1
|
Li Z, Cheng W, Gao K, Liang S, Ke L, Wang M, Fan J, Li D, Zhang P, Xu Z, Li N. Pyroptosis: A spoiler of peaceful coexistence between cells in degenerative bone and joint diseases. J Adv Res 2024:S2090-1232(24)00247-9. [PMID: 38876191 DOI: 10.1016/j.jare.2024.06.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 05/23/2024] [Accepted: 06/07/2024] [Indexed: 06/16/2024] Open
Abstract
BACKGROUND As people age, degenerative bone and joint diseases (DBJDs) become more prevalent. When middle-aged and elderly people are diagnosed with one or more disorders such as osteoporosis (OP), osteoarthritis (OA), and intervertebral disc degeneration (IVDD), it often signals the onset of prolonged pain and reduced functionality. Chronic inflammation has been identified as the underlying cause of various degenerative diseases, including DBJDs. Recently, excessive activation of pyroptosis, a form of programed cell death (PCD) mediated by inflammasomes, has emerged as a primary driver of harmful chronic inflammation. Consequently, pyroptosis has become a potential target for preventing and treating DBJDs. AIM OF REVIEW This review explored the physiological and pathological roles of the pyroptosis pathway in bone and joint development and its relation to DBJDs. Meanwhile, it elaborated the molecular mechanisms of pyroptosis within individual cell types in the bone marrow and joints, as well as the interplay among different cell types in the context of DBJDs. Furthermore, this review presented the latest compelling evidence supporting the idea of regulating the pyroptosis pathway for DBJDs treatment, and discussed the potential, limitations, and challenges of various therapeutic strategies involving pyroptosis regulation. KEY SCIENTIFIC CONCEPTS OF REVIEW In summary, an interesting identity for the unregulated pyroptosis pathway in the context of DBJDs was proposed in this review, which was undertaken as a spoiler of peaceful coexistence between cells in a degenerative environment. Over the extended course of DBJDs, pyroptosis pathway perpetuated its activity through crosstalk among pyroptosis cascades in different cell types, thus exacerbating the inflammatory environment throughout the entire bone marrow and joint degeneration environment. Correspondingly, pyroptosis regulation therapy emerged as a promising option for clinical treatment of DBJDs.
Collapse
Affiliation(s)
- Zhichao Li
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250014, China; Department of Orthopedics, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250014, China; Center for Translational Medicine Research and Development, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Wenxiang Cheng
- Center for Translational Medicine Research and Development, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Kuanhui Gao
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250014, China
| | - Songlin Liang
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250014, China; Center for Translational Medicine Research and Development, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Liqing Ke
- Center for Translational Medicine Research and Development, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Mengjie Wang
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250014, China
| | - Jilin Fan
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250014, China
| | - Dandan Li
- College of Integrated Traditional Chinese and Western Medicine, Hebei University of Chinese Medicine, Shijiazhuang 050011, China
| | - Peng Zhang
- Center for Translational Medicine Research and Development, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; Faculty of Biomedical Engineering, Shenzhen University of Advanced Technology, Shenzhen 518000, China; Key Laboratory of Biomedical Imaging Science and System, Chinese Academy of Sciences, Shenzhen, 518000 China; Shandong Zhongke Advanced Technology Co., Ltd., Jinan, 250300 China.
| | - Zhanwang Xu
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250014, China; Department of Orthopedics, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250014, China.
| | - Nianhu Li
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250014, China; Department of Orthopedics, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250014, China.
| |
Collapse
|
2
|
Wen Y, Zou M, Chen C. Diagnostic biomarkers in knee osteoarthritis: Based on bioinformatics and experimental verification in vivo and in vitro. J Orthop Surg (Hong Kong) 2024; 32:10225536241267027. [PMID: 39110784 DOI: 10.1177/10225536241267027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/15/2025] Open
Abstract
BACKGROUND Knee osteoarthritis (KOA) is a multifactorial whole-joint disease with a high rate of disability. Considering the complexity of KOA, there is an urgent need to discover new molecular pathological markers and multi-target treatment strategies. METHODS Two datasets, GSE51588 and GSE57218, were downloaded from the Gene Expression Omnibus database and screened for differentially expressed genes (DEGs) using the Gene Expression Omnibus 2R (GEO2R). Gene Ontology (GO)/Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses of DEGs were performed. A protein-protein interaction (PPI) network was constructed and hub genes were identified using Molecular Complex Detection (MCODE). Receiver-operating characteristic curves (ROC) were plotted for the genes, and their prognostic values were evaluated. The expression levels of the hub genes in the monosodium iodoacetate (MIA)-induced KOA rat model and lipopolysaccharide (LPS)-stimulated C28/I2 cells were verified using reverse transcription quantitative real-time PCR (RT-qPCR). RESULTS Overall, 33 DEGs were up-regulated and 6 DEGs were down-regulated in the two datasets. A total of 12 hub genes were identified, including COL15A1, THY1, COL1A1, COL5A1, CTHRC1, MXRA5, FN1, COL1A2, COL3A1, SPARC, COL8A1, and COL2A1, which all could be used as biomarkers to differentiate KOA samples from healthy controls. More importantly, we found that THY1, CTHRC1, SPARC, and COL8A1 were significantly upregulated in vivo and in vitro compared with the controls (p < .01). CONCLUSIONS The expression levels of THY1, CTHRC1, SPARC, and COL8A1 were elevated and had good prognostic values as biomarkers in KOA.
