/18/2021] [Indexed: 12/13/2022]
Abstract
Purpose Personalized medicine (PM) is the concept of managing patients based on their characteristics, including genotypes. In the field of cardiology, advantages of PM could be found in the diagnosis and treatment of several conditions such as arrhythmias and cardiomyopathies; moreover, it may be beneficial to prevent adverse drug reactions (ADR) and select the best medication. Genetic background can help us in selecting effective treatments, appropriate dose requirements, and preventive strategies in individuals with particular genotypes. Method In this review, we provide examples of personalized medicine based on human genetics for the most used pharmaceutics in cardiology, including warfarin, clopidogrel, and statins. We also review cardiovascular diseases, including coronary artery disease, arrhythmia, and cardiomyopathies. Conclusion Genetic factors are as important as environmental factors and they should be tested and evaluated more in the future by improving in genetic testing tools. Supplementary Information The online version contains supplementary material available at 10.1007/s40200-021-00840-0.
Collapse
Affiliation(s)
- Ali Sheikhy
- Research Department, Tehran Heart Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Aida Fallahzadeh
- Research Department, Tehran Heart Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamid Reza Aghaei Meybodi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mandana Hasanzad
- Personalized Medicine Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
- Medical Genomics Research Center, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Masih Tajdini
- Cardiology Department, Tehran Heart Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Kaveh Hosseini
- Cardiology Department, Tehran Heart Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
3
|
Cîmpan PL, Chira RI, Mocan M, Anton FP, Farcaş AD. Oral Anticoagulant Therapy-When Art Meets Science. J Clin Med 2019; 8:jcm8101747. [PMID: 31640208 PMCID: PMC6832236 DOI: 10.3390/jcm8101747] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 10/15/2019] [Accepted: 10/16/2019] [Indexed: 12/15/2022] Open
Abstract
Anticoagulant treatment is extremely important and frequently encountered in the therapy of various cardiovascular diseases. Vitamin K antagonists (VKA) are in use for the prevention and treatment of arterial and venous thromboembolism, despite the introduction of new direct-acting oral anticoagulants (NOAC). The VKA still have the clear recommendation in patients with a mechanical prosthetic heart valve replacement or moderate to severe mitral stenosis of the rheumatic origin, in deep vein thrombosis associated with congenital thrombophilia, and in cases where NOAC are prohibited by social condition (financial reason) or by comorbidities (extreme weight, severe renal or liver disease). VKA dosing required to reach the targeted therapeutic range varies largely between patients (inter-individual variability). This inter-individual variability depends on multiple environmental factors such as age, mass, diet, etc. but it is also influenced by genetic determinism. About 30 genes implicated in the metabolism coumarins derivatives were identified, the most important being CYP2C9 and VKORC, each with several polymorphisms. Herein, we review the data regarding genetic alterations in general and specific populations, highlight the diagnosis options in particular cases presenting with genetic alteration causing higher sensitivity and/or resistance to VKA therapy and underline the utility of NOAC in solving such rare and difficult problems.
Collapse
Affiliation(s)
| | - Romeo Ioan Chira
- Internal Medicine Department, Iuliu Hatieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania.
- Emergency Clinical County Hospital, 40006 Cluj Napoca, Romania.
| | - Mihaela Mocan
- Internal Medicine Department, Iuliu Hatieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania.
- Emergency Clinical County Hospital, 40006 Cluj Napoca, Romania.
| | - Florin Petru Anton
- Internal Medicine Department, Iuliu Hatieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania.
- Emergency Clinical County Hospital, 40006 Cluj Napoca, Romania.
| | - Anca Daniela Farcaş
- Internal Medicine Department, Iuliu Hatieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania.
