1
|
Girel S, Meister I, Glauser G, Rudaz S. Hyphenation of microflow chromatography with electrospray ionization mass spectrometry for bioanalytical applications focusing on low molecular weight compounds: A tutorial review. MASS SPECTROMETRY REVIEWS 2025; 44:491-512. [PMID: 38952056 PMCID: PMC11976378 DOI: 10.1002/mas.21898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 06/10/2024] [Accepted: 06/20/2024] [Indexed: 07/03/2024]
Abstract
Benefits of miniaturized chromatography with various detection modes, such as increased sensitivity, chromatographic efficiency, and speed, were recognized nearly 50 years ago. Over the past two decades, this approach has experienced rapid growth, driven by the emergence of mass spectrometry applications serving -omics sciences and the need for analyzing minute volumes of precious samples with ever higher sensitivity. While nanoscale liquid chromatography (flow rates <1 μL/min) has gained widespread recognition in proteomics, the adoption of microscale setups (flow rates ranging from 1 to 100 μL/min) for low molecular weight compound applications, including metabolomics, has been surprisingly slow, despite the inherent advantages of the approach. Highly heterogeneous matrices and chemical structures accompanied by a relative lack of options for both selective sample preparation and user-friendly equipment are usually reported as major hindrances. To facilitate the wider implementation of microscale analyses, we present here a comprehensive tutorial encompassing important theoretical and practical considerations. We provide fundamental principles in micro-chromatography and guide the reader through the main elements of a microflow workflow, from LC pumps to ionization devices. Finally, based on both our literature overview and experience, illustrated by some in-house data, we highlight the critical importance of the ionization source design and its careful optimization to achieve significant sensitivity improvement.
Collapse
Affiliation(s)
- Sergey Girel
- Institute of Pharmaceutical Sciences of Western SwitzerlandUniversity of GenevaGenevaSwitzerland
| | - Isabel Meister
- Institute of Pharmaceutical Sciences of Western SwitzerlandUniversity of GenevaGenevaSwitzerland
- Swiss Center of Applied Human Toxicology (SCAHT)BaselSwitzerland
| | - Gaetan Glauser
- Neuchâtel Platform of Analytical ChemistryUniversity of NeuchâtelNeuchâtelSwitzerland
| | - Serge Rudaz
- Institute of Pharmaceutical Sciences of Western SwitzerlandUniversity of GenevaGenevaSwitzerland
- Swiss Center of Applied Human Toxicology (SCAHT)BaselSwitzerland
| |
Collapse
|
2
|
Domes C, Graul L, Frosch T, Popp J, Hagel S, Pletz MW, Frosch T. Impact of clinical preparation steps and use of sex-specific reference for accurate antibiotic monitoring in body fluids. COMMUNICATIONS MEDICINE 2025; 5:120. [PMID: 40240478 PMCID: PMC12003900 DOI: 10.1038/s43856-025-00823-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 03/24/2025] [Indexed: 04/18/2025] Open
Abstract
BACKGROUND Effective antibiotic therapy in critically ill patients requires precise dosing tailored to individual conditions. However, physiological changes in these patients can complicate drug exposure prediction, leading to treatment failure or toxicity. Therapeutic drug monitoring (TDM) is crucial in optimizing antibiotic therapy, with Raman spectroscopy emerging as a promising method due to its speed and sensitivity. METHODS The utility of resonance Raman spectroscopy in analyzing clinical urine samples was investigated, specifically focusing on piperacillin concentrations. Samples subjected to various preparation techniques, including freezing, centrifugation, and filtration, were analyzed using deep UV resonance Raman spectroscopy. Data analysis involved preprocessing and chemometric modeling to assess concentration changes and the influence of sample matrix. RESULTS Sample preparation steps induce concentration changes in piperacillin, with freezing having the highest impact. Chemometric modeling reveals that freezing, filtration, and centrifugation, especially when combined, reduce drug concentration. Furthermore, the choice of urine reference for quantification impacts results, with sex-specific urine pools showing better accuracy compared to mixed pools. CONCLUSIONS Resonance Raman spectroscopy effectively quantifies piperacillin concentrations in urine. Freezing, centrifugation, and filtration during sample preparation influence drug concentration. Using sex-specific urine pools as references yields more accurate quantification results. These findings underscore the importance of considering sample processing effects and reference selection in TDM studies, offering insights for optimizing antibiotic dosing in critically ill patients. Further validation on a larger scale is warranted to confirm these observations.
Collapse
Affiliation(s)
- Christian Domes
- Biophotonics and Biomedical Engineering Group, Technical University Darmstadt, Merckstraße 25, 64283, Darmstadt, Germany
- Leibniz Institute of Photonic Technology, 07745, Jena, Germany
| | - Lisa Graul
- Leibniz Institute of Photonic Technology, 07745, Jena, Germany
| | - Timea Frosch
- Leibniz Institute of Photonic Technology, 07745, Jena, Germany
| | - Juergen Popp
- Leibniz Institute of Photonic Technology, 07745, Jena, Germany
| | - Stefan Hagel
- Institute of Infectious Diseases and Infection Control, University Hospital, 07747, Jena, Germany
| | - Mathias W Pletz
- Institute of Infectious Diseases and Infection Control, University Hospital, 07747, Jena, Germany
| | - Torsten Frosch
- Biophotonics and Biomedical Engineering Group, Technical University Darmstadt, Merckstraße 25, 64283, Darmstadt, Germany.
- Leibniz Institute of Photonic Technology, 07745, Jena, Germany.
| |
Collapse
|
3
|
Bardhi A, Lanci A, Mannini A, Castagnetti C, Barbarossa A. A Laboratory Protocol for Routine Therapeutic Drug Monitoring of Beta-Lactams Antimicrobials in Horses and Dogs. Antibiotics (Basel) 2025; 14:390. [PMID: 40298550 DOI: 10.3390/antibiotics14040390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 03/04/2025] [Accepted: 04/02/2025] [Indexed: 04/30/2025] Open
Abstract
Background: Although antibiotic resistance is a well-known issue in veterinary medicine, studies proposing real-time therapeutic monitoring (TDM) are lacking. The objective of the present study was to develop a simple and rapid protocol for the real-time therapeutic monitoring of antibiotics in horses and dogs. Methods: A reliable TDM protocol should encompass guidelines for the definition of plasma/serum collection time points, sample management by the clinical staff, transportation to the laboratory, and the availability of robust and swift analytical technologies. Ampicillin and sulbactam were quantified using liquid chromatography-tandem mass spectrometry (LC-MS/MS) in the plasma or serum of animals treated with ampicillin alone or combined with sulbactam. Results: The method was successfully applied to samples collected from animals hospitalized in our veterinary hospital and proved helpful in understanding the pharmacokinetics of this antibiotic in critically ill patients. Conclusions: Combined with minimum inhibitory concentration (MIC) data, this approach enables PK/PD evaluations to support the development of personalized therapeutic strategies and optimized dosing regimens for animals.
Collapse
Affiliation(s)
- Anisa Bardhi
- Department of Veterinary Medical Sciences, University of Bologna, 40064 Ozzano dell'Emilia, Bologna, Italy
| | - Aliai Lanci
- Department of Veterinary Medical Sciences, University of Bologna, 40064 Ozzano dell'Emilia, Bologna, Italy
| | - Aurora Mannini
- Department of Veterinary Medical Sciences, University of Bologna, 40064 Ozzano dell'Emilia, Bologna, Italy
| | - Carolina Castagnetti
- Department of Veterinary Medical Sciences, University of Bologna, 40064 Ozzano dell'Emilia, Bologna, Italy
| | - Andrea Barbarossa
- Department of Veterinary Medical Sciences, University of Bologna, 40064 Ozzano dell'Emilia, Bologna, Italy
- Health Sciences and Technologies-Interdepartmental Centre for Industrial Research (CIRI-SDV), University of Bologna, 40064 Ozzano dell'Emilia, Bologna, Italy
| |
Collapse
|
4
|
Bardhi A, Dondi F, Barbarossa A. Exploring the Most Effective Strategy for Purine Metabolite Quantification in Veterinary Medicine Using LC-MS/MS. Vet Sci 2025; 12:230. [PMID: 40266901 PMCID: PMC11946735 DOI: 10.3390/vetsci12030230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Revised: 02/26/2025] [Accepted: 02/27/2025] [Indexed: 04/25/2025] Open
Abstract
Measuring purine metabolites in the serum and urine may help in the early diagnosis of urolith formation, the correction of allopurinol therapeutic dosages, and the evaluation of diet-related alterations. To properly monitor these endogenous compounds and assess their physiological concentration ranges in biological fluids, highly specific and accurate analytical approaches are required. Colorimetric assays are generally used for this purpose, although their cross-reactivity could lead to incorrect determinations. Given the importance of selectivity in detecting endogenous compounds, this study explored the use of liquid chromatography-tandem mass spectrometry (LC-MS/MS) to enhance uric acid and allantoin measurement in both serum and urine from dogs, as well as urine from bovines. The most effective analytical strategy was identified and successfully applied to an initial batch of samples collected from healthy dogs and bovines. In conclusion, mass spectrometry proved to be a powerful tool for this challenging task, further demonstrating its superior performance in improving clinical laboratory diagnostics, including its valuable applications in veterinary medicine.
Collapse
Affiliation(s)
- Anisa Bardhi
- Department of Veterinary Medical Sciences, Alma Mater Studiorum—University of Bologna, Ozzano dell’Emilia, 40064 Bologna, Italy; (F.D.); (A.B.)
| | - Francesco Dondi
- Department of Veterinary Medical Sciences, Alma Mater Studiorum—University of Bologna, Ozzano dell’Emilia, 40064 Bologna, Italy; (F.D.); (A.B.)
| | - Andrea Barbarossa
- Department of Veterinary Medical Sciences, Alma Mater Studiorum—University of Bologna, Ozzano dell’Emilia, 40064 Bologna, Italy; (F.D.); (A.B.)
- Health Sciences and Technologies—Interdepartmental Centre for Industrial Research (CIRI-SDV), Alma Mater Studiorum—University of Bologna, Ozzano dell’Emilia, 40064 Bologna, Italy
| |
Collapse
|
5
|
Steffens NA, Petreceli RR, Azevedo VC, França AS, Hahn RZ, Bondan AP, Linden R, Charão MF, Schwarzbold ADV, Brucker N. Amikacin therapeutic drug monitoring: Evaluation of therapy performance and analytical techniques in a developing country setting. Clin Biochem 2025; 136:110874. [PMID: 39761849 DOI: 10.1016/j.clinbiochem.2025.110874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 01/02/2025] [Accepted: 01/03/2025] [Indexed: 01/14/2025]
Abstract
INTRODUCTION Healthcare systems face several challenges, with microbial infections being one of the main concerns. Therapeutic drug monitoring (TDM) is a strategy that has been encouraged to optimize antimicrobial regimens, particularly those with significant toxicity and narrow therapeutic indices, such as amikacin (AMK). We aimed to evaluate AMK concentrations of patients in a non-routine TDM setting and compare the performance of immunoassay and chromatography methods for routine clinical use. MATERIAL AND METHODS In this prospective study, peak (Cmax) and trough (Cmin) plasma samples were collected from 39 adult patients and quantified by ultra-performance liquid chromatography coupled with mass spectrometry (UPLC-MS/MS). Relevant clinical information was collected from medical records. AMK concentrations and clinical data were analyzed to evaluate therapy performance and influencing factors. In addition, fluorescence polarized immunoassay (FPIA) and UPLC-MS/MS were compared with Passing-Bablok regression and Bland-Altman plot analysis. RESULTS AMK concentrations varied widely, with a median Cmax of 41.40 µg/mL (interquartile range [IQR] 27.60 - 56.75 µg/mL) and a median Cmin of 1.87 µg/mL (IQR 0.7 - 6.19 µg/mL). A high proportion of patients (83.1 %) failed to achieve the Cmax therapeutic target, while 31.7 % failed to achieve the Cmin therapeutic target. Overall, elderly patients and those with reduced renal function had higher Cmax target attainment, while the same groups had lower Cmin target attainment. The method comparison showed a mean difference of 1.54 % (limits of agreement -42.46 % to 45.54 %) in measured concentrations, with good correlation and no constant or proportional differences. CONCLUSION Many patients failed to reach the Cmax target and were at risk of treatment failure, although adequate Cmin was achieved more often. TDM with dose adjustments could improve AMK therapy, but further research is needed.
Collapse
Affiliation(s)
- Nadine Arnold Steffens
- Graduate Program in Pharmaceutical Sciences, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Rodrigo Redel Petreceli
- Graduate Program in Pharmaceutical Sciences, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | | | | | - Roberta Zilles Hahn
- Laboratory of Toxicology Analysis, Feevale University, Novo Hamburgo, RS, Brazil
| | | | - Rafael Linden
- Laboratory of Toxicology Analysis, Feevale University, Novo Hamburgo, RS, Brazil
| | | | | | - Natália Brucker
- Graduate Program in Pharmaceutical Sciences, Federal University of Santa Maria, Santa Maria, RS, Brazil.
| |
Collapse
|
6
|
Xu X, Xu D, Zhou X, Huang J, Gu S, Zhang Z. Implantable photoelectrochemical-therapeutic methotrexate monitoring system with dual-atomic docking strategy. Nat Commun 2025; 16:1747. [PMID: 39966460 PMCID: PMC11836052 DOI: 10.1038/s41467-025-57084-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 02/05/2025] [Indexed: 02/20/2025] Open
Abstract
The need for precise modulation of blood concentrations of pharmaceutical molecule, especially for high-risk drugs like Methotrexate (MTX), is underscored by the significant impact of individual variations on treatment efficacy. Achieving selective recognition of pharmaceutical molecules within the complex biological environment is a substantial challenge. To tackle this, we propose a synergistic atomic-molecular docking strategy that utilizes a hybrid-dual single-atom Fe1-Zn1 on a TiO2 photoelectrode to selectively bind to the carboxyl and aminopyrimidine groups of MTX respectively. By integrating this Fe1-Zn1-TiO2 photoelectrode with a microcomputer system, an implantable photoelectrochemical-therapeutic drug monitoring (PEC-TDM) system is developed for real-time, continuous in vivo MTX monitoring. This system facilitates personalized therapeutic decision-making and intelligent drug delivery for individualized cancer therapy, potentially revolutionizing oncological care and enhancing patient outcomes.
