1
|
Le Scanff M, Marcourt L, Rutz A, Albertin W, Wolfender JL, Marchal A. Untargeted metabolomics analyses to identify a new sweet compound released during post-fermentation maceration of wine. Food Chem 2024; 461:140801. [PMID: 39178544 DOI: 10.1016/j.foodchem.2024.140801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 07/25/2024] [Accepted: 08/07/2024] [Indexed: 08/26/2024]
Abstract
The sensory quality of a wine is mainly based on its aroma and flavor. Sweetness contributes in the gustatory balance of red wines. The investigation of compounds involved in this flavor was based on empirical observations, such as the increase in wine sweetness during yeast autolysis, concomitant to post-fermentation maceration in red winemaking. An untargeted metabolomics approach using UHPLC-HRMS has been developed to discover a new sweet molecule released during this stage. Among several markers highlighted, one compound was selected to be isolated by various separative techniques. It was unambiguously identified by NMR as N6-succinyladenosine and is reported for the first time in wine at an average concentration of 3.16 mg/L in 85 red wines. Furthermore, sensory analysis has highlighted its sweetness. In addition to discovering a new sweet compound in wine, this study proposes new tools for studying taste-active compounds in natural matrices.
Collapse
Affiliation(s)
- Marie Le Scanff
- Univ. Bordeaux, Bordeaux INP, INRAE, BSA, OENO, UMR 1366, ISVV, F-33140 Villenave d'Ornon, France
| | - Laurence Marcourt
- School of Pharmaceutical Sciences, University of Geneva, Centre Médical Universitaire (CMU), Geneva, Switzerland; Institute of Pharmaceutical Sciences of Western Switzerland (ISPSO), University of Geneva, Centre Médical Universitaire (CMU), Geneva, Switzerland
| | - Adriano Rutz
- School of Pharmaceutical Sciences, University of Geneva, Centre Médical Universitaire (CMU), Geneva, Switzerland; Institute of Pharmaceutical Sciences of Western Switzerland (ISPSO), University of Geneva, Centre Médical Universitaire (CMU), Geneva, Switzerland
| | - Warren Albertin
- Univ. Bordeaux, Bordeaux INP, INRAE, BSA, OENO, UMR 1366, ISVV, F-33140 Villenave d'Ornon, France
| | - Jean-Luc Wolfender
- School of Pharmaceutical Sciences, University of Geneva, Centre Médical Universitaire (CMU), Geneva, Switzerland; Institute of Pharmaceutical Sciences of Western Switzerland (ISPSO), University of Geneva, Centre Médical Universitaire (CMU), Geneva, Switzerland
| | - Axel Marchal
- Univ. Bordeaux, Bordeaux INP, INRAE, BSA, OENO, UMR 1366, ISVV, F-33140 Villenave d'Ornon, France.
| |
Collapse
|
2
|
Monostori P, Klinke G, Hauke J, Richter S, Bierau J, Garbade SF, Hoffmann GF, Langhans CD, Haas D, Okun JG. Extended diagnosis of purine and pyrimidine disorders from urine: LC MS/MS assay development and clinical validation. PLoS One 2019; 14:e0212458. [PMID: 30817767 PMCID: PMC6394934 DOI: 10.1371/journal.pone.0212458] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 02/01/2019] [Indexed: 12/31/2022] Open
Abstract
Background and aims Inborn errors of purine and pyrimidine metabolism are a diverse group of disorders with possible serious or life-threatening symptoms. They may be associated with neurological symptoms, renal stone disease or immunodeficiency. However, the clinical presentation can be nonspecific and mild so that a number of cases may be missed. Previously published assays lacked detection of certain diagnostically important biomarkers, including SAICAr, AICAr, beta-ureidoisobutyric acid, 2,8-dihydroxyadenine and orotidine, necessitating the use of separate assays for their detection. Moreover, the limited sensitivity for some analytes in earlier assays may have hampered the reliable detection of mild cases. Therefore, we aimed to develop a liquid chromatography–tandem mass spectrometry (LC-MS/MS) assay that allows the simultaneous and sensitive detection of an extended range of purine and pyrimidine biomarkers in urine. Methods The assay was developed and validated using LC-MS/MS and clinically tested by analyzing ERNDIM Diagnostic Proficiency Testing (DPT) samples and further specimens from patients with various purine and pyrimidine disorders. Results Reliable determination of 27 analytes including SAICAr, AICAr, beta-ureidoisobutyric acid, 2,8-dihydroxyadenine and orotidine was achieved in urine following a simple sample preparation. The method clearly distinguished pathological and normal samples and differentiated between purine and pyrimidine defects in all clinical specimens. Conclusions A LC-MS/MS assay allowing the simultaneous, sensitive and reliable diagnosis of an extended range of purine and pyrimidine disorders has been developed. The validated method has successfully been tested using ERNDIM Diagnostic Proficiency Testing (DPT) samples and further clinical specimens from patients with various purine and pyrimidine disorders. Sample preparation is simple and assay duration is short, facilitating an easier inclusion of the assay into the diagnostic procedures.