Collapse
Affiliation(s)
- Yaqian Wen
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Mengdi Zou
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Chujie Chen
- Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
3
|
Ouyang Z, Dong L, Yao F, Wang K, Chen Y, Li S, Zhou R, Zhao Y, Hu W. Cartilage-Related Collagens in Osteoarthritis and Rheumatoid Arthritis: From Pathogenesis to Therapeutics. Int J Mol Sci 2023; 24:9841. [PMID: 37372989 DOI: 10.3390/ijms24129841] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 06/01/2023] [Accepted: 06/04/2023] [Indexed: 06/29/2023] Open
Abstract
Collagens serve essential mechanical functions throughout the body, particularly in the connective tissues. In articular cartilage, collagens provide most of the biomechanical properties of the extracellular matrix essential for its function. Collagen plays a very important role in maintaining the mechanical properties of articular cartilage and the stability of the ECM. Noteworthily, many pathogenic factors in the course of osteoarthritis and rheumatoid arthritis, such as mechanical injury, inflammation, and senescence, are involved in the irreversible degradation of collagen, leading to the progressive destruction of cartilage. The degradation of collagen can generate new biochemical markers with the ability to monitor disease progression and facilitate drug development. In addition, collagen can also be used as a biomaterial with excellent properties such as low immunogenicity, biodegradability, biocompatibility, and hydrophilicity. This review not only provides a systematic description of collagen and analyzes the structural characteristics of articular cartilage and the mechanisms of cartilage damage in disease states but also provides a detailed characterization of the biomarkers of collagen production and the role of collagen in cartilage repair, providing ideas and techniques for clinical diagnosis and treatment.
Collapse
Affiliation(s)
- Ziwei Ouyang
- Department of Clinical Pharmacology, The Second Affiliated Hospital of Anhui Medical University, Heifei 230601, China
- The Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Heifei 230032, China
| | - Lei Dong
- Department of Clinical Pharmacology, The Second Affiliated Hospital of Anhui Medical University, Heifei 230601, China
- The Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Heifei 230032, China
| | - Feng Yao
- Department of Clinical Pharmacology, The Second Affiliated Hospital of Anhui Medical University, Heifei 230601, China
| | - Ke Wang
- Department of Clinical Pharmacology, The Second Affiliated Hospital of Anhui Medical University, Heifei 230601, China
| | - Yong Chen
- Department of Clinical Pharmacology, The Second Affiliated Hospital of Anhui Medical University, Heifei 230601, China
| | - Shufang Li
- Department of Clinical Pharmacology, The Second Affiliated Hospital of Anhui Medical University, Heifei 230601, China
| | - Renpeng Zhou
- Department of Clinical Pharmacology, The Second Affiliated Hospital of Anhui Medical University, Heifei 230601, China
| | - Yingjie Zhao
- Department of Clinical Pharmacology, The Second Affiliated Hospital of Anhui Medical University, Heifei 230601, China
- The Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Heifei 230032, China
| | - Wei Hu
- Department of Clinical Pharmacology, The Second Affiliated Hospital of Anhui Medical University, Heifei 230601, China
- The Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Heifei 230032, China
| |
Collapse
|
4
|
Yin H, Li M, Tian G, Ma Y, Ning C, Yan Z, Wu J, Ge Q, Sui X, Liu S, Zheng J, Guo W, Guo Q. The role of extracellular vesicles in osteoarthritis treatment via microenvironment regulation. Biomater Res 2022; 26:52. [PMID: 36199125 PMCID: PMC9532820 DOI: 10.1186/s40824-022-00300-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 09/18/2022] [Indexed: 11/10/2022] Open
Abstract
Osteoarthritis (OA) is a degenerative joint disease that is common among the middle-aged and older populations, causes patients to experience recurrent pain in their joints and negatively affects their quality of life. Currently, therapeutic options for patients with OA consist of medications to alleviate pain and treat the symptoms; however, due to typically poor outcomes, patients with advanced OA are unlikely to avoid joint replacement. In recent years, several studies have linked disrupted homeostasis of the joint cavity microenvironment to the development of OA. Recently, extracellular vesicles (EVs) have received increasing attention in the field of OA. EVs are natural nano-microcarrier materials with unique biological activity that are produced by cells through paracrine action. They are composed of lipid bilayers that contain physiologically active molecules, such as nucleic acids and proteins. Moreover, EVs may participate in local and distal intercellular and intracellular communication. EVs have also recently been shown to influence OA development by regulating biochemical factors in the OA microenvironmental. In this article, we first describe the microenvironment of OA. Then, we provide an overview of EVs, summarize the main types used for the treatment of OA, and describe their mechanisms. Next, we review clinical studies using EVs for OA treatment. Finally, the specific mechanism underlying the application of miRNA-enriched EVs in OA therapy is described.