Collapse
Affiliation(s)
- Xiankui Xu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China
| | - Dawei Xu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China
| | - Xue Zhou
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China
| | - Jing Huang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China
| | - Shiting Gu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China
| | - Zhonghai Zhang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China.
| |
Collapse
|
7
|
Dalimunthe A, Carensia Gunawan M, Dhiya Utari Z, Dinata MR, Halim P, Estherina S. Pakpahan N, Sitohang AI, Sukarno MA, Yuandani, Harahap Y, Setyowati EP, Park MN, Yusoff SD, Zainalabidin S, Prananda AT, Mahadi MK, Kim B, Harahap U, Syahputra RA. In-depth analysis of lupeol: delving into the diverse pharmacological profile. Front Pharmacol 2024; 15:1461478. [PMID: 39605919 PMCID: PMC11598436 DOI: 10.3389/fphar.2024.1461478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 09/30/2024] [Indexed: 11/29/2024] Open
Abstract
Lupeol, a naturally occurring lupane-type pentacyclic triterpenoid, is widely distributed in various edible vegetables, fruits, and medicinal plants. Notably, it is found in high concentrations in plants like Tamarindus indica, Allanblackia monticola, and Emblica officinalis, among others. Quantitative studies have highlighted its presence in Elm bark, Olive fruit, Aloe leaf, Ginseng oil, Mango pulp, and Japanese Pear bark. This compound is synthesized from squalene through the mevalonate pathway and can also be synthetically produced in the lab, addressing challenges in natural product synthesis. Over the past four decades, extensive research has demonstrated lupeol's multifaceted pharmacological properties, including anti-inflammatory, antioxidant, anticancer, and antibacterial effects. Despite its significant therapeutic potential, clinical applications of lupeol have been limited by its poor water solubility and bioavailability. Recent advancements have focused on nano-based delivery systems to enhance its bioavailability, and the development of various lupeol derivatives has further amplified its bioactivity. This review provides a comprehensive overview of the latest advancements in understanding the pharmacological benefits of lupeol. It also discusses innovative strategies to improve its bioavailability, thereby enhancing its clinical efficacy. The aim is to consolidate current knowledge and stimulate further research into the therapeutic potential of lupeol and its derivatives.
Collapse
Affiliation(s)
- Aminah Dalimunthe
- Department of Pharmacology, Faculty of Pharmacy, Universitas Sumatera Utara, Medan, Indonesia
| | - Mega Carensia Gunawan
- Department of Pharmacology, Faculty of Pharmacy, Universitas Sumatera Utara, Medan, Indonesia
| | - Zahirah Dhiya Utari
- Department of Pharmacology, Faculty of Pharmacy, Universitas Sumatera Utara, Medan, Indonesia
| | - Muhammad Riza Dinata
- Department of Pharmacology, Faculty of Pharmacy, Universitas Sumatera Utara, Medan, Indonesia
| | - Princella Halim
- Department of Pharmacology, Faculty of Pharmacy, Universitas Sumatera Utara, Medan, Indonesia
| | | | - Alex Insandus Sitohang
- Department of Pharmacology, Faculty of Pharmacy, Universitas Sumatera Utara, Medan, Indonesia
| | - M. Andriansyah Sukarno
- Department of Pharmacology, Faculty of Pharmacy, Universitas Sumatera Utara, Medan, Indonesia
| | - Yuandani
- Department of Pharmacology, Faculty of Pharmacy, Universitas Sumatera Utara, Medan, Indonesia
| | | | | | - Moon Nyeo Park
- Department of Internal Medicine, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
- College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Syaratul Dalina Yusoff
- Centre for Drug and Herbal Development, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Satirah Zainalabidin
- Biomedical Science, Centre of Toxicology and Health Risk Study, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Arya Tjipta Prananda
- Faculty of Medicine, Universitas Sumatera Utara, Medan, Sumatera Utara, Indonesia
| | - Mohd Kaisan Mahadi
- Centre for Drug and Herbal Development, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Bonglee Kim
- Department of Internal Medicine, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
- College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Urip Harahap
- Department of Pharmacology, Faculty of Pharmacy, Universitas Sumatera Utara, Medan, Indonesia
| | - Rony Abdi Syahputra
- Department of Pharmacology, Faculty of Pharmacy, Universitas Sumatera Utara, Medan, Indonesia
| |
Collapse
|
8
|
Wang P, Zou L, Han H, Zhang T. A simple and sensitive LC-MS/MS method for the determination of loganic acid in rat plasma and its pharmacokinetic analysis. Biomed Chromatogr 2024; 38:e5951. [PMID: 38956830 DOI: 10.1002/bmc.5951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/07/2024] [Accepted: 06/14/2024] [Indexed: 07/04/2024]
Abstract
Loganic acid is an iridoid compound extracted from Gentianaceae plant Gentiana macrophylla Pall. It can effectively inhibit inflammation and tumor migration and has antioxidant activity. In this paper, we establish a simple, fast, sensitive and validated LC-MS method with the purpose of quantification of loganic acid in rat plasma with gliclazide as an internal standard (IS). Methanol was used to precipitate the protein in the plasma sample, and a C18 column (2.1 × 50 mm, 1.7 μm) was used for the separation of the target compound. Meanwhile, 0.1% formic acid water-methanol was employed as the mobile phase. Multiple reaction monitoring detection mode was adopted in detection with m/z 375.1 > 213.2 for loganic acid and m/z 322.1 > 169.9 for the IS, respectively, in negative ion scan mode. The linear range of calibration curve was 5.77-11,540.00 ng/ml, and the lower limit of detedtion was 2.89 ng/ml. The inter-day and intra-day precision and accuracy were <15% for lower limit of quantitation, low, middle and high quality control samples. This method was successfully used for the pharmacokinetic study of loganic acid in rat plasma at a dose range of 50-150 mg/kg for oral administration and 2 mg/kg for intravenous administration. The pharmacokinetic results showed that the oral bioavailability of loganic acid was low (2.71-5.58%).
Collapse
Affiliation(s)
- Panpan Wang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lu Zou
- School of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Han Han
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Tong Zhang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
9
|
Sato Y, Kondo H, Sato Y, Abe A, Kikuchi M, Sato T, Kumondai M, Yoshikawa K, Hayakawa Y, Maekawa M, Mano N. Development of Simultaneous Drug Concentration Measurement Method Using an Automated Pretreatment Liquid Chromatography/Tandem Mass Spectrometry System for Therapeutic Drug Monitoring. Pharmaceutics 2024; 16:1138. [PMID: 39339175 PMCID: PMC11435224 DOI: 10.3390/pharmaceutics16091138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 08/27/2024] [Accepted: 08/27/2024] [Indexed: 09/30/2024] Open
Abstract
Therapeutic drug monitoring (TDM) is a personalized treatment approach that involves optimizing drug dosages based on patient-specific factors, such as drug plasma concentrations, therapeutic efficacy, or adverse reactions. The plasma concentration of drugs is determined using liquid chromatography/tandem mass spectrometry (LC-MS/MS) or various immunoassays. Compared with immunoassays, LC-MS/MS requires more pretreatment time as the number of samples increases. Recently, fully automated pretreatment LC-MS/MS systems have been developed to automatically perform whole-sample pretreatment for LC-MS/MS analysis. In this study, we developed a method for simultaneous concentration determination of five analytes (clozapine, mycophenolic acid, sunitinib, N-desethylsunitinib, and voriconazole) using LC-MS/MS for clinical TDM using a fully automated LC-MS/MS pretreatment system. In the developed method, the intra- and inter-assay relative error (RE) values ranged between -14.8% and 11.3%; the intra- and inter-assay coefficient of variation (CV) values were <8.8% and <10.5%, respectively. The analytes showed good stability, with RE values ranging between -13.6% and 10.9% and CV values <8.9%. Furthermore, the plasma concentrations in clinical samples using this method and the conventional manual pretreatment method showed similar results. Therefore, the method developed in this study could be considered a useful pretreatment method for routine TDM in patients.
Collapse
Affiliation(s)
- Yu Sato
- Department of Pharmaceutical Sciences, Tohoku University Hospital, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8574, Japan
| | - Hiroki Kondo
- Department of Pharmaceutical Sciences, Tohoku University Hospital, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8574, Japan
| | - Yuji Sato
- Department of Pharmaceutical Sciences, Tohoku University Hospital, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8574, Japan
| | - Ai Abe
- Department of Pharmaceutical Sciences, Tohoku University Hospital, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8574, Japan
| | - Masafumi Kikuchi
- Department of Pharmaceutical Sciences, Tohoku University Hospital, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8574, Japan
- Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan
| | - Toshihiro Sato
- Department of Pharmaceutical Sciences, Tohoku University Hospital, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8574, Japan
| | - Masaki Kumondai
- Department of Pharmaceutical Sciences, Tohoku University Hospital, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8574, Japan
| | - Kohei Yoshikawa
- Shimadzu Corporation, 1 Nishinokyo Kuwabara-cho, Nakagyo-ku, Kyoto 604-8511, Japan
| | - Yoshihiro Hayakawa
- Shimadzu Corporation, 1 Nishinokyo Kuwabara-cho, Nakagyo-ku, Kyoto 604-8511, Japan
| | - Masamitsu Maekawa
- Department of Pharmaceutical Sciences, Tohoku University Hospital, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8574, Japan
| | - Nariyasu Mano
- Department of Pharmaceutical Sciences, Tohoku University Hospital, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8574, Japan
| |
Collapse
|
10
|
Scherf-Clavel M, Baumann P, Hart XM, Schneider H, Schoretsanitis G, Steimer W, Zernig G, Zurek G. Behind the Curtain: Therapeutic Drug Monitoring of Psychotropic Drugs from a Laboratory Analytical Perspective. Ther Drug Monit 2024; 46:143-154. [PMID: 36941240 DOI: 10.1097/ftd.0000000000001092] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
PURPOSE Therapeutic drug monitoring (TDM) is a well-established tool for guiding psychopharmacotherapy and improving patient care. Despite their established roles in the prescription of psychotropic drugs, the "behind the curtain" processes of TDM requests are invariably obscure to clinicians, and literature addressing this topic is scarce. METHODS In the present narrative review, we provide a comprehensive overview of the various steps, starting from requesting TDM to interpreting TDM findings, in routine clinical practice. Our goal was to improve clinicians' insights into the numerous factors that may explain the variations in TDM findings due to methodological issues. RESULTS We discussed challenges throughout the TDM process, starting from the analyte and its major variation forms, through sampling procedures and pre-analytical conditions, time of blood sampling, sample matrices, and collection tubes, to analytical methods, their advantages and shortcomings, and the applied quality procedures. Additionally, we critically reviewed the current and future advances in the TDM of psychotropic drugs. CONCLUSIONS The "behind the curtain" processes enabling TDM involve a multidisciplinary team, which faces numerous challenges in clinical routine. A better understanding of these processes will allow clinicians to join the efforts for achieving higher-quality TDM findings, which will in turn improve treatment effectiveness and safety outcomes of psychotropic agents.