Collapse
Affiliation(s)
- Péter Monostori
- Department of General Pediatrics, Division of Neuropediatrics and Metabolic Medicine, Center for Pediatric and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
- * E-mail:
| | - Glynis Klinke
- Department of General Pediatrics, Division of Neuropediatrics and Metabolic Medicine, Center for Pediatric and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Jana Hauke
- Department of General Pediatrics, Division of Neuropediatrics and Metabolic Medicine, Center for Pediatric and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Sylvia Richter
- Department of General Pediatrics, Division of Neuropediatrics and Metabolic Medicine, Center for Pediatric and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Jörgen Bierau
- Department of Clinical Genetics, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Sven F. Garbade
- Department of General Pediatrics, Division of Neuropediatrics and Metabolic Medicine, Center for Pediatric and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Georg F. Hoffmann
- Department of General Pediatrics, Division of Neuropediatrics and Metabolic Medicine, Center for Pediatric and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Claus-Dieter Langhans
- Department of General Pediatrics, Division of Neuropediatrics and Metabolic Medicine, Center for Pediatric and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Dorothea Haas
- Department of General Pediatrics, Division of Neuropediatrics and Metabolic Medicine, Center for Pediatric and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Jürgen G. Okun
- Department of General Pediatrics, Division of Neuropediatrics and Metabolic Medicine, Center for Pediatric and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
| |
Collapse
|
3
|
Mass spectrometric analysis of purine de novo biosynthesis intermediates. PLoS One 2018; 13:e0208947. [PMID: 30532129 PMCID: PMC6287904 DOI: 10.1371/journal.pone.0208947] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 11/26/2018] [Indexed: 12/12/2022] Open
Abstract
Purines are essential molecules for all forms of life. In addition to constituting a backbone of DNA and RNA, purines play roles in many metabolic pathways, such as energy utilization, regulation of enzyme activity, and cell signaling. The supply of purines is provided by two pathways: the salvage pathway and de novo synthesis. Although purine de novo synthesis (PDNS) activity varies during the cell cycle, this pathway represents an important source of purines, especially for rapidly dividing cells. A method for the detailed study of PDNS is lacking for analytical reasons (sensitivity) and because of the commercial unavailability of the compounds. The aim was to fully describe the mass spectrometric fragmentation behavior of newly synthesized PDNS-related metabolites and develop an analytical method. Except for four initial ribotide PDNS intermediates that preferentially lost water or phosphate or cleaved the forming base of the purine ring, all the other metabolites studied cleaved the glycosidic bond in the first fragmentation stage. Fragmentation was possible in the third to sixth stages. A liquid chromatography-high-resolution mass spectrometric method was developed and applied in the analysis of CRISPR-Cas9 genome-edited HeLa cells deficient in the individual enzymatic steps of PDNS and the salvage pathway. The identities of the newly synthesized intermediates of PDNS were confirmed by comparing the fragmentation patterns of the synthesized metabolites with those produced by cells (formed under pathological conditions of known and theoretically possible defects of PDNS). The use of stable isotope incorporation allowed the confirmation of fragmentation mechanisms and provided data for future fluxomic experiments. This method may find uses in the diagnosis of PDNS disorders, the investigation of purinosome formation, cancer research, enzyme inhibition studies, and other applications.
Collapse
|
4
|
Baresova V, Krijt M, Skopova V, Souckova O, Kmoch S, Zikanova M. CRISPR-Cas9 induced mutations along de novo purine synthesis in HeLa cells result in accumulation of individual enzyme substrates and affect purinosome formation. Mol Genet Metab 2016; 119:270-277. [PMID: 27590927 DOI: 10.1016/j.ymgme.2016.08.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 08/19/2016] [Accepted: 08/19/2016] [Indexed: 11/21/2022]
Abstract
Purines are essential molecules for nucleic acid synthesis and are the most common carriers of chemical energy in all living organisms. The cellular pool of purines is maintained by the balance between their de novo synthesis (DNPS), recycling and degradation. DNPS includes ten reactions catalysed by six enzymes. To date, two genetically determined disorders of DNPS enzymes have been described, and the existence of other defects manifested by neurological symptoms and the accumulation of DNPS intermediates in bodily fluids is highly presumable. In the current study, we prepared specific recombinant DNPS enzymes and used them for the biochemical preparation of their commercially unavailable substrates. These compounds were used as standards for the development and validation of quantitative liquid chromatography-tandem mass spectrometry (LC-MS/MS). To simulate manifestations of known and putative defects of DNPS we prepared CRISPR-Cas9 genome-edited HeLa cells deficient for the individual steps of DNPS (CR-cells), assessed the substrates accumulation in cell lysates and growth media and tested how the mutations affect assembly of the purinosome, the multi-enzyme complex of DNPS enzymes. In all model cell lines with the exception of one, an accumulation of the substrate(s) for the knocked out enzyme was identified. The ability to form the purinosome was reduced. We conclude that LC-MS/MS analysis of the dephosphorylated substrates of DNPS enzymes in bodily fluids is applicable in the selective screening of the known and putative DNPS disorders. This approach should be considered in affected individuals with neurological and neuromuscular manifestations of unknown aetiology. Prepared in vitro human model systems can serve in various studies that aim to provide a better characterization and understanding of physiology and pathology of DNPS, to study the role of each DNPS protein in the purinosome formation and represent an interesting way for the screening of potential therapeutic agents.