- Emergency Clinical County Hospital, 40006 Cluj Napoca, Romania.
| |
Collapse
|
4
|
Shendre A, Dillon C, Limdi NA. Pharmacogenetics of warfarin dosing in patients of African and European ancestry. Pharmacogenomics 2018; 19:1357-1371. [PMID: 30345882 PMCID: PMC6562764 DOI: 10.2217/pgs-2018-0146] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 09/28/2018] [Indexed: 12/20/2022] Open
Abstract
Despite the introduction of direct acting oral anticoagulants, warfarin remains the most commonly prescribed oral anticoagulant. However, warfarin therapy is plagued by the large inter- and intrapatient variability. The variability in dosing fueled research to identify clinical and genetic predictors and develop more accurate dosing algorithms. Observational studies have demonstrated the significant impact of single nucleotide polymorphisms in CYP2C9 and VKORC1 on warfarin dose in patients of European ancestry and African-Americans. This evidence supported the design and conduct of clinical trials to assess whether genotype-guided dosing results in improved anticoagulation control and outcomes. The trial results have shown discordance by race, with pharmacogenetic algorithms improving dose and anticoagulation control among European ancestry patients compared with African-American patients. Herein, we review the evidence from observational and interventional studies, highlight the need for inclusion of minority race groups and propose the need to develop race specific dosing algorithms.
Collapse
Affiliation(s)
- Aditi Shendre
- Department of Epidemiology, Richard M Fairbanks School of Public Health, Indiana University Purdue University Indianapolis, IN 46202, USA
| | - Chrisly Dillon
- Department of Neurology, School of Medicine, University of Alabama at Birmingham, AL 35294, USA
| | - Nita A Limdi
- Department of Neurology, School of Medicine, University of Alabama at Birmingham, AL 35294, USA
| |
Collapse
|
5
|
Qayyum A, Najmi MH, Mansoor Q, Irfan M, Naveed AK, Hanif A, Kazmi AR, Ismail M. Frequency of Common VKORC1 Polymorphisms and Their Impact on Warfarin Dose Requirement in Pakistani Population. Clin Appl Thromb Hemost 2016; 24:323-329. [PMID: 27879469 DOI: 10.1177/1076029616680478] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Polymorphisms in vitamin K epoxide reductase complex subunit 1 (VKORC1) gene lead to interindividual variability in warfarin dose requirement. The characterization of genotype frequency distribution is required in different populations for construction of customized dosing algorithms to enhance the efficacy and reduce the toxicity of warfarin therapy. This study was carried out in Pakistani population to evaluate the contribution of common VKORC1 polymorphisms to warfarin therapy. A total of 550 stable patients taking warfarin were enrolled after medical history, physical examination, and laboratory investigations. Single blood sample was collected after informed consent. Genomic DNA was extracted and genotype analysis for VKORC1 1173C>T and VKORC1-1639G>A polymorphisms was done by polymerase chain reaction-restriction fragment length polymorphism assay. A number of samples were also analyzed by direct DNA sequencing for validation of results. Data were analyzed using SPSS version 20. Genotype frequency distributions of VKORC1 1173C>T and VKORC1-1639G>A were found to be different from other populations. Both of these polymorphisms did not demonstrate significant effect on warfarin dose requirement. Although Cytochrome P450 2C9 (CYP2C9) and VKORC1 polymorphisms together attributed only 3.8% variability in warfarin dose but it was statistically significant ( p value = .004). It is concluded that there is a need to study genotype frequency distribution and their effect on warfarin dose variability among different populations due to diversity in outcome. At the same time, no effect on warfarin dose variation explained by VKORC1 polymorphisms and small variability explained by studied genotypes stresses the need for exploration of more genetic and nongenetic factors in Pakistani population.