Collapse
Affiliation(s)
- Maike Scherf-Clavel
- Department of Psychiatry, Psychosomatics and Psychotherapy, University Hospital of Würzburg, Germany
- Arbeitsgemeinschaft für Neuropsychopharmakologie und Pharmakopsychiatrie (AGNP) Work Group on "Therapeutic Drug Monitoring" (Chair: Prof. Dr Med. Dipl.-Psych. Stefan Unterecker, Department of Psychiatry, Psychosomatics and Psychotherapy, University Hospital of Würzburg, Germany)
| | - Pierre Baumann
- Arbeitsgemeinschaft für Neuropsychopharmakologie und Pharmakopsychiatrie (AGNP) Work Group on "Therapeutic Drug Monitoring" (Chair: Prof. Dr Med. Dipl.-Psych. Stefan Unterecker, Department of Psychiatry, Psychosomatics and Psychotherapy, University Hospital of Würzburg, Germany)
- German Society for Clinical Chemistry and Laboratory Medicine e. V. (DGKL), Section Therapeutic Drug Monitoring and Clinical Toxicology, Berlin/Bonn, Germany
| | - Xenia M Hart
- Arbeitsgemeinschaft für Neuropsychopharmakologie und Pharmakopsychiatrie (AGNP) Work Group on "Therapeutic Drug Monitoring" (Chair: Prof. Dr Med. Dipl.-Psych. Stefan Unterecker, Department of Psychiatry, Psychosomatics and Psychotherapy, University Hospital of Würzburg, Germany)
- Department of Molecular Neuroimaging, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Heike Schneider
- Arbeitsgemeinschaft für Neuropsychopharmakologie und Pharmakopsychiatrie (AGNP) Work Group on "Therapeutic Drug Monitoring" (Chair: Prof. Dr Med. Dipl.-Psych. Stefan Unterecker, Department of Psychiatry, Psychosomatics and Psychotherapy, University Hospital of Würzburg, Germany)
- Institute of Clinical Chemistry and Pathobiochemistry, Technical University Munich, Munich, Germany
- German Society for Clinical Chemistry and Laboratory Medicine e. V. (DGKL), Section Therapeutic Drug Monitoring and Clinical Toxicology, Berlin/Bonn
- INSTAND e.V. Society for Promoting Quality Assurance in Medical Laboratories, Duesseldorf, Germany
- German Society for Clinical Chemistry and Laboratory Medicine e. V. (DGKL), Section Therapeutic Drug Monitoring and Clinical Toxicology, Berlin/Bonn, Germany
| | - Georgios Schoretsanitis
- Arbeitsgemeinschaft für Neuropsychopharmakologie und Pharmakopsychiatrie (AGNP) Work Group on "Therapeutic Drug Monitoring" (Chair: Prof. Dr Med. Dipl.-Psych. Stefan Unterecker, Department of Psychiatry, Psychosomatics and Psychotherapy, University Hospital of Würzburg, Germany)
- Department of Psychiatry, The Zucker Hillside Hospital, Northwell Health, Glen Oaks, New York
- Department of Psychiatry, Zucker School of Medicine at Northwell/Hofstra, Hempstead, New York
- Department of Psychiatry, Psychotherapy and Psychosomatics, Hospital of Psychiatry, University of Zurich, Zurich, Switzerland
| | - Werner Steimer
- Arbeitsgemeinschaft für Neuropsychopharmakologie und Pharmakopsychiatrie (AGNP) Work Group on "Therapeutic Drug Monitoring" (Chair: Prof. Dr Med. Dipl.-Psych. Stefan Unterecker, Department of Psychiatry, Psychosomatics and Psychotherapy, University Hospital of Würzburg, Germany)
- Institute of Clinical Chemistry and Pathobiochemistry, Technical University Munich, Munich, Germany
- German Society for Clinical Chemistry and Laboratory Medicine e. V. (DGKL), Section Therapeutic Drug Monitoring and Clinical Toxicology, Berlin/Bonn
| | - Gerald Zernig
- Arbeitsgemeinschaft für Neuropsychopharmakologie und Pharmakopsychiatrie (AGNP) Work Group on "Therapeutic Drug Monitoring" (Chair: Prof. Dr Med. Dipl.-Psych. Stefan Unterecker, Department of Psychiatry, Psychosomatics and Psychotherapy, University Hospital of Würzburg, Germany)
- Department of Pharmacology, Medical University of Innsbruck, Innsbruck, Austria
- Private Practice for Psychotherapy and Court-certified Expert Witness, Hall in Tirol, Austria; and
| | - Gabriela Zurek
- Arbeitsgemeinschaft für Neuropsychopharmakologie und Pharmakopsychiatrie (AGNP) Work Group on "Therapeutic Drug Monitoring" (Chair: Prof. Dr Med. Dipl.-Psych. Stefan Unterecker, Department of Psychiatry, Psychosomatics and Psychotherapy, University Hospital of Würzburg, Germany)
- Medical Laboratory Bremen, Bremen, Germany
| |
Collapse
|
11
|
Rosli NB, Kwon HJ, Jeong JS. Simultaneous quantification method for multiple antiviral drugs in serum using isotope dilution liquid chromatography-tandem mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 2023; 1231:123925. [PMID: 37992562 DOI: 10.1016/j.jchromb.2023.123925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/02/2023] [Accepted: 11/07/2023] [Indexed: 11/24/2023]
Abstract
We describe the simultaneous quantification of six antiviral drugs in serum based on high-performance liquid chromatography-tandem mass spectrometry (LC-MS/MS). The target drugs-hydroxychloroquine, chloroquine, favipiravir, umifenovir, ritonavir, and lopinavir-were extracted and purified from serum with 75 % v/v methanol as the precipitant reagent. The six analytes were clearly separated within 15 min using gradient elution and mixed-mode stationary phase. The measurement accuracy and precision were assured by adopting isotopes as internal standards. The optimized measurement procedure was strictly validated in linearity, sensitivity, accuracy, and precision. To confirm the robustness of the method in matrix, the method was additionally applied to various types of serum, namely hyperlipidemic and hyperglycemic serum. The method was then applied to assess the stability of the drugs in serum in order to set sample handling and storage guides for laboratory testing. Lastly, the method was implemented in different LC-MS systems to confirm its applicability across similar equipment commonly used in clinical testing laboratories. The overall results show that the optimized protocol is suitable for the accurate, simultaneous quantification of the six antiviral drugs in serum, and it is anticipated to satisfactorily serve as a reference protocol for the analysis of a wide range of other antiviral drugs for drug monitoring with various purposes.
Collapse
Affiliation(s)
- Nordiana Binti Rosli
- Organic Metrology Group, Division of Chemical and Biological Metrology, Korea Research Institute of Standards and Science, 267 Gajeong-ro, Yuseong-gu, Daejeon 34113, Republic of Korea; Department of Bio-Analytical Science, University of Science and Technology, 217 Gajeong-ro, Yuseong-gu, Daejeon 34113, Republic of Korea; Drug and Toxicology Lab, Department of Pathology, Hospital Kuala Lumpur Jalan Pahang, Kuala Lumpur 50586, Malaysia
| | - Ha-Jeong Kwon
- Organic Metrology Group, Division of Chemical and Biological Metrology, Korea Research Institute of Standards and Science, 267 Gajeong-ro, Yuseong-gu, Daejeon 34113, Republic of Korea
| | - Ji-Seon Jeong
- Organic Metrology Group, Division of Chemical and Biological Metrology, Korea Research Institute of Standards and Science, 267 Gajeong-ro, Yuseong-gu, Daejeon 34113, Republic of Korea; Department of Bio-Analytical Science, University of Science and Technology, 217 Gajeong-ro, Yuseong-gu, Daejeon 34113, Republic of Korea.
| |
Collapse
|
12
|
Toma CM, Imre S, Farczadi L, Ion V, Marc G. Enantioselective binding of carvedilol to human serum albumin and alpha-1-acid glycoprotein. Chirality 2023; 35:779-792. [PMID: 37221930 DOI: 10.1002/chir.23595] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 04/04/2023] [Accepted: 05/13/2023] [Indexed: 05/25/2023]
Abstract
Carvedilol, a highly protein-bound beta-blocker, is used in therapy as a racemic mixture of its two enantiomers that exhibit different pharmacological activity. The aim of this study was to evaluate the stereoselective nature of its binding to the two major plasma proteins: albumin and alpha-1-acid glycoprotein. The determination of the plasma protein-binding degree for carvedilol and its enantiomers was achieved using ultrafiltration for the separation of the free fraction, followed by LC-MS/MS quantification, using two different developed and validated methods in terms of stationary phase: achiral C18 type and chiral ovomucoid type. Furthermore, molecular docking methods were applied in order to investigate and to better understand the mechanism of protein-binding for S-(-)- and R-(+)-carvedilol. A difference in the binding behavior of the two enantiomers to the plasma proteins was observed when taken individually, with R-(+)-carvedilol having a higher affinity for albumin and S-(-)-carvedilol for alpha-1-acid glycoprotein. However, in the case of the racemic mixture, the binding of the S enantiomer to alpha-1-acid glycoprotein seemed to be influenced by the presence of its antipode, although no such influence was observed in the case of albumin. The results raise the question of a binding competition between the two enantiomers for alpha-1-acid glycoprotein.
Collapse
Affiliation(s)
- Camelia-Maria Toma
- Doctoral School of Medicine and Pharmacy, I.O.S.U.D., George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, Targu Mures, Romania
- Department of Analytical Chemistry and Drug Analysis, Faculty of Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, Targu Mures, Romania
| | - Silvia Imre
- Department of Analytical Chemistry and Drug Analysis, Faculty of Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, Targu Mures, Romania
- Center of Advanced Medical and Pharmaceutical Research, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, Targu Mures, Romania
| | - Lenard Farczadi
- Center of Advanced Medical and Pharmaceutical Research, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, Targu Mures, Romania
| | - Valentin Ion
- Department of Analytical Chemistry and Drug Analysis, Faculty of Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, Targu Mures, Romania
- Center of Advanced Medical and Pharmaceutical Research, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, Targu Mures, Romania
| | - Gabriel Marc
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, "Iuliu Hațieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| |
Collapse
|
13
|
De Rosa F, Giannatiempo B, Charlier B, Coglianese A, Mensitieri F, Gaudino G, Cozzolino A, Filippelli A, Piazza O, Dal Piaz F, Izzo V. Pharmacological Treatments and Therapeutic Drug Monitoring in Patients with Chronic Pain. Pharmaceutics 2023; 15:2088. [PMID: 37631302 PMCID: PMC10457775 DOI: 10.3390/pharmaceutics15082088] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/29/2023] [Accepted: 07/24/2023] [Indexed: 08/27/2023] Open
Abstract
Pain is an unpleasant sensory and emotional experience that affects every aspect of a patient's life and which may be treated through different pharmacological and non-pharmacological approaches. Analgesics are the drugs most commonly used to treat pain, and in specific situations, the use of opioids may be considered with caution. These drugs, in fact, do not always induce optimal analgesia in patients, and several problems are associated with their use. The purpose of this narrative review is to describe the pharmacological approaches currently used for the management of chronic pain. We review several aspects, from the pain-scale-based methods currently available to assess the type and intensity of pain, to the most frequently administered drugs (non-narcotic analgesics and narcotic analgesics), whose pharmacological characteristics are briefly reported. Overall, we attempt to provide an overview of different pharmacological treatments while also illustrating the relevant guidelines and indications. We then report the strategies that may be used to reduce problems related to opioid use. Specifically, we focus our attention on therapeutic drug monitoring (TDM), a tool that could help clinicians select the most suitable drug and dose to be used for each patient. The actual potential of using TDM to optimize and personalize opioid-based pain treatments is finally discussed based on recent scientific reports.
Collapse
Affiliation(s)
- Federica De Rosa
- Department of Medicine, Surgery and Dentistry, Postgraduate School of Clinical Pharmacology and Toxicology, University of Salerno, 84084 Fisciano, Italy; (F.D.R.); (B.G.); (B.C.); (A.C.); (A.F.)
- University Hospital “San Giovanni di Dio e Ruggi d’Aragona”, 84131 Salerno, Italy; (A.C.); (O.P.)
| | - Bruno Giannatiempo
- Department of Medicine, Surgery and Dentistry, Postgraduate School of Clinical Pharmacology and Toxicology, University of Salerno, 84084 Fisciano, Italy; (F.D.R.); (B.G.); (B.C.); (A.C.); (A.F.)
| | - Bruno Charlier
- Department of Medicine, Surgery and Dentistry, Postgraduate School of Clinical Pharmacology and Toxicology, University of Salerno, 84084 Fisciano, Italy; (F.D.R.); (B.G.); (B.C.); (A.C.); (A.F.)
- University Hospital “San Giovanni di Dio e Ruggi d’Aragona”, 84131 Salerno, Italy; (A.C.); (O.P.)
| | - Albino Coglianese
- University Hospital “San Giovanni di Dio e Ruggi d’Aragona”, 84131 Salerno, Italy; (A.C.); (O.P.)
- Department of Medicine, Surgery and Dentistry, Postgraduate School of Clinical Pathology and Clinical Biochemistry, University of Salerno, 84084 Fisciano, Italy
| | - Francesca Mensitieri
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84084 Fisciano, Italy; (F.M.); (G.G.)
| | - Giulia Gaudino
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84084 Fisciano, Italy; (F.M.); (G.G.)
| | - Armando Cozzolino
- Department of Medicine, Surgery and Dentistry, Postgraduate School of Clinical Pharmacology and Toxicology, University of Salerno, 84084 Fisciano, Italy; (F.D.R.); (B.G.); (B.C.); (A.C.); (A.F.)
| | - Amelia Filippelli
- Department of Medicine, Surgery and Dentistry, Postgraduate School of Clinical Pharmacology and Toxicology, University of Salerno, 84084 Fisciano, Italy; (F.D.R.); (B.G.); (B.C.); (A.C.); (A.F.)
- University Hospital “San Giovanni di Dio e Ruggi d’Aragona”, 84131 Salerno, Italy; (A.C.); (O.P.)
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84084 Fisciano, Italy; (F.M.); (G.G.)
| | - Ornella Piazza
- University Hospital “San Giovanni di Dio e Ruggi d’Aragona”, 84131 Salerno, Italy; (A.C.); (O.P.)
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84084 Fisciano, Italy; (F.M.); (G.G.)
| | - Fabrizio Dal Piaz
- University Hospital “San Giovanni di Dio e Ruggi d’Aragona”, 84131 Salerno, Italy; (A.C.); (O.P.)
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84084 Fisciano, Italy; (F.M.); (G.G.)
| | - Viviana Izzo
- University Hospital “San Giovanni di Dio e Ruggi d’Aragona”, 84131 Salerno, Italy; (A.C.); (O.P.)