Collapse
Affiliation(s)
- Veronika Baresova
- Institute of Inherited Metabolic Disorders, First Faculty of Medicine, Charles University in Prague, General University Hospital in Prague, Ke Karlovu 2, 128 08 Praha 2, Czech Republic
| | - Matyas Krijt
- Institute of Inherited Metabolic Disorders, First Faculty of Medicine, Charles University in Prague, General University Hospital in Prague, Ke Karlovu 2, 128 08 Praha 2, Czech Republic
| | - Vaclava Skopova
- Institute of Inherited Metabolic Disorders, First Faculty of Medicine, Charles University in Prague, General University Hospital in Prague, Ke Karlovu 2, 128 08 Praha 2, Czech Republic
| | - Olga Souckova
- Institute of Inherited Metabolic Disorders, First Faculty of Medicine, Charles University in Prague, General University Hospital in Prague, Ke Karlovu 2, 128 08 Praha 2, Czech Republic
| | - Stanislav Kmoch
- Institute of Inherited Metabolic Disorders, First Faculty of Medicine, Charles University in Prague, General University Hospital in Prague, Ke Karlovu 2, 128 08 Praha 2, Czech Republic
| | - Marie Zikanova
- Institute of Inherited Metabolic Disorders, First Faculty of Medicine, Charles University in Prague, General University Hospital in Prague, Ke Karlovu 2, 128 08 Praha 2, Czech Republic.
| |
Collapse
|
5
|
Donti TR, Cappuccio G, Hubert L, Neira J, Atwal PS, Miller MJ, Cardon AL, Sutton VR, Porter BE, Baumer FM, Wangler MF, Sun Q, Emrick LT, Elsea SH. Diagnosis of adenylosuccinate lyase deficiency by metabolomic profiling in plasma reveals a phenotypic spectrum. Mol Genet Metab Rep 2016; 8:61-6. [PMID: 27504266 PMCID: PMC4969260 DOI: 10.1016/j.ymgmr.2016.07.007] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 07/20/2016] [Accepted: 07/20/2016] [Indexed: 11/25/2022] Open
Abstract
Adenylosuccinate lyase (ADSL) deficiency is a rare autosomal recessive neurometabolic disorder that presents with a broad-spectrum of neurological and physiological symptoms. The ADSL gene produces an enzyme with binary molecular roles in de novo purine synthesis and purine nucleotide recycling. The biochemical phenotype of ADSL deficiency, accumulation of SAICAr and succinyladenosine (S-Ado) in biofluids of affected individuals, serves as the traditional target for diagnosis with targeted quantitative urine purine analysis employed as the predominate method of detection. In this study, we report the diagnosis of ADSL deficiency using an alternative method, untargeted metabolomic profiling, an analytical scheme capable of generating semi-quantitative z-score values for over 1000 unique compounds in a single analysis of a specimen. Using this method to analyze plasma, we diagnosed ADSL deficiency in four patients and confirmed these findings with targeted quantitative biochemical analysis and molecular genetic testing. ADSL deficiency is part of a large a group of neurometabolic disorders, with a wide range of severity and sharing a broad differential diagnosis. This phenotypic similarity among these many inborn errors of metabolism (IEMs) has classically stood as a hurdle in their initial diagnosis and subsequent treatment. The findings presented here demonstrate the clinical utility of metabolomic profiling in the diagnosis of ADSL deficiency and highlights the potential of this technology in the diagnostic evaluation of individuals with neurologic phenotypes.
Collapse
Affiliation(s)
- Taraka R. Donti
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, United States
| | - Gerarda Cappuccio
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, United States
- Department of Translational Medical Sciences, Section of Pediatrics, Federico II University, Naples, Italy
| | - Leroy Hubert
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, United States
| | - Juanita Neira
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, United States
| | - Paldeep S. Atwal
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, United States
| | - Marcus J. Miller
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, United States
| | - Aaron L. Cardon
- Section of Pediatric Neurology and Neuroscience, Baylor College of Medicine, Houston, TX, United States
| | - V. Reid Sutton
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, United States
| | | | | | - Michael F. Wangler
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, United States
| | - Qin Sun
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, United States
| | - Lisa T. Emrick
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, United States
- Section of Pediatric Neurology and Neuroscience, Baylor College of Medicine, Houston, TX, United States
| | - Sarah H. Elsea
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, United States
| |
Collapse
|
6
|
|
7
|
Affiliation(s)
- Patricia M Jones
- Chemistry and Metabolic Disease Laboratory, Children's Medical Center Dallas, USA; Department of Pathology, UT Southwestern Medical Center, USA.
| | - Nathalie Lepage
- Biochemical Genetics Laboratory, Children's Hospital of Eastern Ontario, Canada; Department of Pathology and Laboratory Medicine, University of Ottawa, Canada
| |
Collapse
|