Collapse
Affiliation(s)
- Aisha Qayyum
- 1 Department of Pharmacology, Fazaia Medical College, Air University, Islamabad, Pakistan
| | - Muzammil Hasan Najmi
- 2 Department of Pharmacology, Foundation University Medical College, Islamabad, Pakistan
| | - Qaisar Mansoor
- 3 Institute of Biomedical and Genetic Engineering, Islamabad, Pakistan
| | - Muhammad Irfan
- 4 Department of Zoology, Pir Mehr Ali Shah Arid Agriculture University, Rawalpindi, Pakistan
| | - Abdul Khaliq Naveed
- 5 Department of Biochemistry, Islamic International Medical College, Riphah International University, Rawalpindi, Pakistan
| | - Andleeb Hanif
- 3 Institute of Biomedical and Genetic Engineering, Islamabad, Pakistan
| | - Ali Raza Kazmi
- 3 Institute of Biomedical and Genetic Engineering, Islamabad, Pakistan
| | - Muhammad Ismail
- 3 Institute of Biomedical and Genetic Engineering, Islamabad, Pakistan
| |
Collapse
|
6
|
Issac MSM, El-Nahid MS, Wissa MY. Is there a role for MDR1, EPHX1 and protein Z gene variants in modulation of warfarin dosage? a study on a cohort of the Egyptian population. Mol Diagn Ther 2014; 18:73-83. [PMID: 24092646 DOI: 10.1007/s40291-013-0055-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
BACKGROUND There is considerable inter-individual variability in warfarin dosages necessary to achieve target therapeutic anticoagulation. Polymorphisms in genes, which master warfarin pharmacokinetics and pharmacodynamics, might influence warfarin dose variation. Genes encoding drug transporters, such as human multidrug resistance (MDR1), as well as epoxide hydrolase 1 (EPHX1), which is a putative subunit of the vitamin K epoxide reductase, and Protein Z (PZ), which is a vitamin K-dependent plasma glycoprotein, are among those candidate genes. OBJECTIVE The purpose of this study was to investigate the contribution of MDR1 C3435T, EPHX1 H139R and PZ A-13G gene polymorphisms in warfarin dose variation in a cohort of the Egyptian population. METHODS Eighty-four patients whose international normalized ratio (INR) was in the range of 2-3, 41 males and 43 females, with a mean (±SD) age of 40.9 (13.3) years were recruited into this study. MDR1 C3435T, EPHX1 H139R and PZ A-13G gene polymorphisms were detected by polymerase chain reaction-restriction fragment length polymorphism. Primarily, linear regression analysis, including the variables age, gender, MDR1 C3435T, EPHX1 H139R and combined MDR1 C3435T, EPHX1 H139R and PZ A-13G genotypes, was used to assess the effective factors for warfarin maintenance dose. Secondly, the previously examined cytochrome P450 (CYP) 2C9 A1075C and vitamin K epoxide reductase complex subunit 1 (VKORC1) C1173T were added to the regression analysis. RESULTS Warfarin dose/week was not influenced by each of the MDR1 C3435T, EPHX1 H139R, and PZ A-13G gene polymorphisms when examined separately. However, when these single nucleotide polymorphisms (SNPs) were combined, MDR1 TT/EPHX1 RH,RR/PZ AA subjects showed statistically significant increase in warfarin dose/week when compared with MDR1 CC/EPHX1 RH,RR/PZ AA subjects [median (25th-75th percentiles): 49.0 (42.0-59.5) vs. 35.0 (24.5-42.0) mg/week, respectively] (p = 0.014). In contrast, in the presence of wild-type EPHX1 HH, there was a decrease in warfarin dose/week in MDR1 TT subjects when compared with CT and CC subjects [median (25th-75th percentiles): 22.0 (17.5-30.6), 42.0 (35.0-49.0) and 42.0 (28.0-54.3) mg/week, respectively] (p = 0.005 and 0.030, respectively). Age had a significant contribution (p = 0.048) to the overall variability in warfarin dose. Calculated weekly dose = 52.928 - (0.289 × age) + (9.709 × combined genotype). The multivariate linear regression equation of warfarin maintenance dose accounted for about 8 % of variation in dose (R (2) = 0.079), age accounted for 5 % of variation, while combined genotypes added the extra 3 %. However, the new regression equation accounted for 20.9 % of variation in dose. Age accounted for 5 %, while VKORC1 C1173T accounted for an extra 13 % of variation and MDR1 C3435T accounted for the remaining 3 % of variation. Calculated dose = 64.909 - (0.282 × age) - (13.390 × VKORC1) - (7.164 × MDR1). Correlation analysis showed a close and significant relationship between the calculated and actual warfarin dose (r = 0.457; p < 0.0005). CONCLUSION Warfarin dose/week was significantly influenced by the combined MDR1 C3435T and EPHX1 H139R gene polymorphism since no polymorphism of PZ A-13G SNP was detected in our studied Egyptian population. Future studies with larger sample size will be needed to confirm our findings before definitive conclusions can be made.
