1
|
Harrington MS, Di Leo SD, Hlady CA, Burkhart TA. Musculoskeletal modeling and movement simulation for structural hip disorder research: A scoping review of methods, validation, and applications. Heliyon 2024; 10:e35007. [PMID: 39157349 PMCID: PMC11328100 DOI: 10.1016/j.heliyon.2024.e35007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 07/22/2024] [Indexed: 08/20/2024] Open
Abstract
Musculoskeletal modeling is a powerful tool to quantify biomechanical factors typically not feasible to measure in vivo, such as hip contact forces and deep muscle activations. While technological advancements in musculoskeletal modeling have increased accessibility, selecting the appropriate modeling approach for a specific research question, particularly when investigating pathological populations, has become more challenging. The purposes of this review were to summarize current modeling and simulation methods in structural hip disorder research, as well as evaluate model validation and study reproducibility. MEDLINE and Web of Science were searched to identify literature relating to the use of musculoskeletal models to investigate structural hip disorders (i.e., involving a bony abnormality of the pelvis, femur, or both). Forty-seven articles were included for analysis, which either compared multiple modeling methods or applied a single modeling workflow to answer a research question. Findings from studies comparing methods were summarized, such as the effect of generic versus patient-specific modeling techniques on model-estimated hip contact forces or muscle forces. The review also discussed limitations in validation practices, as only 11 of the included studies conducted a validation and used qualitative approaches only. Given the lack of information related to model validation, additional details regarding the development and validation of generic models were retrieved from references and modeling software documentation. To address the wide variability and under-reporting of data collection, data processing, and modeling methods highlighted in this review, we developed a template that researchers can complete and include as a table within the methodology section of their manuscripts. The use of this table will help increase transparency and reporting of essential details related to reproducibility and methods without being limited by word count restrictions. Overall, this review provides a comprehensive synthesis of modeling approaches that can help researchers make modeling decisions and evaluate existing literature.
Collapse
Affiliation(s)
- Margaret S. Harrington
- Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, ON, Canada
| | - Stefania D.F. Di Leo
- Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, ON, Canada
| | - Courtney A. Hlady
- Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, ON, Canada
- Department of Physical Therapy, University of Toronto, Toronto, ON, Canada
| | - Timothy A. Burkhart
- Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
2
|
Yona T, Kamel N, Cohen-Eick G, Ovadia I, Fischer A. One-dimension statistical parametric mapping in lower limb biomechanical analysis: A systematic scoping review. Gait Posture 2024; 109:133-146. [PMID: 38306782 DOI: 10.1016/j.gaitpost.2024.01.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 12/26/2023] [Accepted: 01/16/2024] [Indexed: 02/04/2024]
Abstract
BACKGROUND Biomechanics significantly impacts sports performance and injury prevention. Traditional methods like discrete point analysis simplify continuous kinetic and kinematic data, while one-dimensional Statistical Parametric Mapping (spm1d) evaluates entire movement curves. Nevertheless, spm1d's application in sports and injury research is limited. As no systematic review exists, we conducted a scoping systematic review, synthesizing the current applications of spm1d across various populations, activities, and injuries. This review concludes by identifying gaps in the literature and suggesting areas for future research. RESEARCH QUESTION What research exists using spm1d in sports biomechanics, focusing on the lower limbs, in what populations, and what are the current research gaps? METHODS We searched PubMed, Embase, Web of Science, and ProQuest databases for the following search string: "(((knee) OR (hip)) OR (ankle)) OR (foot) OR (feet) AND (statistical parametric mapping)". English peer-reviewed studies assessing lower limb kinetics or kinematics in different sports or sports-related injuries were included. Reviews, meta-analyses, conference abstracts, and grey literature were excluded. RESULTS Our search yielded 165 papers published since 2012. Among these, 112 examined healthy individuals (67 %), and 53 focused on injured populations (33 %). Running (n = 45), cutting (n = 25), and jumping/landing (n = 18) were the most common activities. The predominant injuries were anterior cruciate ligament rupture (n = 21), chronic ankle instability (n = 18), and hip-related pain (n = 9). The main research gaps included the unbalanced populations, underrepresentation of common sports and sport-related injuries, gender inequality, a lack of studies in non-laboratory settings, a lack of studies on varied sports gear, and a lack of reporting standardization. SIGNIFICANCE This review spotlights crucial gaps in spm1d research within sports biomechanics. Key issues include a lack of studies beyond laboratory settings, underrepresentation of various sports and injuries, and gender disparities in research populations. Addressing these gaps can significantly enhance the application of spm1d in sports performance, injury analysis, and rehabilitation.
