1
|
Dmytriw AA, Hadjinicolaou A, Ntolkeras G, Tamilia E, Pesce M, Berto LF, Grant PE, Pang E, Ahtam B. Magnetoencephalography for the pediatric population, indications, acquisition and interpretation for the clinician. Neuroradiol J 2025; 38:7-20. [PMID: 38864180 PMCID: PMC11571317 DOI: 10.1177/19714009241260801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2024] Open
Abstract
Magnetoencephalography (MEG) is an imaging technique that enables the assessment of cortical activity via direct measures of neurophysiology. It is a non-invasive and passive technique that is completely painless. MEG has gained increasing prominence in the field of pediatric neuroimaging. This dedicated review article for the pediatric population summarizes the fundamental technical and clinical aspects of MEG for the clinician. We discuss methods tailored for children to improve data quality, including child-friendly MEG facility environments and strategies to mitigate motion artifacts. We provide an in-depth overview on accurate localization of neural sources and different analysis methods, as well as data interpretation. The contemporary platforms and approaches of two quaternary pediatric referral centers are illustrated, shedding light on practical implementations in clinical settings. Finally, we describe the expanding clinical applications of MEG, including its pivotal role in presurgical evaluation of epilepsy patients, presurgical mapping of eloquent cortices (somatosensory and motor cortices, visual and auditory cortices, lateralization of language), its emerging relevance in autism spectrum disorder research and potential future clinical applications, and its utility in assessing mild traumatic brain injury. In conclusion, this review serves as a comprehensive resource of clinicians as well as researchers, offering insights into the evolving landscape of pediatric MEG. It discusses the importance of technical advancements, data acquisition strategies, and expanding clinical applications in harnessing the full potential of MEG to study neurological conditions in the pediatric population.
Collapse
Affiliation(s)
- Adam A. Dmytriw
- Department of Radiology, Boston Children’s Hospital, Boston, MA, USA
- Division of Neuroradiology, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | - Aristides Hadjinicolaou
- Division of Neurology, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
- Department of Neurology, Division of Epilepsy and Clinical Neurophysiology, Boston Children’s Hospital, Boston, MA, USA
| | - Georgios Ntolkeras
- Department of Pediatrics, Division of Newborn Medicine, Fetal-Neonatal Neuroimaging & Developmental Science Center, Boston Children’s Hospital, Boston, MA, USA
| | - Eleonora Tamilia
- Department of Pediatrics, Division of Newborn Medicine, Fetal-Neonatal Neuroimaging & Developmental Science Center, Boston Children’s Hospital, Boston, MA, USA
| | - Matthew Pesce
- Department of Pediatrics, Division of Newborn Medicine, Fetal-Neonatal Neuroimaging & Developmental Science Center, Boston Children’s Hospital, Boston, MA, USA
| | - Laura F. Berto
- Department of Pediatrics, Division of Newborn Medicine, Fetal-Neonatal Neuroimaging & Developmental Science Center, Boston Children’s Hospital, Boston, MA, USA
| | - P. Ellen Grant
- Department of Radiology, Boston Children’s Hospital, Boston, MA, USA
- Department of Pediatrics, Division of Newborn Medicine, Fetal-Neonatal Neuroimaging & Developmental Science Center, Boston Children’s Hospital, Boston, MA, USA
| | - Elizabeth Pang
- Division of Neurology, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | - Banu Ahtam
- Department of Pediatrics, Division of Newborn Medicine, Fetal-Neonatal Neuroimaging & Developmental Science Center, Boston Children’s Hospital, Boston, MA, USA
| |
Collapse
|
2
|
Nakamura M, Taulu S, Tachimori H, Tomo Y, Kawashima T, Miura Y, Itatani M, Tobimatsu S. Single-trial neuromagnetic analysis reveals somatosensory dysfunction in chronic Minamata disease. Neuroimage Clin 2023; 38:103422. [PMID: 37163912 PMCID: PMC10189551 DOI: 10.1016/j.nicl.2023.103422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 04/16/2023] [Accepted: 04/24/2023] [Indexed: 05/12/2023]
Abstract
Methylmercury pollution is a global problem, and Minamata disease (MD) is a stark reminder that exposure to methylmercury can cause irreversible neurological damage. A "glove and stocking type" sensory disturbance due to injured primary sensory cortex (SI) (central somatosensory disturbance) is the most common neurologic sign in MD. As this sign is also prevalent in those with polyneuropathy, we aimed to develop an objective assessment for detecting central somatosensory disturbances in cases of chronic MD. We selected 289 healthy volunteers and 42 patients with MD. We recorded the sensory nerve action potentials (SNAPs) and somatosensory evoked magnetic fields (SEFs) to median nerve stimulation with magnetoencephalography. Single-trial epochs were classified into three categories (N20m, non-response, and P20m epochs) based on the cross-correlation between averaged sensor SEFs and individual epochs. We assessed SI responses (the appearance rate of P20m [P20m rate] and non-response epochs [non-response rate]) and early somatosensory cortical processing (N20m amplitude, reproducibility of N20m in single-trial responses [cross-correlation value], and induced gamma-band oscillations of the SI [gamma response] of single epochs excluding non-response epochs). Receiver operating characteristic curve analyses were used to examine the diagnostic accuracy of each parameter. We found that SNAPs exerted a marginal effect on the N20m. The N20m amplitude, cross-correlation value, and gamma response were significantly reduced in the MD group on either side (p < 0.0001), suggestive of altered early somatosensory cortical processing. Interestingly, the P20m rate and non-response rate were significantly increased in the MD group on either side (p < 0.0001), thereby suggesting impaired SI responses. Notably, P20m and absent N20m peaks were observed in 6 and 11 patients with MD, respectively, which may be attributed to increased numbers of P20m epochs. The cross-correlation value exhibited the highest correlation with the P20m rate or non-response rate. Thus, reduced reproducibility of N20m may play an important role in chronic MD. The cross-correlation value exhibited the highest correlation with the gamma response for both SI parameters in early somatosensory cortical processing. The area under the curve was > 0.77 (range: 0.77-0.79) for all parameters. Their confidence intervals overlapped with each other; thus, each SEF parameter likely had an approximately equivalent discrimination ability. In conclusion, chronic MD is characterized by impaired SI responses and alterations in early somatosensory cortical processing. Thus, single-trial neuromagnetic analysis of somatosensory function may be useful for detecting central somatosensory disturbance and elucidating the relevant pathophysiological mechanisms even in the context of chronic MD.