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84084 Fisciano, Italy; (F.M.); (G.G.)
| |
Collapse
|
14
|
Hirasawa T, Kikuchi M, Takasaki S, Kumondai M, Sato Y, Sato T, Imoto E, Hayakawa Y, Maekawa M, Mano N. High throughput LC/ESI-MS/MS method for simultaneous analysis of 20 oral molecular-targeted anticancer drugs and the active metabolite of sunitinib in human plasma. Heliyon 2023; 9:e16926. [PMID: 37484337 PMCID: PMC10360929 DOI: 10.1016/j.heliyon.2023.e16926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/20/2023] [Accepted: 06/01/2023] [Indexed: 07/25/2023] Open
Abstract
Many types of oral molecular-targeted anticancer drugs are clinically used in cancer genomic medicine. Combinations of multiple molecular-targeted anticancer drugs are also being investigated, expecting to prolong the survival of patients with cancer. Therapeutic drug monitoring of oral molecular-targeted drugs is important to ensure efficacy and safety. A liquid chromatography/electrospray ionization-tandem mass spectrometry (LC/ESI-MS/MS) has been used for simultaneous determination of these drugs in human plasma. However, the sensitivity of mass spectrometers and differences in the therapeutic range of drugs have rendered the development of simultaneous LC/ESI-MS/MS methods difficult. In this study, a simultaneous quantitative method for 20 oral molecular-targeted anticancer drugs and the active metabolite of sunitinib was developed based on the results of linear range shifts of the calibration curves using four ion abundance adjustment techniques (collision energy defects, in-source collision-induced dissociation, secondary product ion selected reaction monitoring, and isotopologue selected reaction monitoring). The saturation of the detector for the seven analytes was resolved by incorporating optimal ion abundance adjustment techniques. Furthermore, the reproducibility of this method was confirmed in validation tests, and plasma from patients was measured by this method to demonstrate its usefulness in actual clinical practice. This analytical method is expected to make a substantial contribution to the promotion of personalized medicine in the future.
Collapse
Affiliation(s)
- Tensei Hirasawa
- Faculty of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan
| | - Masafumi Kikuchi
- Faculty of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan
- Department of Pharmaceutical Sciences, Tohoku University Hospital, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8574, Japan
| | - Shinya Takasaki
- Department of Pharmaceutical Sciences, Tohoku University Hospital, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8574, Japan
| | - Masaki Kumondai
- Department of Pharmaceutical Sciences, Tohoku University Hospital, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8574, Japan
| | - Yu Sato
- Department of Pharmaceutical Sciences, Tohoku University Hospital, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8574, Japan
| | - Toshihiro Sato
- Department of Pharmaceutical Sciences, Tohoku University Hospital, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8574, Japan
| | - Eishi Imoto
- Shimadzu Corporation, 1 Nishinokyo Kuwabara-cho, Nakagyo-ku, Kyoto 604-8511, Japan
| | - Yoshihiro Hayakawa
- Shimadzu Corporation, 1 Nishinokyo Kuwabara-cho, Nakagyo-ku, Kyoto 604-8511, Japan
| | - Masamitsu Maekawa
- Faculty of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan
- Department of Pharmaceutical Sciences, Tohoku University Hospital, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8574, Japan
| | - Nariyasu Mano
- Faculty of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan
- Department of Pharmaceutical Sciences, Tohoku University Hospital, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8574, Japan
| |
Collapse
|
15
|
Lopez Hellin J. Recommendations for the measurement of sexual steroids. A step forward in the silent revolution of mass spectrometry. ADVANCES IN LABORATORY MEDICINE 2023; 4:1-4. [PMID: 37359896 PMCID: PMC10197180 DOI: 10.1515/almed-2023-0022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Affiliation(s)
- Joan Lopez Hellin
- Servicio de Bioquímica Clínica, Hospital Universitari Vall d’Hebron, Vall d’Hebron Barcelona Hospital Campus, Barcelona, Spain
| |
Collapse
|
16
|
UPLC-MS/MS Method for Simultaneous Estimation of Neratinib and Naringenin in Rat Plasma: Greenness Assessment and Application to Therapeutic Drug Monitoring. SEPARATIONS 2023. [DOI: 10.3390/separations10030167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023] Open
Abstract
Tyrosine kinase inhibitors have often been reported to treat early-stage hormone-receptor-positive breast cancers. In particular, neratinib has shown positive responses in stage I and II cases in women with HER2-positive breast cancers with trastuzumab. In order to augment the biopharmaceutical attributes of the drug, the work designed endeavors to explore the therapeutic benefits of neratinib in combination with naringenin, a phytoconstituent with reported uses in breast cancer. A UPLC-MS/MS method was developed for the simultaneous estimation of neratinib and naringenin in rat plasma, while imatinib was selected as the internal standard (IS). Acetonitrile was used as the liquid extractant. The reversed-phase separation was achieved on a C18 column (100 mm × 2.1 mm, 1.7 µm) with the isocratic flow of mobile phase-containing acetonitrile (0.1% formic acid) and 0.002 M ammonium acetate (50:50, % v/v) at flow rate 0.5 mL·min−1. The mass spectra were recorded by multiple reaction monitoring of the precursor-to-product ion transitions for neratinib (m/z 557.138→111.927), naringenin (m/z 273.115→152.954), and the IS (m/z 494.24→394.11). The method was validated for selectivity, trueness, precision, matrix effect, recovery, and stability over a concentration range of 10–1280 ng·mL−1 for both targets and was acceptable. The method was also assessed for greenness profile by an integrative qualitative and quantitative approach; the results corroborated the eco-friendly nature of the method. Therefore, the developed method has implications for its applicability in clinical sample analysis from pharmacokinetic studies in human studies to support the therapeutic drug monitoring (TDM) of combination drugs.
Collapse
|
17
|
Hristova J, Svinarov D. Enhancing precision medicine through clinical mass spectrometry platform. BIOTECHNOL BIOTEC EQ 2022. [DOI: 10.1080/13102818.2022.2053342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Affiliation(s)
- Julieta Hristova
- Alexander University Hospital, Faculty of Medicine, Medical University of Sofia, Sofia, Bulgaria
| | - Dobrin Svinarov
- Alexander University Hospital, Faculty of Medicine, Medical University of Sofia, Sofia, Bulgaria
| |
Collapse
|
18
|
Han Y, Li XL, Zhang M, Wang J, Zeng S, Min JZ. Potential use of a dried saliva spot (DSS) in therapeutic drug monitoring and disease diagnosis. J Pharm Anal 2022; 12:815-823. [PMID: 36605582 PMCID: PMC9805949 DOI: 10.1016/j.jpha.2021.11.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 10/28/2021] [Accepted: 11/03/2021] [Indexed: 01/07/2023] Open
Abstract
In recent years, scientific researchers have increasingly become interested in noninvasive sampling methods for therapeutic drug monitoring and disease diagnosis. As a result, dried saliva spot (DSS), which is a sampling technique for collecting dried saliva samples, has been widely used as an alternative matrix to serum for the detection of target molecules. Coupling the DSS method with a highly sensitive detection instrument improves the efficiency of the preparation and analysis of biological samples. Furthermore, dried blood spots, dried plasma spots, and dried matrix spots, which are similar to those of the DSS method, are discussed. Compared with alternative biological fluids used in dried spot methods, including serum, tears, urine, and plasma, saliva has the advantage of convenience in terms of sample collection from children or persons with disabilities. This review aims to provide integral strategies and guidelines for dried spot methods to analyze biological samples by illustrating several dried spot methods. Herein, we summarize recent advancements in DSS methods from June 2014 to March 2021 and discuss the advantages and disadvantages of the key aspects of this method, including sample preparation and method validation. Finally, we outline the challenges and prospects of such methods in practical applications.
Collapse
Affiliation(s)
- Yu Han
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Department of Pharmaceutical Analysis, College of Pharmacy, Yanbian University, Yanji, Jilin, 133002, China
| | - Xi-Ling Li
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Department of Pharmaceutical Analysis, College of Pharmacy, Yanbian University, Yanji, Jilin, 133002, China
| | - Minghui Zhang
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Department of Pharmaceutical Analysis, College of Pharmacy, Yanbian University, Yanji, Jilin, 133002, China
| | - Jing Wang
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Department of Pharmaceutical Analysis, College of Pharmacy, Yanbian University, Yanji, Jilin, 133002, China
| | - Su Zeng
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- Corresponding author.
| | - Jun Zhe Min
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Department of Pharmaceutical Analysis, College of Pharmacy, Yanbian University, Yanji, Jilin, 133002, China
- Corresponding author.
| |
Collapse
|
19
|
An Ultra-High-Performance Liquid Chromatography-Tandem Mass Spectrometry Method for Simultaneous Determination of 4 β-Lactam Antibiotics, Tazobactam, and Linezolid in Human Plasma Samples. Ther Drug Monit 2022; 44:784-790. [PMID: 35971670 DOI: 10.1097/ftd.0000000000001017] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 06/25/2022] [Indexed: 01/29/2023]
Abstract
BACKGROUND Optimization of antimicrobial therapy is a challenge in critically ill patients who develop extreme interindividual and intraindividual pharmacokinetic variability. Therapeutic drug monitoring is a valuable tool for maximizing the effect of a drug and minimizing its adverse and unwanted effects. The aim of the current work was to develop and validate an ultra-high-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) method to determine multiple antibiotics in clinical plasma samples from critically ill patients; low sample volume and rapid processing of samples were considered the main criteria. METHODS A separation method based on an online combination of UHPLC-MS/MS was developed for the simultaneous determination of 4 β-lactam antibiotics (cefepime, meropenem, cefotaxime, and piperacillin), tazobactam, and linezolid in human plasma samples. The volume of plasma sample used for analysis was 20 µL. The developed method was validated according to Food and Drug Administration guidelines. RESULTS The chromatographic run time was 8 minutes. Calibration curves were linear for concentration ranges of 0.1-100 mcg/mL (r 2 > 0.99) for tazobactam, meropenem, cefotaxime, linezolid, and piperacillin and 1-100 mcg/mL (r 2 > 0.99) for cefepime. The intraday and interday accuracy of the method ranged from 92.4% to 110.7% and 93.6% to 113.3%, respectively. The intraday and interday precision values were ≤17.3% and ≤17.4%, respectively. No interfering and carryover analytes were observed. CONCLUSIONS The developed UHPLC-MS/MS method is an appropriate and practical tool for therapeutic drug monitoring of the selected antibiotics. Owing to its rapidity, requirement of low sample volume, and high selectivity, sensitivity, and reliability, it can be effectively implemented in routine clinical laboratory tests for critically ill patients.
Collapse
|
20
|
Zhao YT, Dai HR, Li Y, Zhang YY, Guo HL, Ding XS, Hu YH, Chen F. Comparison of LC-MS/MS and EMIT methods for the precise determination of blood sirolimus in children with vascular anomalies. Front Pharmacol 2022; 13:925018. [PMID: 36147342 PMCID: PMC9486013 DOI: 10.3389/fphar.2022.925018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 08/01/2022] [Indexed: 11/13/2022] Open
Abstract
Sirolimus (SRL) is a mammalian target of rapamycin (mTOR) inhibitor. The whole blood concentration of SRL is routinely monitored to tailor dosage and prevent toxicity. Currently, the enzyme multiplied immunoassay technique (EMIT) is often applied to perform therapeutic drug monitoring (TDM) of SRL, but the cross-reactivity with various metabolites is of great concern. A more specific method is required, such as liquid chromatography–tandem mass spectrometry (LC-MS/MS). However, no study on the method comparison of the EMIT and LC-MS/MS for the measurement of whole blood SRL concentration in children with vascular anomalies has been reported. This study developed a simple and sensitive LC-MS/MS assay for the determination of SRL. Meanwhile, consistency between LC-MS/MS and the EMIT was evaluated by linear regression and Bland–Altman analysis. Whole blood samples were deproteinized with methanol for erythrocyte lysis, and the resulting solution was injected into the LC-MS/MS system using the positive electrospray ionization mode. The multiple reaction monitoring transitions of m/z 931.7 → 864.6 and m/z 934.7 → 864.6 were used for SRL and SRL-d3 as the internal standards, respectively. The analytes were separated on a C18 column with a gradient mobile phase (0.1 mM formic acid and 0.05 mM ammonium acetate in methanol/ultrapure water). Blood samples collected from children with vascular anomalies undergoing SRL therapy were tested by EMIT and by LC-MS/MS. The linear range of LC-MS/MS was 0.500–50.0 ng/ml and that of the EMIT was 3.50–30.0 ng/ml. A significant positive correlation between the two assays was established with a regression equation described as [EMIT] = 1.281 × [LC−MS/MS] + 2.450 (r = 0.8361). Bland–Altman plots showed a mean concentration overestimation of 4.7 ng/ml [95% CI: (−3.1, 12.6)] and a positive bias of 63.1% [95% CI: (−36.1, 162.3)] generated by the EMIT more than that of by LC-MS/MS. In conclusion, the two methods were closely correlated, indicating that switching between the two methods is feasible. Considering the overestimation nature of the EMIT assay, switching from the EMIT to the LC-MS/MS method deserves close attention and necessary re-evaluation for the target therapeutic reference range, may be required when methods are switched within the same clinical laboratory or results are compared between different laboratories.