Collapse
Affiliation(s)
- Marianne Samir Makboul Issac
- Department of Clinical and Chemical Pathology, Faculty of Medicine, Cairo University, El Saray St, El Manial, 11956, Cairo, Egypt,
| | | | | |
Collapse
|
7
|
The VKORC1 Asp36Tyr variant and VKORC1 haplotype diversity in Ashkenazi and Ethiopian populations. J Appl Genet 2014; 55:163-71. [PMID: 24425227 DOI: 10.1007/s13353-013-0189-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Revised: 12/16/2013] [Accepted: 12/26/2013] [Indexed: 12/30/2022]
Abstract
The vitamin K epoxide reductase (VKORC1) is a key enzyme in the vitamin K cycle impacting various biological processes. VKORC1 genetic variability has been extensively studied in the context of warfarin pharmacogenetics revealing different distributions of VKORC1 haplotypes in various populations. We previously identified the VKORC1 Asp36Tyr mutation that was associated with warfarin resistance and with distinctive ethnic distribution. In this study, we performed haplotype analysis using Asp36Tyr and seven other VKORC1 markers in Ashkenazi and Ethiopian-Jewish and non-Jewish individuals. The VKORC1 variability was represented by nine haplotypes (V1-V9) that could be grouped into two distinct clusters (V1-V3 and V4-V9) with intra-cluster difference limited to two nucleotide changes. Phylogeny analysis suggested that these haplotypes could have developed from an ancestral variant, the common V8 haplotype (40 % in all population samples), after ten single mutation events. Asp36Tyr was exclusive to the V5 haplotype of the second cluster. Two haplotypes V5 and V4, distinguished only by Asp36Tyr, were prevalent in both Ethiopian population samples. The V2 haplotype, belonging to the first cluster, was the second most prevalent haplotype in the Ashkenazi population sample (15.8 %) but relatively uncommon in the Ethiopian origin (4.5-4.7 %). We discuss the genetic diversity among studied populations and its potential impact on warfarin-dose management in certain populations of African and European origin.
Collapse
|
8
|
Rocca B, Dragani A, Pagliaccia F. Identifying determinants of variability to tailor aspirin therapy. Expert Rev Cardiovasc Ther 2014; 11:365-79. [DOI: 10.1586/erc.12.144] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
9
|
Kamali X, Wulasihan M, Yang YC, Lu WH, Liu ZQ, He PY. Association of GGCX gene polymorphism with warfarin dose in atrial fibrillation population in Xinjiang. Lipids Health Dis 2013; 12:149. [PMID: 24148610 PMCID: PMC4015881 DOI: 10.1186/1476-511x-12-149] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Accepted: 10/18/2013] [Indexed: 11/17/2022] Open
Abstract
Objective To study the effects of γ-glutamyl carboxylase (GGCX) rs2592551 polymorphism on warfarin dose in atrial fibrillation patients in Xinjiang region. Methods Polymerase chain reaction - restriction fragment length polymorphism and direct sequencing methods were used to detect the rs2592551 genotype in 269 atrial fibrillation patients with warfarin administration. The effects of different genotypes on warfarin dose were statistically analyzed. Results The rs2592551 polymorphism detection results were 136 cases of wild-type homozygous CC genotype (50.56%), 115 cases of heterozygous CT genotype (42.75%), 18 cases of homozygous TT genotype (6.69%). The allele frequency C was 71.93%, T was 28.07%. The stable warfarin dose average was 2.86 ± 0.61 mg/d in patients with CC genotype, 3.59 ± 0.93 mg/d in patients with CT genotype and 4.06 ± 0.88 mg/d in patients with TT genotype. The warfarin dose in different genotypes were compared, there was statistically significant difference between CC and TT, CC and CT (P <0. 05), but the TT and CT showed no significant difference (P > 0.05). Conclusion In atrial fibrillation population in Xinjiang, patients with CT and TT genotypes in GGCX gene rs259251 loci required for significantly higher warfarin dose than those with CC genotype. Therefore, rs2592551 polymorphism may one of the factors affecting the warfarin dose in patients with atrial fibrillation.