Collapse
Affiliation(s)
- Tomer Yona
- Department of Biomedical Engineering, Technion, Israel Institute of Technology, Haifa, Israel
| | - Netanel Kamel
- The Ruth and Bruce Rappaport Faculty of Medicine, Technion, Israel Institute of Technology, Haifa, Israel
| | - Galya Cohen-Eick
- Department of Biomedical Engineering, Technion, Israel Institute of Technology, Haifa, Israel
| | - Inbar Ovadia
- Department of Mechanical Engineering, Technion, Israel Institute of Technology, Haifa, Israel
| | - Arielle Fischer
- Department of Biomedical Engineering, Technion, Israel Institute of Technology, Haifa, Israel.
| |
Collapse
|
3
|
Dostan A, Dobson CA, Vanicek N. Relationship between stair ascent gait speed, bone density and gait characteristics of postmenopausal women. PLoS One 2023; 18:e0283333. [PMID: 36947573 PMCID: PMC10032478 DOI: 10.1371/journal.pone.0283333] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 03/07/2023] [Indexed: 03/23/2023] Open
Abstract
Stair ascent is a biomechanically challenging task for older women. Bone health may affect gait stability during stair walking. This study investigated the gait biomechanics associated with stair ascent in a group of postmenopausal women in relation to walking speed and bone health, quantified by T-score. Forty-five healthy women (mean (SD) age: 67 (14) years), with bone density ranging from healthy to osteoporotic (T-score range +1 to -3), ascended a custom-made five-step staircase with two embedded force plates, surrounded by 10 motion capture cameras, at their self-selected speed. Multivariate regression analyses investigated the explained variance in gait parameters in relation to stair ascent speed and T-score of each individual. Stair ascent speed was 0.65 (0.1) m·s-1 and explained the variance (R2 = 9 to 47%, P ≤ 0.05) in most gait parameters. T-score explained additional variance in stride width (R2 = 20%, P = 0.014), pelvic hike (R2 = 19%, P = 0.011), pelvic drop (R2 = 21%, P = 0.007) and hip adduction (R2 = 7%, P = 0.054). Increased stride width, and thereby a wider base of support, accompanied by increased frontal plane hip kinematics, could be important strategies to improve dynamic stability during stair ascent among this group of women. These findings suggest that targeted exercises of the hip abductors and adductors, including core trunk musculature, could improve dynamic stability during more challenging locomotor tasks. Balance exercises that challenge base of support could also benefit older women with low bone mineral density who may be at risk of falls.