Collapse
Affiliation(s)
- Yue-Tao Zhao
- Pharmaceutical Sciences Research Center, Department of Pharmacy, Children’s Hospital of Nanjing Medical University, Nanjing, China
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Hao-Ran Dai
- Pharmaceutical Sciences Research Center, Department of Pharmacy, Children’s Hospital of Nanjing Medical University, Nanjing, China
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Yue Li
- Pharmaceutical Sciences Research Center, Department of Pharmacy, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Yuan-Yuan Zhang
- Pharmaceutical Sciences Research Center, Department of Pharmacy, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Hong-Li Guo
- Pharmaceutical Sciences Research Center, Department of Pharmacy, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Xuan-Sheng Ding
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Ya-Hui Hu
- Pharmaceutical Sciences Research Center, Department of Pharmacy, Children’s Hospital of Nanjing Medical University, Nanjing, China
- *Correspondence: Ya-Hui Hu, ; Feng Chen,
| | - Feng Chen
- Pharmaceutical Sciences Research Center, Department of Pharmacy, Children’s Hospital of Nanjing Medical University, Nanjing, China
- *Correspondence: Ya-Hui Hu, ; Feng Chen,
| |
Collapse
|
21
|
Kipka H, Tomasi R, Hübner M, Liebchen U, Hagl C, Wanner KT, Mannell H, Höfner G. Simultaneous LC-ESI-MS/MS Quantification of Levosimendan and Its Metabolites for Therapeutic Drug Monitoring of Cardiac Surgery Patients. Pharmaceutics 2022; 14:pharmaceutics14071454. [PMID: 35890349 PMCID: PMC9319272 DOI: 10.3390/pharmaceutics14071454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/06/2022] [Accepted: 07/07/2022] [Indexed: 02/04/2023] Open
Abstract
Levosimendan is used in severe chronic cardiac insufficiency, also within the peri-operative setting. Real-life pharmacokinetic data in surgical patients is lacking, making therapeutic drug monitoring (TDM) of levosimendan, its pharmacologically active metabolite OR-1896, and its intermediate OR-1855 important. A simultaneous highly sensitive quantification of levosimendan and its metabolites in small-volume samples has not yet been described. Here, levosimendan (LLOQ 0.450 nM), OR-1896, and OR-1855 (LLOQ both 1.0 nM) were successfully quantified by LC-ESI-MS/MS after liquid-liquid extraction in 300 µL of blood. A short C8 column under reversed-phase conditions enabled simultaneous and fast quantification of levosimendan in the negative and the metabolites in the positive ionization mode in a single run within 2 min. Interestingly and unexpectedly, constitutional isomers of levosimendan metabolites with identical mass transitions and similar retention times were observed in surgical patients’ samples, which we identified as the metamizole metabolites 4-aminoantipyrine and 4-acetamidoantipyrine. A longer C8 column and a modified mobile phase enabled selective quantification of all analytes in a single run within 7 min. We developed, validated, and applied highly sensitive LC-ESI-MS/MS methods for simultaneous quantification of levosimendan and its metabolites, enabling efficient TDM of cardiac surgery patients even with additional metamizole administration.
Collapse
Affiliation(s)
- Hannah Kipka
- Doctoral Program Clinical Pharmacy, University Hospital, LMU Munich, 81377 Munich, Germany;
- Institute of Cardiovascular Physiology and Pathophysiology, Biomedical Center, LMU Munich, 82152 Planegg, Germany
- Correspondence:
| | - Roland Tomasi
- Department of Anaesthesiology, University Hospital, LMU Munich, 81377 Munich, Germany; (R.T.); (M.H.); (U.L.)
| | - Max Hübner
- Department of Anaesthesiology, University Hospital, LMU Munich, 81377 Munich, Germany; (R.T.); (M.H.); (U.L.)
- Walter Brendel Center of Experimental Medicine, LMU Munich, 81377 Munich, Germany
| | - Uwe Liebchen
- Department of Anaesthesiology, University Hospital, LMU Munich, 81377 Munich, Germany; (R.T.); (M.H.); (U.L.)
| | - Christian Hagl
- Department of Cardiac Surgery, University Hospital, LMU Munich, 81377 Munich, Germany;
- DZHK (German Centre of Cardiovascular Research), Partner Site Munich Heart Alliance, 81377 Munich, Germany
| | - Klaus T. Wanner
- Department of Pharmacy, Center for Drug Research, Ludwig-Maximilians-Universität, 81377 Munich, Germany; (K.T.W.); (G.H.)
| | - Hanna Mannell
- Doctoral Program Clinical Pharmacy, University Hospital, LMU Munich, 81377 Munich, Germany;
- Institute of Cardiovascular Physiology and Pathophysiology, Biomedical Center, LMU Munich, 82152 Planegg, Germany
| | - Georg Höfner
- Department of Pharmacy, Center for Drug Research, Ludwig-Maximilians-Universität, 81377 Munich, Germany; (K.T.W.); (G.H.)
| |
Collapse
|
22
|
Quantification and Determination of Stability of Tylvalosin in Pig Plasma by Ultra-High Liquid Chromatography with Ultraviolet Detection. Animals (Basel) 2022; 12:ani12111385. [PMID: 35681849 PMCID: PMC9179391 DOI: 10.3390/ani12111385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 05/20/2022] [Accepted: 05/25/2022] [Indexed: 02/04/2023] Open
Abstract
Tylvalosin (TV) is a macrolide antibiotic that is used for treating respiratory and enteric bacterial infections in swine and in poultry. In the coming years, the use of this drug will probably be widely studied in different species, but before its use in each veterinary species, macrolide analytical determination in various biological fluids is a pre-requisite step for the rational dose calculation of TV based on specific pharmacokinetic information. Its quantification is essential for detecting and avoiding the appearance of residues in animal products intended for human consumption. Therefore, a robust chromatographic method coupled with an ultraviolet detector was fully validated for the quantification of TV in pig plasma. A mixture (78:22) of (A) 0.3% formic acid in water and (B) acetonitrile was used as the mobile phase. TV and enrofloxacin (internal standard) were eluted at 14.1 and 5.9 min, respectively. Calibration curves ranged from 0.1 to 5 μg/mL. The accuracy and precision parameters for the quality controls were always <13.0%. Recovery ranged from 89.66 to 96.92%. The detection and quantification limits were found to be 0.05 μg/mL and 0.1 μg/mL, respectively. This method could be applied to develop pharmacokinetic studies.
Collapse
|
23
|
Shipkova M, Jamoussi H. Therapeutic Drug Monitoring of Antibiotic Drugs: The Role of the Clinical Laboratory. Ther Drug Monit 2022; 44:32-49. [PMID: 34726200 DOI: 10.1097/ftd.0000000000000934] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 09/08/2021] [Indexed: 11/26/2022]
Abstract
BACKGROUND Therapeutic drug monitoring (TDM) of anti-infective drugs is an increasingly complex field, given that in addition to the patient and drug as 2 usual determinants, its success is driven by the pathogen. Pharmacodynamics is related both to the patient (toxicity) and bacterium (efficacy or antibiotic susceptibility). The specifics of TDM of antimicrobial drugs stress the need for multidisciplinary knowledge and expertise, as in any other field. The role and the responsibility of the laboratory in this interplay are both central and multifaceted. This narrative review highlights the role of the clinical laboratory in the TDM process. METHODS A literature search was conducted in PubMed and Google Scholar, focusing on the past 5 years (studies published since 2016) to limit redundancy with previously published review articles. Furthermore, the references cited in identified publications of interest were screened for additional relevant studies and articles. RESULTS The authors addressed microbiological methods to determine antibiotic susceptibility, immunochemical and chromatographic methods to measure drug concentrations (primarily in blood samples), and endogenous clinical laboratory biomarkers to monitor treatment efficacy and toxicity. The advantages and disadvantages of these methods are critically discussed, along with existing gaps and future perspectives on strategies to provide clinicians with as reliable and useful results as possible. CONCLUSIONS Although interest in the field has been the driver for certain progress in analytical technology and quality in recent years, laboratory professionals and commercial providers persistently encounter numerous unresolved challenges. The main tasks that need tackling include broadly and continuously available, easily operated, and cost-effective tests that offer short turnaround times, combined with reliable and easy-to-interpret results. Various fields of research are currently addressing these features.
Collapse
Affiliation(s)
- Maria Shipkova
- Competence Center for Therapeutic Drug Monitoring, SYNLAB Holding Germany GmbH, SYNLAB MVZ Leinfelden-Echterdingen GmbH, Leinfelden-Echterdingen, Germany
| | | |
Collapse
|
24
|
Thomas SN, French D, Jannetto PJ, Rappold BA, Clarke WA. Liquid chromatography–tandem mass spectrometry for clinical diagnostics. NATURE REVIEWS. METHODS PRIMERS 2022; 2:96. [PMCID: PMC9735147 DOI: 10.1038/s43586-022-00175-x] [Citation(s) in RCA: 78] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Accepted: 10/07/2022] [Indexed: 12/13/2022]
Abstract
Mass spectrometry is a powerful analytical tool used for the analysis of a wide range of substances and matrices; it is increasingly utilized for clinical applications in laboratory medicine. This Primer includes an overview of basic mass spectrometry concepts, focusing primarily on tandem mass spectrometry. We discuss experimental considerations and quality management, and provide an overview of some key applications in the clinic. Lastly, the Primer discusses significant challenges for implementation of mass spectrometry in clinical laboratories and provides an outlook of where there are emerging clinical applications for this technology. Tandem mass spectrometry is increasingly utilized for clinical applications in laboratory medicine. In this Primer, Thomas et al. discuss experimental considerations and quality management for implementing clinical tandem mass spectrometry in the clinic with an overview of some key applications.
Collapse
Affiliation(s)
- Stefani N. Thomas
- grid.17635.360000000419368657Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN USA
| | - Deborah French
- grid.266102.10000 0001 2297 6811Laboratory Medicine, University of California San Francisco, San Francisco, CA USA
| | - Paul J. Jannetto
- grid.66875.3a0000 0004 0459 167XDepartment of Pathology & Laboratory Medicine, Mayo Clinic, Rochester, MN USA
| | - Brian A. Rappold
- grid.419316.80000 0004 0550 1859Research and Development, Labcorp, Burlington, NC USA
| | - William A. Clarke
- grid.21107.350000 0001 2171 9311Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD USA
| |
Collapse
|
25
|
Jiang X, Xu X, Zeng L, Song S, Xu L, Kuang H, Liu L, Xu C. A gold-based immunochromatographic strip for the detection of sirolimus in human whole blood. Analyst 2022; 147:1394-1402. [DOI: 10.1039/d1an02297k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The schematic of a colloidal gold-based immunochromatographic strip for the detection of sirolimus in human whole blood.
Collapse
Affiliation(s)
- Xiaoqian Jiang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China
- International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China
| | - Xinxin Xu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China
- International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China
| | - Lu Zeng
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China
- International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China
| | - Shanshan Song
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China
- International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China
| | - Liguang Xu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China
- International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China
| | - Hua Kuang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China
- International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China
| | - Liqiang Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China
- International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China
| | - Chuanlai Xu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China
- International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China
| |
Collapse
|
26
|
Hernandis V, Escudero E, Marín P. A novel liquid chromatography-fluorescence method for the determination of delafloxacin in human plasma. J Sep Sci 2021; 45:706-716. [PMID: 34839590 DOI: 10.1002/jssc.202100768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 11/16/2021] [Accepted: 11/23/2021] [Indexed: 11/10/2022]
Abstract
Delafloxacin is a novel fluoroquinolone antibiotic that was approved by the European Medicine Agency to treat bacterial infections of the skin and underlying tissues, and community-acquired pneumonia. Despite being in the market since 2019 in the European Union, there is no published liquid chromatography-fluorescence method for delafloxacin quantification in biological samples. A novel, rapid, and sensitive high-performance liquid chromatographic method was developed to determine delafloxacin in human plasma using its native fluorescence. Plasma delafloxacin concentrations were determined by reverse-phase chromatography with fluorescence detection at 405/450 nm of excitation/emission wavelengths. Delafloxacin was separated on a Kromasil C18 column 250 × 4.6 mm id, 5 µm using isocratic elution. The mobile phase was a mixture of 0.05% trifluoroacetic acid/acetonitrile (52/48). Retention times were 5.4 and 11.6 min for delafloxacin and valsartan (internal standard), respectively. Regression calibration curves were linear over the range of 0.1-2.5 µg/mL. The lower limit of detection was 0.05 µg/mL, and the lower limit of quantification was 0.1 µg/mL. Accuracy and precision were always <11%, and the limit of quantification was <16%. Mean recovery was 98.3%. This method can be applied to determine delafloxacin in human plasma and could be useful to perform pharmacokinetic studies.
Collapse
Affiliation(s)
- Verónica Hernandis
- Department of Pharmacology, Faculty of Veterinary Medicine, University of Murcia, Murcia, Spain
| | - Elisa Escudero
- Department of Pharmacology, Faculty of Veterinary Medicine, University of Murcia, Murcia, Spain
| | - Pedro Marín
- Department of Pharmacology, Faculty of Veterinary Medicine, University of Murcia, Murcia, Spain
| |
Collapse
|
27
|
Seyfinejad B, Jouyban A. Overview of therapeutic drug monitoring of immunosuppressive drugs: Analytical and clinical practices. J Pharm Biomed Anal 2021; 205:114315. [PMID: 34399192 DOI: 10.1016/j.jpba.2021.114315] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 07/16/2021] [Accepted: 08/05/2021] [Indexed: 01/04/2023]
Abstract
Immunosuppressant drugs (ISDs) play a key role in short-term patient survival together with very low acute allograft rejection rates in transplant recipients. Due to the narrow therapeutic index and large inter-patient pharmacokinetic variability of ISDs, therapeutic drug monitoring (TDM) is needed to dose adjustment for each patient (personalized medicine approach) to avoid treatment failure or side effects of the therapy. To achieve this, TDM needs to be done effectively. However, it would not be possible without the proper clinical practice and analytical tools. The purpose of this review is to provide a guide to establish reliable TDM, followed by a critical overview of the current analytical methods and clinical practices for the TDM of ISDs, and to discuss some of the main practical aspects of the TDM.