Collapse
Affiliation(s)
| | - Muhuyati Wulasihan
- Department of Cardiology, First Affiliated Hospital of Xinjiang Medical University, Urumqi 830011, P,R, China.
| | | | | | | | | |
Collapse
|
10
|
Validation of a Proposed Warfarin Dosing Algorithm Based on the Genetic Make-Up of Egyptian Patients. Mol Diagn Ther 2013; 17:381-90. [DOI: 10.1007/s40291-013-0046-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
11
|
Anton AI, Cerezo-Manchado JJ, Padilla J, Perez-Andreu V, Corral J, Vicente V, Roldan V, Gonzalez-Conejero R. Novel associations of VKORC1 variants with higher acenocoumarol requirements. PLoS One 2013; 8:e64469. [PMID: 23691226 PMCID: PMC3656883 DOI: 10.1371/journal.pone.0064469] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2012] [Accepted: 04/16/2013] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Algorithms combining both clinical and genetic data have been developed to improve oral anticoagulant therapy. Three polymorphisms in two genes, VKORC1 and CYP2C9, are the main coumarin dose determinants and no additional polymorphisms of any relevant pharmacogenetic importance have been identified. OBJECTIVES To identify new genetic variations in VKORC1 with relevance for oral anticoagulant therapy. METHODS AND RESULTS 3949 consecutive patients taking acenocoumarol were genotyped for the VKORC1 rs9923231 and CY2C9* polymorphisms. Of these, 145 patients with a dose outside the expected range for the genetic profile determined by these polymorphisms were selected. Clinical factors explained the phenotype in 88 patients. In the remaining 57 patients, all with higher doses than expected, we sequenced the VKORC1 gene and genetic changes were identified in 14 patients. Four patients carried VKORC1 variants previously related to high coumarin doses (L128R, N = 1 and D36Y, N = 3).Three polymorphisms were also detected: rs17878544 (N = 5), rs55894764 (N = 4) and rs7200749 (N = 2) which was in linkage disequilibrium with rs17878544. Finally, 2 patients had lost the rs9923231/rs9934438 linkage. The prevalence of these variations was higher in these patients than in the whole sample. Multivariate linear regression analysis revealed that only D36Y and rs55894764 variants significantly affect the dose, although the improvement in the prediction model is small (from 39% to 40%). CONCLUSION Our strategy identified novel associations of VKORC1 variants with higher acenocoumarol doses albeit with a low effect size. Further studies are necessary to test their influence on the VKORC1 function and the cost/benefit of their inclusion in pharmacogenetic algorithms.
Collapse
Affiliation(s)
- Ana Isabel Anton
- Centro Regional de Hemodonación and Morales Meseguer Hospital, University of Murcia, Murcia, Spain
| | - Juan J. Cerezo-Manchado
- Centro Regional de Hemodonación and Morales Meseguer Hospital, University of Murcia, Murcia, Spain
| | - Jose Padilla
- Centro Regional de Hemodonación and Morales Meseguer Hospital, University of Murcia, Murcia, Spain
| | - Virginia Perez-Andreu
- Centro Regional de Hemodonación and Morales Meseguer Hospital, University of Murcia, Murcia, Spain
| | - Javier Corral
- Centro Regional de Hemodonación and Morales Meseguer Hospital, University of Murcia, Murcia, Spain
| | - Vicente Vicente
- Centro Regional de Hemodonación and Morales Meseguer Hospital, University of Murcia, Murcia, Spain
| | - Vanessa Roldan
- Centro Regional de Hemodonación and Morales Meseguer Hospital, University of Murcia, Murcia, Spain
| | - Rocio Gonzalez-Conejero
- Centro Regional de Hemodonación and Morales Meseguer Hospital, University of Murcia, Murcia, Spain
- * E-mail:
| |
Collapse
|
12
|