Collapse
Affiliation(s)
- Han Yin
- Institute of Orthopedics, The First Medical Center, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, No. 28 Fuxing Road, Haidian District, Beijing, 100853, PR China
| | - Muzhe Li
- Institute of Orthopedics, The First Medical Center, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, No. 28 Fuxing Road, Haidian District, Beijing, 100853, PR China
- Department of Orthopedics, The First Affiliated Hospital of University of South China, Hengyang, 421000, China
| | - Guangzhao Tian
- Institute of Orthopedics, The First Medical Center, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, No. 28 Fuxing Road, Haidian District, Beijing, 100853, PR China
- School of Medicine, Nankai University, Tianjin, 300071, China
| | - Yang Ma
- Institute of Orthopedics, The First Medical Center, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, No. 28 Fuxing Road, Haidian District, Beijing, 100853, PR China
| | - Chao Ning
- Institute of Orthopedics, The First Medical Center, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, No. 28 Fuxing Road, Haidian District, Beijing, 100853, PR China
| | - Zineng Yan
- Institute of Orthopedics, The First Medical Center, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, No. 28 Fuxing Road, Haidian District, Beijing, 100853, PR China
| | - Jiang Wu
- Institute of Orthopedics, The First Medical Center, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, No. 28 Fuxing Road, Haidian District, Beijing, 100853, PR China
| | - Qian Ge
- Huaiyin People's Hospital of Huai'an, Huai'an, 223001, China
| | - Xiang Sui
- Institute of Orthopedics, The First Medical Center, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, No. 28 Fuxing Road, Haidian District, Beijing, 100853, PR China
| | - Shuyun Liu
- Institute of Orthopedics, The First Medical Center, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, No. 28 Fuxing Road, Haidian District, Beijing, 100853, PR China.
| | - Jinxuan Zheng
- Department of Orthodontics, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, No.56 Linyuan Xi Road, Yuexiu District, Guangzhou, Guangdong, 510055, People's Republic of China.
| | - Weimin Guo
- Department of Orthopaedic Surgery, Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, First Affiliated Hospital, Sun Yat-Sen University, No.58 Zhongshan Second Road, Yuexiu District, Guangzhou, 510080, Guangdong, China.
| | - Quanyi Guo
- Institute of Orthopedics, The First Medical Center, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, No. 28 Fuxing Road, Haidian District, Beijing, 100853, PR China.
| |
Collapse
|
5
|
Decato BE, Leeming DJ, Sand JMB, Fischer A, Du S, Palmer SM, Karsdal M, Luo Y, Minnich A. LPA 1 antagonist BMS-986020 changes collagen dynamics and exerts antifibrotic effects in vitro and in patients with idiopathic pulmonary fibrosis. Respir Res 2022; 23:61. [PMID: 35303880 PMCID: PMC8933988 DOI: 10.1186/s12931-022-01980-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 03/08/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Idiopathic pulmonary fibrosis (IPF) is a debilitating lung disease with limited treatment options. A phase 2 trial (NCT01766817) showed that twice-daily treatment with BMS-986020, a lysophosphatidic acid receptor 1 (LPA1) antagonist, significantly decreased the slope of forced vital capacity (FVC) decline over 26 weeks compared with placebo in patients with IPF. This analysis aimed to better understand the impact of LPA1 antagonism on extracellular matrix (ECM)-neoepitope biomarkers and lung function through a post hoc analysis of the phase 2 study, along with an in vitro fibrogenesis model. METHODS Serum levels of nine ECM-neoepitope biomarkers were measured in patients with IPF. The association of biomarkers with baseline and change from baseline FVC and quantitative lung fibrosis as measured with high-resolution computed tomography, and differences between treatment arms using linear mixed models, were assessed. The Scar-in-a-Jar in vitro fibrogenesis model was used to further elucidate the antifibrotic mechanism of BMS-986020. RESULTS In 140 patients with IPF, baseline ECM-neoepitope biomarker levels did not predict FVC progression but was significantly correlated with baseline FVC and lung fibrosis measurements. Most serum ECM-neoepitope biomarker levels were significantly reduced following BMS-986020 treatment compared with placebo, and several of the reductions correlated with FVC and/or lung fibrosis improvement. In the Scar-in-a-Jar in vitro model, BMS-986020 potently inhibited LPA1-induced fibrogenesis. CONCLUSIONS BMS-986020 reduced serum ECM-neoepitope biomarkers, which were previously associated with IPF prognosis. In vitro, LPA promoted fibrogenesis, which was LPA1 dependent and inhibited by BMS-986020. Together these data elucidate a novel antifibrotic mechanism of action for pharmacological LPA1 blockade. Trial registration ClinicalTrials.gov identifier: NCT01766817; First posted: January 11, 2013; https://clinicaltrials.gov/ct2/show/NCT01766817 .