Collapse
Affiliation(s)
- Behrouz Seyfinejad
- Pharmaceutical Analysis Research Center and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran; Student Research Committee, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Abolghasem Jouyban
- Pharmaceutical Analysis Research Center and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran; Faculty of Pharmacy, Near East University, PO BOX: 99138 Nicosia, North Cyprus, Mersin 10, Turkey.
| |
Collapse
|
28
|
Charlier B, Coglianese A, Operto FF, De Rosa F, Mensitieri F, Coppola G, Filippelli A, Dal Piaz F, Izzo V. Perampanel dosage in plasma samples: development and validation of a novel HPLC method with combined UV-Fluorescence detection. J Pharm Biomed Anal 2021; 204:114252. [PMID: 34265485 DOI: 10.1016/j.jpba.2021.114252] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 07/04/2021] [Accepted: 07/05/2021] [Indexed: 11/29/2022]
Abstract
Therapeutic drug monitoring (TDM) is a recognized method to improve the quality of use of antiepileptic drugs, such as perampanel (PRP). It is the first compound in the class of selective non-competitive antagonists of AMPA receptors approved in 2012 in Europe and United States for adjunctive therapy of partial seizures. Although several studies have recently underlined that a general reference range for PRP plasmatic concentration might be difficult to propose, TDM of this drug is important in specific clinical situations, as hepatic or renal impairment or co-administration with enzyme-inducing antiepileptics. Several methods have been described in literature for the determination of PRP in different biological matrices, which include the use of liquid chromatography methods coupled with ultraviolet, fluorescence, mass or tandem-mass spectrometry detection. Here we describe the development and validation of a novel method for the measurement of PRP in plasma samples, based on a HPLC-UV/FL double detection approach and using ketoprofen as internal standard. PRP concentration in a small subset of plasma samples of treated patients was evaluated using both our approach and a commercially available CE-IVD LC-MS/MS method. The results obtained were compared, and confirmed the possibility to use our method as an alternative to LC-MS/MS in clinical routine.
Collapse
Affiliation(s)
- Bruno Charlier
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Via Salvador Allende 84081, Baronissi, Salerno, Italy; University Hospital "San Giovanni di Dio e Ruggi D'Aragona", Via San Leonardo 84131, Salerno, Italy
| | - Albino Coglianese
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Via Salvador Allende 84081, Baronissi, Salerno, Italy
| | - Francesca Felicia Operto
- University Hospital "San Giovanni di Dio e Ruggi D'Aragona", Via San Leonardo 84131, Salerno, Italy
| | - Federica De Rosa
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Via Salvador Allende 84081, Baronissi, Salerno, Italy; University Hospital "San Giovanni di Dio e Ruggi D'Aragona", Via San Leonardo 84131, Salerno, Italy
| | - Francesca Mensitieri
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Via Salvador Allende 84081, Baronissi, Salerno, Italy
| | - Giangennaro Coppola
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Via Salvador Allende 84081, Baronissi, Salerno, Italy; University Hospital "San Giovanni di Dio e Ruggi D'Aragona", Via San Leonardo 84131, Salerno, Italy
| | - Amelia Filippelli
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Via Salvador Allende 84081, Baronissi, Salerno, Italy; University Hospital "San Giovanni di Dio e Ruggi D'Aragona", Via San Leonardo 84131, Salerno, Italy
| | - Fabrizio Dal Piaz
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Via Salvador Allende 84081, Baronissi, Salerno, Italy; University Hospital "San Giovanni di Dio e Ruggi D'Aragona", Via San Leonardo 84131, Salerno, Italy
| | - Viviana Izzo
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Via Salvador Allende 84081, Baronissi, Salerno, Italy; University Hospital "San Giovanni di Dio e Ruggi D'Aragona", Via San Leonardo 84131, Salerno, Italy.
| |
Collapse
|
29
|
Wang X, Qin W, Chen W, Liu H, Zhang D, Zhang X, Li P. Validation of a novel UPLC-HRMS method for human whole-blood cyclosporine and comparison with a CMIA immunoassay. Exp Ther Med 2021; 21:191. [PMID: 33488800 PMCID: PMC7812591 DOI: 10.3892/etm.2021.9623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 11/13/2020] [Indexed: 11/06/2022] Open
Abstract
Therapeutic drug monitoring is an essential tool when managing the therapeutic use of immunosuppressant cyclosporine A (CsA) in cases with solid organ transplantation. In China, the concentration of CsA is primarily measured using immunoassays. However, existing literature recommends mass spectrometry as the current gold standard for the quantitation of CsA. In the present study, it was attempted to develop a novel application to determine CsA concentrations by using ultra-performance liquid chromatography coupled to high-resolution mass spectrometry (UPLC-HRMS). This technique was then compared with a commercially available chemiluminescent microparticle immunoassay (CMIA) and it was investigated how clinical factors may contribute to quantitation differences between the two methods. An UPLC-Orbitrap-MS method was developed to determine CsA concentrations and this method was validated using guidelines put forward by the Food and Drug Administration from the US. In total, 127 blood samples were acquired from patients undergoing kidney transplantation and analyzed by UPLC-HRMS and CMIA assays. The novel method provided sensitive, accurate and precise results. The mean CsA concentration measured by CMIA was significantly higher than that measured by UPLC-HRMS (85.70±48.99 vs. 67.06±34.56 ng/ml, P<0.0001). Passing Bablok analysis yielded a slope of 1.34 (95% CI: 1.22-1.47) and an intercept of -2.54 (95% CI: -10.29-5.52). A group of samples with a higher metabolic ratio (hydroxylated CsA/CsA>1) exhibited larger discrepancies, while a group of samples taken from patients with a longer post-transplantation time (>10 years) featured narrow 95% CIs from -15.32 to 65.69%, as determined by Bland-Altman analysis. In summary, a reliable, accurate and rapid UPLC-HRMS method for CsA analysis was successfully developed. The measurement of CsA by the CMIA assay in renal transplant patients should be further evaluated with a specific focus on positive bias.
Collapse
Affiliation(s)
- Xiaoxue Wang
- Department of Pharmacy, China-Japan Friendship Hospital, Beijing 100029, P.R. China
| | - Wei Qin
- Department of Pharmacy, China-Japan Friendship Hospital, Beijing 100029, P.R. China
| | - Wenqian Chen
- Department of Pharmacy, China-Japan Friendship Hospital, Beijing 100029, P.R. China
| | - Huifang Liu
- Department of Pharmacy, China-Japan Friendship Hospital, Beijing 100029, P.R. China
| | - Dan Zhang
- Department of Pharmacy, China-Japan Friendship Hospital, Beijing 100029, P.R. China
| | - Xianglin Zhang
- Department of Pharmacy, China-Japan Friendship Hospital, Beijing 100029, P.R. China
| | - Pengmei Li
- Department of Pharmacy, China-Japan Friendship Hospital, Beijing 100029, P.R. China
| |
Collapse
|
30
|
Watanabe S, Hirono K, Aizawa T, Tsugawa K, Joh K, Imaizumi T, Tanaka H. Podocyte sphingomyelin phosphodiesterase acid-like 3b decreases among children with idiopathic nephrotic syndrome. Clin Exp Nephrol 2021; 25:44-51. [PMID: 32946006 DOI: 10.1007/s10157-020-01970-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 09/04/2020] [Indexed: 10/23/2022]
Abstract
AIM Sphingomyelin phosphodiesterase acid-like 3b (SMPDL-3b), a regulator of the cytoskeleton, is expressed on podocytes. Recent reports present evidence that it is directly targeted by rituximab in the treatment of intractable nephrotic syndrome. However, the implications of SMPDL-3b for treatment of paediatric-onset idiopathic nephrotic syndrome (INS) remain unclear. This study aimed to investigate the level of expression of SMPDL-3b in urine, serum, and biopsy specimens and explore its implications in treatment of patients with INS. METHODS Levels of urinary SMPDL-3b among 31 patients (20 in remission and 11 in relapse) with INS were analysed by dot blotting. For reference of precise quantitative analysis, we examined urinary excretion of SMPDL-3b from 10 patients with INS by liquid chromatography-tandem mass spectrometry (LC-MS/MS) in both remitted and relapsed status. The levels of serum SMPDL-3b among 20 patients (13 in remission and 7 in relapse or onset) with INS were also measured using enzyme-linked immunosorbent assay. Further, the immunoreactivity of SMPDL-3b in the biopsy specimens obtained from patients with INS was compared with those from patients with proteinuric IgA nephropathy, lupus nephritis, and non-proteinuric controls. RESULTS Urinary excretion of SMPDL-3b in patients with INS was significantly decreased in relapse cases compared with cases of remission and other types of proteinuric glomerular disease or controls by both dot blotting and LC-MS/MS method. On the other hand, serum SMPDL-3b level in INS was not different between cases of remission and relapse. Glomerular immunoreactivity of SMPDL-3b in patient with INS in remission was almost the same level to that of control. CONCLUSION The expression of SMPDL-3b on podocytes is specifically decreased in paediatric-onset INS and its urinary excretion level reflects such conditions.
Collapse
Affiliation(s)
- Shojiro Watanabe
- Department of Pediatrics, Hirosaki University Hospital, 51 Hon-cho, Hirosaki, 036-8563, Japan.
| | - Koji Hirono
- Department of Pediatrics, Hirosaki University Hospital, 51 Hon-cho, Hirosaki, 036-8563, Japan
| | - Tomomi Aizawa
- Department of Pediatrics, Hirosaki University Hospital, 51 Hon-cho, Hirosaki, 036-8563, Japan
| | - Koji Tsugawa
- Department of Pediatrics, Hirosaki University Hospital, 51 Hon-cho, Hirosaki, 036-8563, Japan
| | - Kensuke Joh
- Department of Pathology, The Jikei University School of Medicine, Tokyo, Japan
| | - Tadaatsu Imaizumi
- Department of Vascular Biology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Hiroshi Tanaka
- Department of Pediatrics, Hirosaki University Hospital, 51 Hon-cho, Hirosaki, 036-8563, Japan
- Department of School Health Science, Faculty of Education, Hirosaki University, Hirosaki, Japan
| |
Collapse
|
31
|
Gaspar VP, Ibrahim S, Sobsey CA, Richard VR, Spatz A, Zahedi RP, Borchers CH. Direct and Precise Measurement of Bevacizumab Levels in Human Plasma Based on Controlled Methionine Oxidation and Multiple Reaction Monitoring. ACS Pharmacol Transl Sci 2020; 3:1304-1309. [PMID: 33344903 DOI: 10.1021/acsptsci.0c00134] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Indexed: 12/17/2022]
Abstract
Bevacizumab is a monoclonal antibody which targets vascular endothelial growth factor A (VEGF-A) and is used to treat various cancers and recently COVID-19. The dosage recommendations for bevacizumab are determined on the basis of body weight, and the drug is administered after defined time intervals, when it is presumed to still be above its minimum effective serum concentration. Interindividual and disease-stage-related variations in bevacizumab catabolism, however, can affect the proper dosing of patients, resulting in plasma concentrations which may not be within the optimal therapeutic window for the drug. Therapeutic drug monitoring (TDM) enables the assessment of patients' serum concentrations and allows personalized dosing which has the potential to improve efficacy and reduce side effects. While TMD is often performed using ligand-based assays, mass spectrometry (MS)-based TDM offers improved specificity. Here, we present a robust multiple reaction monitoring (MRM)-MS-based TDM method for the precise quantification of bevacizumab plasma concentrations, based on the controlled oxidation of the methionine-containing peptide, STAYLQMNSLR. The assay shows good linearity (r 2 = 0.9951), robustness, and precision (CVs < 20%) for the quantification of bevacizumab, with a lower limit of quantification (S/N > 10) of 1.8 μg/mL of plasma, without the need for enrichment and requiring less than 1 μL of plasma and less than 6 h from sampling to result.
Collapse
Affiliation(s)
- Vanessa P Gaspar
- Gerald Bronfman Department of Oncology, Jewish General Hospital, and Segal Cancer Proteomics Center, Lady Davis Institute, General Hospital, McGill University, Montreal, Quebec H3T1E2, Canada
| | - Sahar Ibrahim
- Gerald Bronfman Department of Oncology, Jewish General Hospital, and Segal Cancer Proteomics Center, Lady Davis Institute, General Hospital, McGill University, Montreal, Quebec H3T1E2, Canada
| | - Constance A Sobsey
- Gerald Bronfman Department of Oncology, Jewish General Hospital, and Segal Cancer Proteomics Center, Lady Davis Institute, General Hospital, McGill University, Montreal, Quebec H3T1E2, Canada
| | - Vincent R Richard
- Segal Cancer Proteomics Center, Lady Davis Institute, Jewish General Hospital, McGill University, Montreal, Quebec H3T1E2, Canada
| | - Alan Spatz
- Segal Cancer Centre, Lady Davis Institute, Jewish General Hospital, McGill University, Montreal, Quebec H3T1E2, Canada
| | - René P Zahedi
- Segal Cancer Proteomics Center, Lady Davis Institute, Jewish General Hospital, McGill University, Montreal, Quebec H3T1E2, Canada.,Center for Computational and Data-Intensive Science and Engineering, Skolkovo Institute of Science and Technology, Moscow 121205, Russia
| | - Christoph H Borchers
- Gerald Bronfman Department of Oncology, Jewish General Hospital, and Segal Cancer Proteomics Center, Lady Davis Institute, General Hospital, McGill University, Montreal, Quebec H3T1E2, Canada.,Center for Computational and Data-Intensive Science and Engineering, Skolkovo Institute of Science and Technology, Moscow 121205, Russia
| |
Collapse
|
32
|
Rapid determination of tacrolimus and sirolimus in whole human blood by direct coupling of solid-phase microextraction to mass spectrometry via microfluidic open interface. Anal Chim Acta 2020; 1144:53-60. [PMID: 33453797 DOI: 10.1016/j.aca.2020.11.056] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 11/23/2020] [Accepted: 11/30/2020] [Indexed: 12/29/2022]
Abstract
Immunosuppressive drugs are administered to decrease immune system activity (e.g. of patients undergoing solid organ transplant). Concentrations of immunosuppressive drugs (ISDs) in circulating blood must be closely monitored during the period of immunosuppression therapy due to adverse effects that take place when concentration levels fall outside of the very narrow therapeutic concentration range of these drugs. This study presents the rapid determination of four relevant immunosuppressive drugs (tacrolimus, sirolimus, everolimus, and cyclosporine A) in whole human blood by directly coupling solid-phase microextraction to mass spectrometry via the microfluidic open interface (Bio-SPME-MOI-MS/MS). The BioSPME-MOI-MS/MS method offers ≤ 10% imprecision of in-house prepared quality controls over a 10-day period, ≤ 10% imprecision of ClinCal® Recipe calibrators over a three-day period, and single total turnaround time of ∼ 60 min (4.5 min for high throughput). The limits of quantification were determined to be 0.8 ng mL-1 for tacrolimus, 0.7 ng mL-1 sirolimus, 1.0 ng mL-1 for everolimus, and 0.8 ng mL-1 for cyclosporine. The limits of detection were determined to be 0.3 ng mL-1 for tacrolimus, 0.2 ng mL-1 for sirolimus, 0.3 ng mL-1 for everolimus, and 0.3 ng mL-1 for cyclosporine A. The R2 values for all analytes were above 0.9992 with linear dynamic range from 1.0 mL-1 to 50.0 ng mL-1 for tacrolimus, sirolimus, and everolimus while from 2.5 ng mL-1 to 500.0 ng mL-1 for cyclosporine A. To further evaluate the performance of the present method, 95 residual whole blood samples of tacrolimus and sirolimus from patients undergoing immunosuppression therapy were used to compare the Bio-SPME-MOI-MS/MS method against a clinically validated reference method based on chemiluminescent microparticle immunoassay, showing acceptable results. Our results demonstrated that Bio-SPME-MOI-MS/MS can be considered as a suitable alternative to existing methods for the determination of immunosuppressive drugs in whole blood providing faster analysis, better selectivity and sensitivity, and a wider dynamic range than current existing approaches.