Fung E, Patsopoulos NA, Belknap SM, O'Rourke DJ, Robb JF, Anderson JL, Shworak NW, Moore JH. Effect of genetic variants, especially CYP2C9 and VKORC1, on the pharmacology of warfarin. Semin Thromb Hemost 2012; 38:893-904. [PMID: 23041981 DOI: 10.1055/s-0032-1328891] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The genes encoding the cytochrome P450 2C9 enzyme (CYP2C9) and vitamin K-epoxide reductase complex unit 1 (VKORC1) are major determinants of anticoagulant response to warfarin. Together with patient demographics and clinical information, they account for approximately one-half of the warfarin dose variance in individuals of European descent. Recent prospective and randomized controlled trial data support pharmacogenetic guidance with their use in warfarin dose initiation and titration. Benefits from pharmacogenetics-guided warfarin dosing have been reported to extend beyond the period of initial dosing, with supportive data indicating benefits to at least 3 months. The genetic effects of VKORC1 and CYP2C9 in African and Asian populations are concordant with those in individuals of European ancestry; however, frequency distribution of allelic variants can vary considerably between major populations. Future randomized controlled trials in multiethnic settings using population-specific dosing algorithms will allow us to further ascertain the generalizability and cost-effectiveness of pharmacogenetics-guided warfarin therapy. Additional genome-wide association studies may help us to improve and refine dosing algorithms and potentially identify novel biological pathways.
Collapse
Affiliation(s)
- Erik Fung
- Section of Cardiology, Heart & Vascular Center, Lebanon, New Hampshire 03756, USA.
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Kurnik D, Qasim H, Sominsky S, Lubetsky A, Markovits N, Li C, Stein CM, Halkin H, Gak E, Loebstein R. Effect of the VKORC1 D36Y variant on warfarin dose requirement and pharmacogenetic dose prediction. Thromb Haemost 2012; 108:781-8. [PMID: 22871975 DOI: 10.1160/th12-03-0151] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2012] [Accepted: 07/12/2012] [Indexed: 02/06/2023]
Abstract
Pharmacogenetic dosing algorithms help predict warfarin maintenance doses, but their predictive performance differs in different populations, possibly due to unsuspected population-specific genetic variants. The objectives of this study were to quantify the effect of the VKORC1 D36Y variant (a marker of warfarin resistance previously described in 4% of Ashkenazi Jews) on warfarin maintenance doses and to examine how this variant affects the performance of the International Warfarin Pharmacogenetic Consortium (IWPC) dose prediction model. In 210 Israeli patients on chronic warfarin therapy recruited at a tertiary care centre, we applied the IWPC model and then added D36Y genotype as covariate to the model (IWPC+D36Y) and compared predicted with actual doses. Median weekly warfarin dose was 35 mg (interquartile range [IQR], 24.5 to 52.5 mg). Among 16 heterozygous D36Y carriers (minor allele frequency = 3.8%), warfarin weekly dose was increased by a median of 43.7 mg (IQR, 40.5 to 47.2 mg) compared to non-carriers after adjustment for all IWPC parameters, a greater than two-fold dose increase. The IWPC model performed suboptimally (coefficient of determination R²=27.0%; mean absolute error (MAE), 14.4 ± 16.2 mg/week). Accounting for D36Y genotype using the IWPC+D36Y model resulted in a significantly better model performance (R²=47.2%, MAE=12.6 ± 12.4 mg/week). In conclusion, even at low frequencies, variants with a strong impact on warfarin dose may greatly decrease the performance of a commonly used dose prediction model. Unexpected discrepancies of the performance of universal prediction models in subpopulations should prompt searching for unsuspected confounders, including rare genetic variants.
Collapse
Affiliation(s)
- Daniel Kurnik
- Institute of Clinical Pharmacology and Toxicology, Sheba Medical Center, Tel Hashomer, Israel.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Whether it is personalized, precision, or mechanistic medicine - the clinical laboratory has a role. Clin Biochem 2012; 45:384. [DOI: 10.1016/j.clinbiochem.2012.03.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|