Collapse
Affiliation(s)
- Benjamin E Decato
- Research & Early Development, Bristol Myers Squibb, 3401 Princeton Pike, Princeton, NJ, 08648, USA
| | | | | | - Aryeh Fischer
- Research & Early Development, Bristol Myers Squibb, 3401 Princeton Pike, Princeton, NJ, 08648, USA
| | - Shuyan Du
- Research & Early Development, Bristol Myers Squibb, 3401 Princeton Pike, Princeton, NJ, 08648, USA
| | - Scott M Palmer
- Duke University Medical Center, 2085 Msrb2 2 Genome Ct., Durham, NC, 27710, USA
| | - Morten Karsdal
- Nordic Bioscience, Herlev Hovedgade 205-207, 2730 Herlev, Denmark
| | - Yi Luo
- Research & Early Development, Bristol Myers Squibb, 3401 Princeton Pike, Princeton, NJ, 08648, USA
| | - Anne Minnich
- Research & Early Development, Bristol Myers Squibb, 3401 Princeton Pike, Princeton, NJ, 08648, USA.
| |
Collapse
|
6
|
Rousseau JC, Chapurlat R, Garnero P. Soluble biological markers in osteoarthritis. Ther Adv Musculoskelet Dis 2021; 13:1759720X211040300. [PMID: 34616494 PMCID: PMC8488516 DOI: 10.1177/1759720x211040300] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 07/27/2021] [Indexed: 12/15/2022] Open
Abstract
In recent years, markers research has focused on the structural components of cartilage matrix. Specifically, a second generation of degradation markers has been developed against type II collagen neoepitopes generated by specific enzymes. A particular effort has been made to measure the degradation of minor collagens III and X of the cartilage matrix. However, because clinical data, including longitudinal controlled studies, are very scarce, it remains unclear whether they will be useful as an alternative to or in combination with current more established collagen biological markers to assess patients with osteoarthritis (OA). In addition, new approaches using high-throughput technologies allowed to detect new types of markers and improve the knowledge about the metabolic changes linked to OA. The relative advances coming from phenotype research are a first attempt to classify the heterogeneity of OA, and several markers could improve the phenotype characterization. These phenotypes could improve the selection of patients in clinical trials limiting the size of the studies by selecting patients with OA characteristics corresponding to the metabolic pathway targeted by the molecules evaluated. In addition, the inclusion of rapid progressors only in clinical trials would facilitate the demonstration of efficacy of the investigative drug to reduce joint degradation. The combination of selective biochemical markers appears as a promising and cost-effective approach to fulfill this unmet clinical need. Among the various potential roles of biomarkers in OA, their ability to monitor drug efficacy is probably one of the most important, in association with clinical and imaging parameters. Biochemical markers have the unique property to detect changes in joint tissue metabolism within a few weeks.