Collapse
Affiliation(s)
- Ali Dostan
- Biomedical Engineering Research Group, School of Engineering, University of Hull, Hull, United Kingdom
| | - Catherine A Dobson
- Biomedical Engineering Research Group, School of Engineering, University of Hull, Hull, United Kingdom
| | - Natalie Vanicek
- School of Sport, Exercise and Rehabilitation Sciences, University of Hull, Hull, United Kingdom
| |
Collapse
|
4
|
Grant TM, Diamond LE, Pizzolato C, Savage TN, Bennell K, Dickenson EJ, Eyles J, Foster NE, Hall M, Hunter DJ, Lloyd DG, Molnar R, Murphy NJ, O'Donnell J, Singh P, Spiers L, Tran P, Saxby DJ. Comparison of Walking Biomechanics After Physical Therapist-Led Care or Hip Arthroscopy for Femoroacetabular Impingement Syndrome: A Secondary Analysis From a Randomized Controlled Trial. Am J Sports Med 2022; 50:3198-3209. [PMID: 36177759 DOI: 10.1177/03635465221120388] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Femoroacetabular impingement syndrome is characterized by chondrolabral damage and hip pain. The specific biomechanics used by people with femoroacetabular impingement syndrome during daily activities may exacerbate their symptoms. Femoroacetabular impingement syndrome can be treated nonoperatively or surgically; however, differential treatment effects on walking biomechanics have not been examined. PURPOSE To compare the 12-month effects of physical therapist-led care or arthroscopy on trunk, pelvis, and hip kinematics as well as hip moments during walking. STUDY DESIGN Secondary analysis of multi-centre, pragmatic, two-arm superiority randomized controlled trial subsample; Level of evidence, 1. METHODS A subsample of 43 participants from the Australian Full randomised controlled trial of Arthroscopic Surgery for Hip Impingement versus best cONventional (FASHIoN trial) underwent gait analysis and completed the International Hip Outcome Tool (iHOT-33) at both baseline and 12 months after random allocation to physical therapist-led care (personalized hip therapy; n = 22; mean age 35; 41% female) or arthroscopy (n = 21; mean age 36; 48% female). Changes in trunk, pelvis, and hip biomechanics were compared between treatment groups across the gait cycle using statistical parametric mapping. Associations between changes in iHOT-33 and changes in hip kinematics across 3 planes of motion were examined. RESULTS As compared with the arthroscopy group, the personalized hip therapy group increased its peak hip adduction moments (mean difference = 0.35 N·m/body weight·height [%] [95% CI, 0.05-0.65]; effect size = 0.72; P = .02). Hip adduction moments in the arthroscopy group were unchanged in response to treatment. No other between-group differences were detected. Improvements in iHOT-33 were not associated with changes in hip kinematics. CONCLUSION Peak hip adduction moments were increased in the personalized hip therapy group and unchanged in the arthroscopy group. No biomechanical changes favoring arthroscopy were detected, suggesting that personalized hip therapy elicits greater changes in hip moments during walking at 12-month follow-up. Twelve-month changes in hip-related quality of life were not associated with changes in hip kinematics.
Collapse
Affiliation(s)
| | | | - Claudio Pizzolato
- Griffith Centre of Biomedical and Rehabilitation Engineering, Griffith University, Gold Coast, Australia
| | - Trevor N Savage
- Griffith Centre of Biomedical and Rehabilitation Engineering, Griffith University, Gold Coast, Australia; and Sydney Musculoskeletal Health, Kolling Institute of Medical Research, The University of Sydney, Sydney, Australia
| | - Kim Bennell
- Centre for Health, Exercise and Sports Medicine, Department of Physiotherapy, University of Melbourne, Melbourne, Australia
| | - Edward J Dickenson
- University of Warwick, Coventry, UK, and University Hospitals of Coventry and Warwickshire NHS Trust, Coventry, UK
| | - Jillian Eyles
- Sydney Musculoskeletal Health, Kolling Institute of Medical Research, The University of Sydney, Sydney, Australia; and Department of Rheumatology, Royal North Shore Hospital, St Leonards, Australia
| | - Nadine E Foster
- Primary Care Centre Versus Arthritis, School of Medicine, Keele University, Keele, UK; and STARS Education and Research Alliance, Surgical, Treatment and Rehabilitation Service, The University of Queensland and Metro North Health, Queensland, Australia
| | - Michelle Hall
- Centre for Health, Exercise and Sports Medicine, Department of Physiotherapy, University of Melbourne, Melbourne, Australia
| | - David J Hunter
- Sydney Musculoskeletal Health, Kolling Institute of Medical Research, The University of Sydney, Sydney, Australia; and Department of Rheumatology, Royal North Shore Hospital, St Leonards, Australia