Collapse
Affiliation(s)
- Masaaki Nakamura
- Department of Clinical Medicine, National Institute for Minamata Disease, Kumamoto, Japan.
| | - Samu Taulu
- Department of Physics, University of Washington, Seattle, WA, USA; Institute for Learning and Brain Sciences, University of Washington, Seattle, WA, USA.
| | - Hisateru Tachimori
- Department of Clinical Data Science, Clinical Research & Education Promotion Division, National Center of Neurology and Psychiatry, Tokyo, Japan; Endowed Course for Health System Innovation, Keio University School of Medicine, Tokyo, Japan.
| | - Yui Tomo
- Department of Clinical Data Science, Clinical Research & Education Promotion Division, National Center of Neurology and Psychiatry, Tokyo, Japan.
| | - Takahiro Kawashima
- Department of Clinical Data Science, Clinical Research & Education Promotion Division, National Center of Neurology and Psychiatry, Tokyo, Japan.
| | - Yoko Miura
- Department of Clinical Medicine, National Institute for Minamata Disease, Kumamoto, Japan.
| | - Mina Itatani
- Department of Clinical Medicine, National Institute for Minamata Disease, Kumamoto, Japan.
| | - Shozo Tobimatsu
- Department of Orthoptics, Faculty of Medical Science, Fukuoka International University of Health and Welfare, Fukuoka, Japan.
| |
Collapse
|
3
|
Ahmed Mahmutoglu M, Rupp A, Naumgärtner U. Simultaneous EEG/MEG yields complementary information of nociceptive evoked responses. Clin Neurophysiol 2022; 143:21-35. [DOI: 10.1016/j.clinph.2022.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 07/31/2022] [Accepted: 08/04/2022] [Indexed: 11/03/2022]
|
4
|
Mahmutoglu MA, Baumgärtner U, Rupp A. Posterior insular activity contributes to the late laser-evoked potential component in EEG recordings. Clin Neurophysiol 2021; 132:770-781. [PMID: 33571885 DOI: 10.1016/j.clinph.2020.11.042] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 11/13/2020] [Accepted: 11/24/2020] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Nociceptive activity in some brain areas has concordantly been reported in EEG source models, such as the anterior/mid-cingulate cortex and the parasylvian area. Whereas the posterior insula has been constantly reported to be active in intracortical and fMRI studies, non-invasive EEG and MEG recordings mostly failed to detect activity in this region. This study aimed to determine an appropriate inverse modeling approach in EEG recordings to model posterior insular activity, assuming the late LEP (laser evoked potential) time window to yield a better separation from other ongoing cortical activity. METHODS In 12 healthy volunteers, nociceptive stimuli of three intensities were applied. LEP were recorded using 32-channel EEG recordings. Source analysis was performed in specific time windows defined in the grand-average dataset. Two distinct dipole-pairs located close to the operculo-insular area were compared. RESULTS Our results show that posterior insular activity yields a substantial contribution to the latest part (positive component) of the LEP. CONCLUSIONS Even though the initial insular activity onset is in the early LEP time window,modelingthe insular activity in the late LEP time window might result in better separation from other ongoing cortical activity. SIGNIFICANCE Modeling the late LEP activity might enable to distinguish posterior insular activity.