Collapse
Affiliation(s)
- Jean-Charles Rousseau
- INSERM Unit 1033, Pavillon F, Hôpital E. Herriot, 5 Place d’Arsonval, 69437 Lyon Cedex 03, France
- Biochemical Marker Assay Laboratory for Clinical Research (PMO-Lab), Lyon, France
- INSERM 1033, Lyon, France
| | - Roland Chapurlat
- Biochemical Marker Assay Laboratory for Clinical Research (PMO-Lab), Lyon, France
- INSERM UMR 1033, Lyon, France
- Université de Lyon, Lyon, France
- Hôpital Edouard Herriot, Hospice Civils de Lyon, Lyon, France
| | - Patrick Garnero
- Biochemical Marker Assay Laboratory for Clinical Research (PMO-Lab), Lyon, France
- INSERM UMR 1033, Lyon, France
| |
Collapse
|
7
|
Alexander LC, McHorse G, Huebner JL, Bay-Jensen AC, Karsdal MA, Kraus VB. A matrix metalloproteinase-generated neoepitope of CRP can identify knee and multi-joint inflammation in osteoarthritis. Arthritis Res Ther 2021; 23:226. [PMID: 34465395 PMCID: PMC8407005 DOI: 10.1186/s13075-021-02610-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 08/20/2021] [Indexed: 12/14/2022] Open
Abstract
OBJECTIVE To compare C-reactive protein (CRP) and matrix metalloproteinase-generated neoepitope of CRP (CRPM) as biomarkers of inflammation and radiographic severity in patients with knee osteoarthritis. METHODS Participants with symptomatic osteoarthritis (n=25) of at least one knee underwent knee radiographic imaging and radionuclide etarfolatide imaging to quantify inflammation of the knees and other appendicular joints. For purposes of statistical analysis, semi-quantitative etarfolatide and radiographic imaging scores were summed across the knees; etarfolatide scores were also summed across all joints to provide a multi-joint synovitis measure. Multiple inflammation and collagen-related biomarkers were measured by ELISA including CRP, CRPM, MMP-generated neoepitopes of type I collagen and type III collagen in serum (n=25), and CD163 in serum (n=25) and synovial fluid (n=18). RESULTS BMI was associated with CRP (p=0.001), but not CRPM (p=0.753). Adjusting for BMI, CRP was associated with radiographic knee osteophyte score (p=0.002), while CRPM was associated with synovitis of the knee (p=0.017), synovitis of multiple joints (p=0.008), and macrophage marker CD163 in serum (p=0.009) and synovial fluid (p=0.03). CRP correlated with MMP-generated neoepitope of type I collagen in serum (p=0.045), and CRPM correlated with MMP-generated neoepitope of type III collagen in serum (p<0.0001). No biomarkers correlated with age, knee pain, or WOMAC pain. CONCLUSIONS To our knowledge, this is the first time that CRPM has been shown to be associated with knee and multi-joint inflammation based on objective imaging (etarfolatide) and biomarker (CD163) measures. These results demonstrate the capability of biomarker measurements to reflect complex biological processes and for neoepitope markers to more distinctly reflect acute processes than their precursor proteins. CRPM is a promising biomarker of local and systemic inflammation in knee OA that is associated with cartilage degradation and is independent of BMI. CRPM is a potential molecular biomarker alternative to etarfolatide imaging for quantitative assessment of joint inflammation.
Collapse
Affiliation(s)
- Louie C. Alexander
- Duke Molecular Physiology Institute, Duke University School of Medicine, PO Box 104775, Carmichael Building, 300 N. Duke St, Durham, NC 27701 USA
| | - Grant McHorse
- Duke Molecular Physiology Institute, Duke University School of Medicine, PO Box 104775, Carmichael Building, 300 N. Duke St, Durham, NC 27701 USA
| | - Janet L. Huebner
- Duke Molecular Physiology Institute, Duke University School of Medicine, PO Box 104775, Carmichael Building, 300 N. Duke St, Durham, NC 27701 USA
| | | | | | - Virginia B. Kraus
- Duke Molecular Physiology Institute, Duke University School of Medicine, PO Box 104775, Carmichael Building, 300 N. Duke St, Durham, NC 27701 USA
- Department of Medicine, Duke University School of Medicine, PO Box 104775, Carmichael Building, 300 N. Duke St, Durham, NC 27701 USA
| |
Collapse
|
8
|
Zhou L, Ye H, Liu L, Chen Y. Human Bone Mesenchymal Stem Cell-Derived Exosomes Inhibit IL-1β-Induced Inflammation in Osteoarthritis Chondrocytes. CELL JOURNAL 2021; 23:485-494. [PMID: 34455725 PMCID: PMC8405079 DOI: 10.22074/cellj.2021.7127] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 03/16/2020] [Indexed: 12/14/2022]
Abstract
Objective Human bone marrow mesenchymal stem cell (hBMSC)-derived exosomes exhibit protective effects against
inflammatory diseases. This study aimed to explore the effects of hBMSC-derived exosomes on osteoarthritis (OA) in
vitro and its related mechanisms. Materials and Methods In this experimental study, we characterised exosomes derived from hBMSCs by transmission
electron microscopy, nanoparticle tracking and Western blot analysis. Cellular uptake of exosomes was observed by
fluorescent microscopy. Cell viability of chondrocytes exposed to interleukin-1 beta (IL-1β) was determined by the
Cell Counting Kit-8 (CCK-8). Real-time quantitative polymerase chain reaction (RT-qPCR) was used to determine
expression levels of genes related to apoptosis, inflammation, cartilage collagen metabolism and mitogen-activated
protein kinases.
Results Fluorescence microscopy revealed that hBMSC-derived exosomes could be taken up by chondrocytes.
hBMSC-derived exosomes could significantly enhance cell viability of chondrocytes in response to IL-1β treatment.