| | - David G Lloyd
- Griffith Centre of Biomedical and Rehabilitation Engineering, Griffith University, Gold Coast, Australia
| | - Robert Molnar
- Department of Orthopaedic Surgery, St George Hospital, Kogarah, Australia; and Sydney Orthopaedic and Reconstructive Surgery, Sydney, Australia
| | - Nicholas J Murphy
- Sydney Musculoskeletal Health, Kolling Institute of Medical Research, The University of Sydney, Sydney, Australia; and Department of Orthopaedic Surgery, John Hunter Hospital, Newcastle, Australia
| | - John O'Donnell
- Hip Arthroscopy Australia, Richmond, Australia; and School of Health Sciences, Swinburne University of Technology, Melbourne, Australia
| | - Parminder Singh
- Hip Arthroscopy Australia, Richmond, Australia; and Maroondah Hospital, Eastern Health, Melbourne, Australia
| | - Libby Spiers
- Centre for Health, Exercise and Sports Medicine, Department of Physiotherapy, University of Melbourne, Melbourne, Australia
| | - Phong Tran
- Department of Orthopaedic Surgery, Western Health, Melbourne, Australia; and Australian Institute for Musculoskeletal Science, University of Melbourne and Western Health, St Albans, Australia
| | - David J Saxby
- Griffith Centre of Biomedical and Rehabilitation Engineering, Griffith University, Gold Coast, Australia.,Investigation performed at Griffith University, Southport, Queensland, Australia
| |
Collapse
|
5
|
Catelli DS, Kowalski E, Beaulé PE, Lamontagne M. Muscle and Hip Contact Forces in Asymptomatic Men With Cam Morphology During Deep Squat. Front Sports Act Living 2021; 3:716626. [PMID: 34568821 PMCID: PMC8458768 DOI: 10.3389/fspor.2021.716626] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 08/06/2021] [Indexed: 01/01/2023] Open
Abstract
Cam morphology is defined as an aspherical femoral head-neck junction that causes abnormal contact of the acetabular rim with the anterior hip. Imaging confirmation of the cam morphology, associated with clinical signs and pain in the hip or groin, is characterized as femoroacetabular impingement (FAI) syndrome. Although some individuals with cam morphology do not experience any symptoms, sparse studies have been done on these individuals. Understanding the way asymptomatic individuals generate muscle forces may help us to better explain the progression of the degenerative FAI process and discover better ways in preventing the onset or worsening of symptoms. The purpose of this study was to compare the muscle and hip contact forces of asymptomatic cam morphology (ACM) and FAI syndrome men compared to cam-free healthy controls during a deep squat task. This prospective study compared 39 participants, with 13 in each group (ACM, FAI, and control). Five deep squatting trials were performed at a self-selected pace while joint trajectories and ground reaction forces were recorded. A generic model was scaled for each participant, and inverse kinematics and inverse dynamics calculated joint angles and moments, respectively. Muscle and hip contact forces were estimated using static optimization. All variables were time normalized in percentage by the total squat cycle and both muscle forces and hip contact forces were normalized by body weight. Statistical non-parametric mapping analyses were used to compare the groups. The ACM group showed increased pelvic tilt and hip flexion angles compared to the FAI group during the descent and ascent phases of the squat cycle. Muscle forces were greater in the ACM and control groups, compared to the FAI group for the psoas and semimembranosus muscles. Biceps femoris muscle force was lower in the ACM group compared to the FAI group. The FAI group had lower posterior hip contact force compared to both the control and ACM groups. Muscle contraction strategy was different in the FAI group compared to the ACM and control groups, which caused different muscle force applications during hip extension. These results rebut the concept that mobility restrictions are solely caused by the presence of the cam morphology and propose evidence that symptoms and muscle contraction strategy can be the origin of the mobility restriction in male patients with FAI.
Collapse
Affiliation(s)
- Danilo S Catelli
- Human Movement Biomechanics Laboratory, School of Human Kinetics, Faculty of Health Sciences, University of Ottawa, Ottawa, ON, Canada
| | - Erik Kowalski
- Human Movement Biomechanics Laboratory, School of Human Kinetics, Faculty of Health Sciences, University of Ottawa, Ottawa, ON, Canada
| | - Paul E Beaulé
- Division of Orthopaedic Surgery, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Mario Lamontagne
- Human Movement Biomechanics Laboratory, School of Human Kinetics, Faculty of Health Sciences, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|