Collapse
|
33
|
Marena GD, Ramos MADS, Bauab TM, Chorilli M. A Critical Review of Analytical Methods for Quantification of Amphotericin B in Biological Samples and Pharmaceutical Formulations. Crit Rev Anal Chem 2020; 52:555-576. [PMID: 32880190 DOI: 10.1080/10408347.2020.1811947] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Amphotericin B (AmB) is an important antifungal agent available in the clinical practice with the action mechanism related to the inhibition of ergosterol molecule present in the fungal cell wall. Given this, in order to expand AmB knowledge, this review article gathers important information of the AmB physical, chemical, and biological properties. In addition, the main analytical methods for quantifying and determining the AmB were also reported in this review, such as high-performance liquid chromatography (HPLC), liquid chromatography, tandem mass spectrophotometry (LC-MS/MS), immunoenzymatic assay (ELISA), capillary zone electrophoresis (CE) stands out and among others. Based in this review article, the scientific community will have important information to choose the best method for analysis in their scientific or clinical research, providing greater security and reliability in the obtained results.
Collapse
Affiliation(s)
- Gabriel Davi Marena
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| | | | - Taís Maria Bauab
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| | - Marlus Chorilli
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| |
Collapse
|
34
|
Cui JJ, Wang LY, Tan ZR, Zhou HH, Zhan X, Yin JY. MASS SPECTROMETRY-BASED PERSONALIZED DRUG THERAPY. MASS SPECTROMETRY REVIEWS 2020; 39:523-552. [PMID: 31904155 DOI: 10.1002/mas.21620] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 12/09/2019] [Indexed: 06/10/2023]
Abstract
Personalized drug therapy aims to provide tailored treatment for individual patient. Mass spectrometry (MS) is revolutionarily involved in this area because MS is a rapid, customizable, cost-effective, and easy to be used high-throughput method with high sensitivity, specificity, and accuracy. It is driving the formation of a new field, MS-based personalized drug therapy, which currently mainly includes five subfields: therapeutic drug monitoring (TDM), pharmacogenomics (PGx), pharmacomicrobiomics, pharmacoepigenomics, and immunopeptidomics. Gas chromatography-MS (GC-MS) and liquid chromatography-MS (LC-MS) are considered as the gold standard for TDM, which can be used to optimize drug dosage. Matrix-assisted laser desorption ionization-time of flight-MS (MALDI-TOF-MS) significantly improves the capability of detecting biomacromolecule, and largely promotes the application of MS in PGx. It is becoming an indispensable tool for genotyping, which is used to discover and validate genetic biomarkers. In addition, MALDI-TOF-MS also plays important roles in identity of human microbiome whose diversity can explain interindividual differences of drug response. Pharmacoepigenetics is to study the role of epigenetic factors in individualized drug treatment. MS can be used to discover and validate pharmacoepigenetic markers (DNA methylation, histone modification, and noncoding RNA). For the emerging cancer immunotherapy, personalized cancer vaccine has effective immunotherapeutic activity in the clinic. MS-based immunopeptidomics can effectively discover and screen neoantigens. This article systematically reviewed MS-based personalized drug therapy in the above mentioned five subfields. © 2020 John Wiley & Sons Ltd. Mass Spec Rev.
Collapse
Affiliation(s)
- Jia-Jia Cui
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, P. R. China
- Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, 110 Xiangya Road, Changsha, 410078, P. R. China
- Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha, 410078, P. R. China
- National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha, 410008, Hunan, P. R. China
| | - Lei-Yun Wang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, P. R. China
- Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, 110 Xiangya Road, Changsha, 410078, P. R. China
- Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha, 410078, P. R. China
- National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha, 410008, Hunan, P. R. China
| | - Zhi-Rong Tan
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, P. R. China
- Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, 110 Xiangya Road, Changsha, 410078, P. R. China
- Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha, 410078, P. R. China
- National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha, 410008, Hunan, P. R. China
| | - Hong-Hao Zhou
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, P. R. China
- Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, 110 Xiangya Road, Changsha, 410078, P. R. China
- Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha, 410078, P. R. China
- National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha, 410008, Hunan, P. R. China
| | - Xianquan Zhan
- National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha, 410008, Hunan, P. R. China
- Department of Oncology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, 410008, P. R. China
- Key Laboratory of Cancer Proteomics of Chinese Ministry of Health, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, 410008, P. R. China
- Hunan Engineering Laboratory for Structural Biology and Drug Design, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, 410008, P. R. China
- State Local Joint Engineering Laboratory for Anticancer Drugs, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, 410008, P. R. China
| | - Ji-Ye Yin
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, P. R. China
- Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, 110 Xiangya Road, Changsha, 410078, P. R. China
- Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha, 410078, P. R. China
- National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha, 410008, Hunan, P. R. China
- Hunan Provincial Gynecological Cancer Diagnosis and Treatment Engineering Research Center, Changsha, Hunan, 410078, P. R. China
- Hunan Key Laboratory of Precise Diagnosis and Treatment of Gastrointestinal Tumor, Changsha, Hunan, 410078, P. R. China
| |
Collapse
|
35
|
Zabidi MS, Abu Bakar R, Musa N, Wan Yusuf WN. Analytical methodologies for measuring colistin levels in pharmacokinetic studies. J LIQ CHROMATOGR R T 2020. [DOI: 10.1080/10826076.2020.1783291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Mohd Shafie Zabidi
- Department of Pharmacology, School of Medical Sciences, Health Campus, Universiti Sains Malaysia, Kelantan, Malaysia
| | - Ruzilawati Abu Bakar
- Department of Pharmacology, School of Medical Sciences, Health Campus, Universiti Sains Malaysia, Kelantan, Malaysia
| | - Nurfadhlina Musa
- Human Genome Centre, School of Medical Sciences, Health Campus Universiti Sains Malaysia, Kelantan, Malaysia
| | - Wan Nazirah Wan Yusuf
- Department of Pharmacology, School of Medical Sciences, Health Campus, Universiti Sains Malaysia, Kelantan, Malaysia
| |
Collapse
|
36
|
Tokuoka SM, Yasumoto A, Kita Y, Shimizu T, Yatomi Y, Oda Y. Limitations of deuterium-labeled internal standards for quantitative electrospray ionization mass spectrometry analysis of fatty acid metabolites. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2020; 34:e8814. [PMID: 32307763 DOI: 10.1002/rcm.8814] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 04/13/2020] [Accepted: 04/13/2020] [Indexed: 06/11/2023]
Abstract
RATIONALE The electrospray ionization mass spectrometry (ESI-MS) methodology often shows poor ionization reproducibility in the analysis of biological samples. Therefore, normalization of the measured peak intensities is essential. It is believed that quantitative data with high reproducibility can be obtained by adding a constant amount of an internal standard (IS) material labeled with stable isotopes to each sample, thus allowing the correction of the quantitative value of the target compound by that of the IS. We investigated whether the presence or absence of a labeled IS improves the accuracy of these quantitative values. METHODS Triple quadrupole MS coupled with liquid chromatography was used to analyze fatty acid metabolites in biological samples as target compounds. Two independent systems were used to provide a measure of reproducibility in two different laboratories. RESULTS Data having poor reproducibility in the raw peak areas were efficiently normalized using the IS, but, crucially, the IS method using stable isotopes was not always necessary. In some cases, the reproducibility was relatively good even without using the IS. In a contaminant matrix, the MS response behavior of the target compound and its stable isotope-labeled material was complicated. Since ion suppression by matrix contaminants was dependent on the concentration of the target compound, the added amounts of the ISs were also important, Furthermore, an equivalent normalization effect was obtained by using a pooled quality control sample as an external standard, thus obviating the need for labeled IS samples, which are often expensive and sometimes not commercially available. CONCLUSIONS Our results raise the question as to whether the quantitative method using stable-isotope-labeled ISs is always necessary and beneficial. However, the results obtained in this study cannot be generalized because only fatty acid metabolites were examined using ESI-MS and only a highly substituted deuterium-labeled IS was used.
Collapse
Affiliation(s)
- Suzumi M Tokuoka
- Department of Lipidomics, Graduate School of Medicine, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo, 113-8654, Japan
| | - Atsushi Yasumoto
- Department of Clinical Laboratory Medicine, Graduate School of Medicine, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo, 113-8654, Japan
| | - Yoshihiro Kita
- Department of Lipidomics, Graduate School of Medicine, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo, 113-8654, Japan
| | - Takao Shimizu
- Department of Lipidomics, Graduate School of Medicine, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo, 113-8654, Japan
- Research Institute National Center for Global Health and Medicine, Toyama 1-21-1, Shinjuku-ku, Tokyo, 162-8655, Japan
| | - Yutaka Yatomi
- Department of Clinical Laboratory Medicine, Graduate School of Medicine, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo, 113-8654, Japan
| | - Yoshiya Oda
- Department of Lipidomics, Graduate School of Medicine, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo, 113-8654, Japan
| |
Collapse
|
37
|
A liquid chromatography-tandem mass spectrometry platform for the routine therapeutic drug monitoring of 14 antibiotics: Application to critically ill pediatric patients. J Pharm Biomed Anal 2020; 186:113273. [DOI: 10.1016/j.jpba.2020.113273] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 03/17/2020] [Accepted: 03/20/2020] [Indexed: 01/09/2023]
|
38
|
Menz BD, Stocker SL, Verougstraete N, Kocic D, Galettis P, Stove CP, Reuter SE. Barriers and opportunities for the clinical implementation of therapeutic drug monitoring in oncology. Br J Clin Pharmacol 2020; 87:227-236. [PMID: 32430968 DOI: 10.1111/bcp.14372] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 04/29/2020] [Accepted: 04/30/2020] [Indexed: 12/12/2022] Open
Abstract
There are few fields of medicine in which the individualisation of medicines is more important than in the area of oncology. Under-dosing can have significant ramifications due to the potential for therapeutic failure and cancer progression; by contrast, over-dosing may lead to severe treatment-limiting side effects, such as agranulocytosis and neutropenia. Both circumstances lead to poor patient prognosis and contribute to the high mortality rates still seen in oncology. The concept of dose individualisation tailors dosing for each individual patient to ensure optimal drug exposure and best clinical outcomes. While the value of this strategy is well recognised, it has seen little translation to clinical application. However, it is important to recognise that the clinical setting of oncology is unlike that for which therapeutic drug monitoring (TDM) is currently the cornerstone of therapy (e.g. antimicrobials). Whilst there is much to learn from these established TDM settings, the challenges presented in the treatment of cancer must be considered to ensure the implementation of TDM in clinical practice. Recent advancements in a range of scientific disciplines have the capacity to address the current system limitations and significantly enhance the use of anticancer medicines to improve patient health. This review examines opportunities presented by these innovative scientific methodologies, specifically sampling strategies, bioanalytics and dosing decision support, to enable optimal practice and facilitate the clinical implementation of TDM in oncology.