RT-qPCR showed significant up-regulation of Survivin, Versican, IL-1β, IL-6, NF-κB, MMP-13, MAPK p38, JNK, ERK,
Aggrecan and SOX9 expression levels by IL-1β treatment, while their mRNA expression levels decreased after co-
culture with exosomes. The anti-inflammatory gene TGF-β was markedly suppressed by IL-1β treatment; however, we
observed its expression after co-culture with exosomes. Additionally, the pro-inflammatory genes IL-1β, IL-6, NF-κB,
TNF-α and TNF-β displayed significantly elevated expression levels in the IL-1β group and reduced expression levels
after co-culture with exosomes.
Conclusion hBMSC-derived exosomes may play a protective role in chondrocytes through inhibiting cell apoptosis
and the inflammatory response. These results will provide a novel therapeutic strategy for OA.
Collapse
Affiliation(s)
- Liping Zhou
- Chemical Pharmaceutical Research Institute, Taizhou Vocational and Technical College, Taizhou, Zhejiang, China.
| | - Haiwei Ye
- Chemical Pharmaceutical Research Institute, Taizhou Vocational and Technical College, Taizhou, Zhejiang, China
| | - Lizhen Liu
- Bone Marrow Transplantation Centre, First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yunhua Chen
- Chemical Pharmaceutical Research Institute, Taizhou Vocational and Technical College, Taizhou, Zhejiang, China
| |
Collapse
|
9
|
Schuster R, Rockel JS, Kapoor M, Hinz B. The inflammatory speech of fibroblasts. Immunol Rev 2021; 302:126-146. [PMID: 33987902 DOI: 10.1111/imr.12971] [Citation(s) in RCA: 106] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 04/18/2021] [Accepted: 04/23/2021] [Indexed: 02/06/2023]
Abstract
Activation of fibroblasts is a key event during normal tissue repair after injury and the dysregulated repair processes that result in organ fibrosis. To most researchers, fibroblasts are rather unremarkable spindle-shaped cells embedded in the fibrous collagen matrix of connective tissues and/or deemed useful to perform mechanistic studies with adherent cells in culture. For more than a century, fibroblasts escaped thorough classification due to the lack of specific markers and were treated as the leftovers after all other cells have been identified from a tissue sample. With novel cell lineage tracing and single cell transcriptomics tools, bona fide fibroblasts emerge as only one heterogeneous sub-population of a much larger group of partly overlapping cell types, including mesenchymal stromal cells, fibro-adipogenic progenitor cells, pericytes, and/or perivascular cells. All these cells are activated to contribute to tissue repair after injury and/or chronic inflammation. "Activation" can entail various functions, such as enhanced proliferation, migration, instruction of inflammatory cells, secretion of extracellular matrix proteins and organizing enzymes, and acquisition of a contractile myofibroblast phenotype. We provide our view on the fibroblastic cell types and activation states playing a role during physiological and pathological repair and their crosstalk with inflammatory macrophages. Inflammation and fibrosis of the articular synovium during rheumatoid arthritis and osteoarthritis are used as specific examples to discuss inflammatory fibroblast phenotypes. Ultimately, delineating the precursors and functional roles of activated fibroblastic cells will contribute to better and more specific intervention strategies to treat fibroproliferative and fibrocontractive disorders.
Collapse
Affiliation(s)
- Ronen Schuster
- Laboratory of Tissue Repair and Regeneration, Faculty of Dentistry, University of Toronto, Toronto, ON, Canada.,PhenomicAI, MaRS Centre, Toronto, ON, Canada
| | - Jason S Rockel
- Schroeder Arthritis Institute, University Health Network, Toronto, ON, Canada.,Krembil Research Institute, University Health Network, Toronto, ON, Canada.,Department of Surgery, University of Toronto, Toronto, ON, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Mohit Kapoor
- Schroeder Arthritis Institute, University Health Network, Toronto, ON, Canada.,Krembil Research Institute, University Health Network, Toronto, ON, Canada.,Department of Surgery, University of Toronto, Toronto, ON, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Boris Hinz
- Laboratory of Tissue Repair and Regeneration, Faculty of Dentistry, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
10
|
Osteoarthritis year in review 2019: biomarkers (biochemical markers). Osteoarthritis Cartilage 2020; 28:296-315. [PMID: 31887390 DOI: 10.1016/j.joca.2019.11.007] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 11/04/2019] [Accepted: 11/11/2019] [Indexed: 02/02/2023]
Abstract
OBJECTIVE To provide an insightful summary of studies on biochemical markers for osteoarthritis (OA). DESIGN Two investigators systematically searched the electronic PubMed database for clinical studies into soluble biochemical markers for OA in humans that were published between 01-03-2018 and 01-03-2019. Data from selected publications were systematically extracted and tabulated and were summarized in a narrative review. RESULTS Out of 1,279 publications, 124 fulfilled all selection criteria and were selected for data extraction. The majority were around knee OA, cross-sectional in design, relatively small, and/or focused on one or a few biochemical markers. Among the intervention studies, relatively many were on non-pharmacological interventions, used clinical outcomes and/or were rather short. Some leads that were provided by this year's studies pertained to less conventional inflammatory mediators, oxidative stress, acidosis, angiogenesis and/or autoantibody formation. CONCLUSIONS This year's biochemical marker studies did provide potential leads for therapeutic targets or other biochemical marker applications that require robust and strategic follow-up research to be validated.
Collapse
|
11
|
Li L, Li Z, Li Y, Hu X, Zhang Y, Fan P. Profiling of inflammatory mediators in the synovial fluid related to pain in knee osteoarthritis. BMC Musculoskelet Disord 2020; 21:99. [PMID: 32059658 PMCID: PMC7023718 DOI: 10.1186/s12891-020-3120-0] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Accepted: 02/06/2020] [Indexed: 01/22/2023] Open
Abstract
Background Inflammatory mediators in the synovial fluid (SF) play critical roles in the initiation and development of pain in knee osteoarthritis (KOA). However, data for inflammatory marker expression are conflicting, and the role of SF inflammatory mediators in neuropathic pain is not clear. Therefore, the aim of this study was to identify SF inflammatory mediators associated with nociceptive and neuropathic pain in KOA. Methods Levels of IL-1β, IL-6, TNF-α, macrophage colony-stimulating factor, MMP-3, MMP-13, metalloproteinase with thrombospondin motifs 5, calcitonin gene-related peptide, neuropeptide Y, substance P and bradykinin were measured using enzyme-linked immunosorbent assays in 86 patients. Nociceptive pain was assessed using the numeric rating scale (NRS), visual analog scale (VAS) and Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC) pain score. Neuropathic pain was determined using the PainDETECT questionnaire. Moreover, knee function was evaluated by the WOMAC score and range of motion (ROM) assessments. Radiological grade was defined using the Kellgren-Lawrence (K-L) grading scale. Results Pain scores measured using different methods correlated highly with each other. A worse K-L grade and knee function were associated with worse pain. Expression of IL-1β and IL-6 was increased in the early stage compared with the late stage. The NRS score correlated positively with age, K-L grade, and the WOMAC score and negatively with ROM and TNF-α expression. The VAS correlated positively with age, K-L grade, and the WOMAC score but negatively with ROM and levels of IL-1β, IL-6 and TNF-α. The WOMAC pain score did not correlate with any of the inflammatory mediators measured; it correlated only with ROM. The PainDETECT score correlated only with the WOMAC score. Expression of other inflammatory mediators did not correlate with any of the pain scores. Conclusions IL-1β, IL-6 and TNF-α play critical roles in pain in the early stage of KOA and correlate with pain. The catabolic enzymes and neuropeptides measured do not correlate with nociceptive and neuropathic pain. New biomarkers related to pain in the late stage need to be further investigated.
Collapse
Affiliation(s)
- Li Li
- Zhejiang Provincial Key Laboratory of Anesthesiology, The Second Affiliated Hospital of Wenzhou Medical University, Yuying Children's Hospital, Wenzhou, China.,Department of Anesthesiology, The Second Affiliated Hospital of Wenzhou Medical University, Yuying Children's Hospital, Wenzhou, China
| | - Zhenxing Li
- Department of Orthopedics, The Second Affiliated Hospital of Wenzhou Medical University, Yuying Children's Hospital, No.109, Xueyuan West Road, Wenzhou, China
| | - Yuyan Li
- Department of Orthopedics, The Second Affiliated Hospital of Wenzhou Medical University, Yuying Children's Hospital, No.109, Xueyuan West Road, Wenzhou, China
| | - Xi Hu
- Department of Orthopedics, The Second Affiliated Hospital of Wenzhou Medical University, Yuying Children's Hospital, No.109, Xueyuan West Road, Wenzhou, China
| | - Yu Zhang
- Department of Orthopedics, The Second Affiliated Hospital of Wenzhou Medical University, Yuying Children's Hospital, No.109, Xueyuan West Road, Wenzhou, China
| | - Pei Fan
- Department of Orthopedics, The Second Affiliated Hospital of Wenzhou Medical University, Yuying Children's Hospital, No.109, Xueyuan West Road, Wenzhou, China. .,Zhejiang Provincial Key Laboratory of Orthopedics, The Second Affiliated Hospital of Wenzhou Medical University, Yuying Children's Hospital, No.109, Xueyuan West Road, Wenzhou, China.