Collapse
Affiliation(s)
- Bradley D Menz
- SA Pharmacy, Flinders Medical Centre, Adelaide, SA, Australia
| | - Sophie L Stocker
- Department of Clinical Pharmacology & Toxicology, St Vincent's Hospital, Sydney, NSW, Australia.,St. Vincent's Clinical School, University of New South Wales, Sydney, NSW, Australia
| | - Nick Verougstraete
- Department of Laboratory Medicine, Ghent University Hospital, Ghent, Belgium.,Laboratory of Toxicology, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | - Danijela Kocic
- Department of Clinical Pharmacology & Toxicology, St Vincent's Hospital, Sydney, NSW, Australia.,St. Vincent's Clinical School, University of New South Wales, Sydney, NSW, Australia
| | - Peter Galettis
- Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW, Australia
| | - Christophe P Stove
- Laboratory of Toxicology, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | - Stephanie E Reuter
- UniSA Clinical & Health Sciences, University of South Australia, Adelaide, SA, Australia
| |
Collapse
|
39
|
Chen J, Guan Z, Dong N, Li X. A novel LC-MS/MS method for the determination of ziritaxestat in rat plasma and its pharmacokinetic study. Biomed Chromatogr 2020; 34:e4863. [PMID: 32329073 DOI: 10.1002/bmc.4863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 04/12/2020] [Accepted: 04/20/2020] [Indexed: 11/07/2022]
Abstract
Ziritaxestat is a first-in-class autotoxin inhibitor. The purpose of this study was to develop a liquid chromatography/electrospray ionization tandem mass spectrometric (LC-MS/MS) method for the determination of ziritaxestat in rat plasma. The plasma sample was deproteinated using acetonitrile and then separated on an Acquity BEH C18 column with water containing 0.1% formic acid and acetonitrile as mobile phase, which was delivered at 0.4 ml/min. Ziritaxestat and the internal standard (crizotinib) were quantitatively monitored with precursor-to-product transitions of m/z 589.3 > 262.2 and m/z 450.1 > 260.2, respectively. The total running time was 2.5 min. The method showed excellent linearity over the concentration range 0.5-2000 ng/ml, with correlation coefficient >0.9987. The extraction recovery was >82.09% and the matrix effect was not significant. Inter- and intra-day precisions (RSD) were <11.20% and accuracies were in the range of -8.50-7.45%. Ziritaxestat was demonstrated to be stable in rat plasma under the tested conditions. The validated LC-MS/MS method was successfully applied to study the pharmacokinetic profiles of ziritaxestat in rat plasma after intravenous and oral administration. Pharmacokinetic results demonstrated that ziritaxestat displayed a short half-life (~3 h) and low bioavailability (20.52%).
Collapse
Affiliation(s)
- Jing Chen
- Department of Gastroenterology, The First People's Hospital of Lianyungang, Lianyungang, Jiangsu Province, China
| | - Zhenhua Guan
- Department of Gastroenterology, The First People's Hospital of Lianyungang, Lianyungang, Jiangsu Province, China
| | - Na Dong
- Department of Nursing, Hebei Women's Vocational College, Shijiazhuang, Hebei Province, China
| | - Xueliang Li
- Department of Gastroenterology, The First People's Hospital of Lianyungang, Lianyungang, Jiangsu Province, China
- Department of Gastroenterology, The First Clinical Medical College of Nanjing Medical University, Nanjing, Jiangsu Province, China
| |
Collapse
|
40
|
Ates HC, Roberts JA, Lipman J, Cass AEG, Urban GA, Dincer C. On-Site Therapeutic Drug Monitoring. Trends Biotechnol 2020; 38:1262-1277. [PMID: 33058758 DOI: 10.1016/j.tibtech.2020.03.001] [Citation(s) in RCA: 130] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 03/02/2020] [Accepted: 03/03/2020] [Indexed: 12/13/2022]
Abstract
Recent technological advances have stimulated efforts to bring personalized medicine into practice. Yet, traditional application fields like therapeutic drug monitoring (TDM) have remained rather under-appreciated. Owing to clear dose-response relationships, TDM could improve patient outcomes and reduce healthcare costs. While chromatography-based routine practices are restricted due to high costs and turnaround times, biosensors overcome these limitations by offering on-site analysis. Nevertheless, sensor-based approaches have yet to break through for clinical TDM applications, due to the gap between scientific and clinical communities. We provide a critical overview of current TDM practices, followed by a TDM guideline to establish a common ground across disciplines. Finally, we discuss how the translation of sensor systems for TDM can be facilitated, by highlighting the challenges and opportunities.
Collapse
Affiliation(s)
- H Ceren Ates
- Freiburg Centre for Interactive Materials and Bioinspired Technologies - FIT, University of Freiburg, 79110 Freiburg, Germany; Department of Microsystems Engineering - IMTEK, Laboratory for Sensors, University of Freiburg, 79110 Freiburg, Germany
| | - Jason A Roberts
- Centre of Clinical Research, Faculty of Medicine, The University of Queensland, 4072, Brisbane, Queensland, Australia; Department of Intensive Care Medicine, Royal Brisbane and Women's Hospital, 4029, Brisbane, Queensland, Australia; Department of Pharmacy, Royal Brisbane and Women's Hospital, 4029, Brisbane, Queensland, Australia; Centre for Translational Anti-infective Pharmacodynamics, School of Pharmacy, The University of Queensland, 4102, Brisbane, Queensland, Australia; Division of Anaesthesiology Critical Care Emergency and Pain Medicine, University of Montpellier, Nîmes University Hospital, 34090, Nîmes, France
| | - Jeffrey Lipman
- Centre of Clinical Research, Faculty of Medicine, The University of Queensland, 4072, Brisbane, Queensland, Australia; Department of Intensive Care Medicine, Royal Brisbane and Women's Hospital, 4029, Brisbane, Queensland, Australia; Division of Anaesthesiology Critical Care Emergency and Pain Medicine, University of Montpellier, Nîmes University Hospital, 34090, Nîmes, France
| | - Anthony E G Cass
- Department of Chemistry and Institute of Biomedical Engineering, Imperial College London, SW7 2AZ, London, UK
| | - Gerald A Urban
- Freiburg Centre for Interactive Materials and Bioinspired Technologies - FIT, University of Freiburg, 79110 Freiburg, Germany; Freiburg Materials Research Centre - FMF, University of Freiburg, 79104 Freiburg, Germany
| | - Can Dincer
- Freiburg Centre for Interactive Materials and Bioinspired Technologies - FIT, University of Freiburg, 79110 Freiburg, Germany; Department of Microsystems Engineering - IMTEK, Laboratory for Sensors, University of Freiburg, 79110 Freiburg, Germany. @imtek.de
| |
Collapse
|
41
|
Karvaly GB, Neely MN, Kovács K, Vincze I, Vásárhelyi B, Jelliffe RW. Development of a methodology to make individual estimates of the precision of liquid chromatography-tandem mass spectrometry drug assay results for use in population pharmacokinetic modeling and the optimization of dosage regimens. PLoS One 2020; 15:e0229873. [PMID: 32134971 PMCID: PMC7058336 DOI: 10.1371/journal.pone.0229873] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 02/15/2020] [Indexed: 11/21/2022] Open
Abstract
Background The clinical value of therapeutic drug monitoring can be increased most significantly by integrating assay results into clinical pharmacokinetic models for optimal dosing. The correct weighting in the modeling process is 1/variance, therefore, knowledge of the standard deviations (SD) of each measured concentration is important. Because bioanalytical methods are heteroscedastic, the concentration-SD relationship must be modeled using assay error equations (AEE). We describe a methodology of establishing AEE’s for liquid chromatography-tandem mass spectrometry (LC-MS/MS) drug assays using carbamazepine, fluconazole, lamotrigine and levetiracetam as model analytes. Methods Following method validation, three independent experiments were conducted to develop AEE’s using various least squares linear or nonlinear, and median-based linear regression techniques. SD’s were determined from zero concentration to the high end of the assayed range. In each experiment, precision profiles of 6 (“small” sample sets) or 20 (“large” sample sets) out of 24 independent, spiked specimens were evaluated. Combinatorial calculations were performed to attain the most suitable regression approach. The final AEE’s were developed by combining the SD’s of the assay results, established in 24 specimens/spiking level and using all spiking levels, into a single precision profile. The effects of gross hyperbilirubinemia, hemolysis and lipemia as laboratory interferences were investigated. Results Precision profiles were best characterized by linear regression when 20 spiking levels, each having 24 specimens and obtained by performing 3 independent experiments, were combined. Theil’s regression with the Siegel estimator was the most consistent and robust in providing acceptable agreement between measured and predicted SD’s, including SD’s below the lower limit of quantification. Conclusions In the framework of precision pharmacotherapy, establishing the AEE of assayed drugs is the responsibility of the therapeutic drug monitoring service. This permits optimal dosages by providing the correct weighting factor of assay results in the development of population and individual pharmacokinetic models.
Collapse
Affiliation(s)
| | - Michael N. Neely
- Laboratory of Applied Pharmacokinetics and Bioinformatics, Children’s Hospital of Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Krisztián Kovács
- Department of Laboratory Medicine, Semmelweis University, Budapest, Hungary
| | - István Vincze
- Department of Laboratory Medicine, Semmelweis University, Budapest, Hungary
| | - Barna Vásárhelyi
- Department of Laboratory Medicine, Semmelweis University, Budapest, Hungary
| | - Roger W. Jelliffe
- Laboratory of Applied Pharmacokinetics and Bioinformatics, Children’s Hospital of Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| |
Collapse
|
42
|
Evaluation of a coated blade spray-tandem mass spectrometry assay as a new tool for the determination of immunosuppressive drugs in whole blood. Anal Bioanal Chem 2020; 412:5067-5076. [DOI: 10.1007/s00216-019-02367-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 12/09/2019] [Accepted: 12/19/2019] [Indexed: 01/07/2023]
|
43
|
Lindner JM, Vogeser M, Sorg K, Grimm SH. A semi-automated, isotope-dilution high-resolution mass spectrometry assay for therapeutic drug monitoring of antidepressants. CLINICAL MASS SPECTROMETRY 2019; 14 Pt B:89-98. [DOI: 10.1016/j.clinms.2019.05.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 05/19/2019] [Accepted: 05/19/2019] [Indexed: 11/30/2022]
|
44
|
Mass spectrometry for therapeutic drug monitoring of anti-tuberculosis drugs. CLINICAL MASS SPECTROMETRY 2019; 14 Pt A:34-45. [DOI: 10.1016/j.clinms.2018.10.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 10/17/2018] [Accepted: 10/18/2018] [Indexed: 11/18/2022]
|
45
|
Quantification of the Plasma Concentration of Apatinib by 2-Dimensional Liquid Chromatography. Ther Drug Monit 2019; 41:489-496. [DOI: 10.1097/ftd.0000000000000609] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
46
|
NISHIMURA K, HAGINAKA J. Preparation and Evaluation of Molecularly Imprinted Polymers for Promazine and Chlorpromazine by Multi-step Swelling and Polymerization: the Application for the Determination of Promazine in Rat Serum by Column-switching LC. ANAL SCI 2019; 35:659-664. [DOI: 10.2116/analsci.19p011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Kanae NISHIMURA
- Department of Pharmacy, School of Pharmacy and Pharmaceutical Sciences, Mukogawa Women’s University
| | - Jun HAGINAKA
- Department of Pharmacy, School of Pharmacy and Pharmaceutical Sciences, Mukogawa Women’s University
- Institute for Biosciences, Mukogawa Women’s University
| |
Collapse
|
47
|
LC-MS/MS-Based Quantification of 9 Antiepileptic Drugs From a Dried Sample Spot Device. Ther Drug Monit 2019; 41:331-339. [DOI: 10.1097/ftd.0000000000000600] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
48
|
Isotope–labeled versus analog internal standard in LC–MS/MS method for tacrolimus determination in human whole blood samples – A compensation of matrix effects. J Chromatogr B Analyt Technol Biomed Life Sci 2019; 1104:220-227. [DOI: 10.1016/j.jchromb.2018.11.026] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 10/25/2018] [Accepted: 11/27/2018] [Indexed: 12/31/2022]
|
49
|
Mass Spectrometry for Research and Application in Therapeutic Drug Monitoring or Clinical and Forensic Toxicology. Ther Drug Monit 2018; 40:389-393. [PMID: 29750739 DOI: 10.1097/ftd.0000000000000525] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
This article reviews current applications of various hyphenated low- and high-resolution mass spectrometry techniques in the field of therapeutic drug monitoring and clinical/forensic toxicology in both research and practice. They cover gas chromatography, liquid chromatography, matrix-assisted laser desorption ionization, or paper spray ionization coupled to quadrupole, ion trap, time-of-flight, or Orbitrap mass analyzers.
Collapse
|
50
|
Canbolat F, Tasdemir Erinç DM, Evrensel A, Aydın A, Tarhan KN. Quantitation of escitalopram and its metabolites by liquid chromatography-tandem mass spectrometry in psychiatric patients: New metabolic ratio establishment. Basic Clin Pharmacol Toxicol 2018; 124:285-297. [PMID: 30220109 DOI: 10.1111/bcpt.13133] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2018] [Accepted: 09/10/2018] [Indexed: 02/06/2023]
Abstract
Therapeutic drug monitoring (TDM) is used to determine the concentration of drug in plasma/serum to adjust the dose of the therapeutic drug. Selective and sensitive analytical methods are used to determine drug and metabolite levels for the successful application of TDM. The aim of the study was to develop and validate using LC-MS/MS to analyse quantitative assay of escitalopram (S-CT) and metabolites in human plasma samples. In order to provide a convenient and safe treatment dose, it was aimed to determine the levels of S-CT and its metabolites in the patients' plasma. A new method with short sample preparation and analysis time was developed and validated using LC-MS/MS to analyse quantitative assay of S-CT and its metabolites in plasma. Also, plasma samples of 30 patients using 20 mg S-CT between the ages of 18 and 65 years were analysed by the validated method. The mean values of S-CT, demethyl escitalopram and didemethyl escitalopram in plasma of patients were 27.59, 85.52 and 44.30 ng/mL, respectively. At the end of the analysis, the metabolic ratio of S-CT and metabolites was calculated. It is considered that the method for the quantitative analysis of S-CT and its metabolites in human plasma samples may contribute to the literature on account of its sensitive and easy application. Additionally, the use of our data by physicians will contribute to the effective drug treatment for their patients who take S-CT.
Collapse
Affiliation(s)
- Fadime Canbolat
- Clinical Pharmacogenetic Laboratory, NP Brain Hospital, Üsküdar University, Istanbul, Turkey
| | | | | | - Ahmet Aydın
- Department of Toxicology, Faculty of Pharmacy, Yeditepe University, Istanbul, Turkey
| | | |
Collapse
|