| |
Collapse
|
12
|
Grozdanić M, Vidmar R, Vizovišek M, Fonović M. Degradomics in Biomarker Discovery. Proteomics Clin Appl 2019; 13:e1800138. [PMID: 31291060 DOI: 10.1002/prca.201800138] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Revised: 05/01/2019] [Indexed: 12/13/2022]
Abstract
The upregulation of protease expression and proteolytic activity is implicated in numerous pathological conditions such as neurodegeneration, cancer, cardiovascular and autoimmune diseases, and bone degeneration. During disease progression, various proteases form characteristic patterns of cleaved proteins and peptides, which can affect disease severity and course of progression. It has been shown that qualitative and quantitative monitoring of cleaved protease substrates can provide relevant prognostic, diagnostic, and therapeutic information. As proteolytic fragments and peptides generated in the affected tissue are commonly translocated to blood, urine, and other proximal fluids, their possible application as biomarkers is the subject of ongoing research. The field of degradomics has been established to enable the global identification of proteolytic events on the organism level, utilizing proteomic approaches and sample preparation techniques that facilitate the detection of proteolytic processing of protease substrates in complex biological samples. In this review, some of the latest developments in degradomic methodologies used for the identification and validation of biologically relevant proteolytic events and their application in the search for clinically relevant biomarker candidates are presented. The current state of degradomics in clinics is discussed and the future perspectives of the field are outlined.
Collapse
Affiliation(s)
- Marija Grozdanić
- Department of Biochemistry, Molecular and Structural Biology, Jozef Stefan Institute, SI-1000, Ljubljana, Slovenia.,International Postgraduate School Jožef Stefan, SI-1000, Ljubljana, Slovenia
| | - Robert Vidmar
- Department of Biochemistry, Molecular and Structural Biology, Jozef Stefan Institute, SI-1000, Ljubljana, Slovenia
| | - Matej Vizovišek
- Department of Biochemistry, Molecular and Structural Biology, Jozef Stefan Institute, SI-1000, Ljubljana, Slovenia
| | - Marko Fonović
- Department of Biochemistry, Molecular and Structural Biology, Jozef Stefan Institute, SI-1000, Ljubljana, Slovenia
| |
Collapse
|
13
|
Fang Y, Wang P, Xia L, Bai S, Shen Y, Li Q, Wang Y, Zhu J, Du J, Shen B. Aberrantly hydroxymethylated differentially expressed genes and the associated protein pathways in osteoarthritis. PeerJ 2019; 7:e6425. [PMID: 30828485 PMCID: PMC6394344 DOI: 10.7717/peerj.6425] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 01/10/2019] [Indexed: 12/15/2022] Open
Abstract
Background The elderly population is at risk of osteoarthritis (OA), a common, multifactorial, degenerative joint disease. Environmental, genetic, and epigenetic (such as DNA hydroxymethylation) factors may be involved in the etiology, development, and pathogenesis of OA. Here, comprehensive bioinformatic analyses were used to identify aberrantly hydroxymethylated differentially expressed genes and pathways in osteoarthritis to determine the underlying molecular mechanisms of osteoarthritis and susceptibility-related genes for osteoarthritis inheritance. Methods Gene expression microarray data, mRNA expression profile data, and a whole genome 5hmC dataset were obtained from the Gene Expression Omnibus repository. Differentially expressed genes with abnormal hydroxymethylation were identified by MATCH function. Gene ontology and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses of the genes differentially expressed in OA were performed using Metascape and the KOBAS online tool, respectively. The protein–protein interaction network was built using STRING and visualized in Cytoscape, and the modular analysis of the network was performed using the Molecular Complex Detection app. Results In total, 104 hyperhydroxymethylated highly expressed genes and 14 hypohydroxymethylated genes with low expression were identified. Gene ontology analyses indicated that the biological functions of hyperhydroxymethylated highly expressed genes included skeletal system development, ossification, and bone development; KEGG pathway analysis showed enrichment in protein digestion and absorption, extracellular matrix–receptor interaction, and focal adhesion. The top 10 hub genes in the protein–protein interaction network were COL1A1, COL1A2, COL2A1, COL3A1, COL5A1, COL5A2, COL6A1, COL8A1, COL11A1, and COL24A1. All the aforementioned results are consistent with changes observed in OA. Conclusion After comprehensive bioinformatics analysis, we found aberrantly hydroxymethylated differentially expressed genes and pathways in OA. The top 10 hub genes may be useful hydroxymethylation analysis biomarkers to provide more accurate OA diagnoses and target genes for treatment of OA.
Collapse
Affiliation(s)
- Yang Fang
- School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China
| | - Pingping Wang
- School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China
| | - Lin Xia
- School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China
| | - Suwen Bai
- School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China
| | - Yonggang Shen
- Nursing Faculty, Anhui Health College, Chizhou, Anhui, China
| | - Qing Li
- Central Laboratory of Medical Research Center, Anhui Provincial Hospital, Hefei, Anhui, China
| | - Yang Wang
- School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China
| | - Jinhang Zhu
- School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China
| | - Juan Du
- School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China
| | - Bing Shen
- School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China
| |
Collapse
|