Collapse
Affiliation(s)
- Mustafa Ahmed Mahmutoglu
- Section of Biomagnetism, Department of Neurology, Heidelberg University Hospital, Heidelberg, Germany; Department of Neuroradiology, Heidelberg University Hospital, Heidelberg, Germany.
| | - Ulf Baumgärtner
- Chair of Neurophysiology, Centre for Biomedicine and Medical Technology Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany; Department of Physiology/Physics, University of Applied Sciences and Medical University, Medical School Hamburg, Hamburg, Germany
| | - André Rupp
- Section of Biomagnetism, Department of Neurology, Heidelberg University Hospital, Heidelberg, Germany
| |
Collapse
|
5
|
Kreidenhuber R, De Tiège X, Rampp S. Presurgical Functional Cortical Mapping Using Electromagnetic Source Imaging. Front Neurol 2019; 10:628. [PMID: 31249552 PMCID: PMC6584755 DOI: 10.3389/fneur.2019.00628] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 05/28/2019] [Indexed: 02/03/2023] Open
Abstract
Preoperative localization of functionally eloquent cortex (functional cortical mapping) is common clinical practice in order to avoid or reduce postoperative morbidity. This review aims at providing a general overview of magnetoencephalography (MEG) and high-density electroencephalography (hdEEG) based methods and their clinical role as compared to common alternatives for functional cortical mapping of (1) verbal language function, (2) sensorimotor cortex, (3) memory, (4) visual, and (5) auditory cortex. We highlight strengths, weaknesses and limitations of these functional cortical mapping modalities based on findings in the recent literature. We also compare their performance relative to other non-invasive functional cortical mapping methods, such as functional Magnetic Resonance Imaging (fMRI), Transcranial Magnetic Stimulation (TMS), and to invasive methods like the intracarotid Amobarbital Test (WADA-Test) or intracranial investigations.
Collapse
Affiliation(s)
- Rudolf Kreidenhuber
- Department of Neurology, Christian-Doppler Medical Center, Paracelsus Medical University, Salzburg, Austria.,Centre for Cognitive Neuroscience, University of Salzburg, Salzburg, Austria
| | - Xavier De Tiège
- Laboratoire de Cartographie Fonctionelle du Cerveau, ULB Neuroscience Institute, Université Libre de Bruxelles, Brussels, Belgium.,Department of Functional Neuroimaging, Service of Nuclear Medicine, CUB Hôpital Erasme, Université Libre de Bruxelles, Brussels, Belgium
| | - Stefan Rampp
- Department of Neurosurgery, University Hospital Erlangen, Erlangen, Germany.,Department of Neurosurgery, University Hospital Halle, Halle, Germany
| |
Collapse
|
6
|
Presurgical electromagnetic functional brain mapping in refractory focal epilepsy. ZEITSCHRIFT FUR EPILEPTOLOGIE 2018. [DOI: 10.1007/s10309-018-0189-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
7
|
Chowdhury RA, Pellegrino G, Aydin Ü, Lina JM, Dubeau F, Kobayashi E, Grova C. Reproducibility of EEG-MEG fusion source analysis of interictal spikes: Relevance in presurgical evaluation of epilepsy. Hum Brain Mapp 2017; 39:880-901. [PMID: 29164737 DOI: 10.1002/hbm.23889] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 11/03/2017] [Accepted: 11/07/2017] [Indexed: 11/06/2022] Open
Abstract
Fusion of electroencephalography (EEG) and magnetoencephalography (MEG) data using maximum entropy on the mean method (MEM-fusion) takes advantage of the complementarities between EEG and MEG to improve localization accuracy. Simulation studies demonstrated MEM-fusion to be robust especially in noisy conditions such as single spike source localizations (SSSL). Our objective was to assess the reliability of SSSL using MEM-fusion on clinical data. We proposed to cluster SSSL results to find the most reliable and consistent source map from the reconstructed sources, the so-called consensus map. Thirty-four types of interictal epileptic discharges (IEDs) were analyzed from 26 patients with well-defined epileptogenic focus. SSSLs were performed on EEG, MEG, and fusion data and consensus maps were estimated using hierarchical clustering. Qualitative (spike-to-spike reproducibility rate, SSR) and quantitative (localization error and spatial dispersion) assessments were performed using the epileptogenic focus as clinical reference. Fusion SSSL provided significantly better results than EEG or MEG alone. Fusion found at least one cluster concordant with the clinical reference in all cases. This concordant cluster was always the one involving the highest number of spikes. Fusion yielded highest reproducibility (SSR EEG = 55%, MEG = 71%, fusion = 90%) and lowest localization error. Also, using only few channels from either modality (21EEG + 272MEG or 54EEG + 25MEG) was sufficient to reach accurate fusion. MEM-fusion with consensus map approach provides an objective way of finding the most reliable and concordant generators of IEDs. We, therefore, suggest the pertinence of SSSL using MEM-fusion as a valuable clinical tool for presurgical evaluation of epilepsy.
Collapse
Affiliation(s)
- Rasheda Arman Chowdhury
- Multimodal Functional Imaging Lab, Biomedical Engineering Department, McGill University, Montreal, Québec, Canada
| | | | - Ümit Aydin
- Multimodal Functional Imaging Lab, Department of Physics and PERFORM Centre, Concordia University, Montreal, Québec, Canada
| | - Jean-Marc Lina
- Ecole de Technologie Supérieure, Montréal, Québec, Canada.,Centre de Recherches Mathématiques, Université de Montréal, Montréal, Québec, Canada
| | - François Dubeau
- Neurology and Neurosurgery Department, Montreal Neurological Institute, McGill University, Montreal, Québec, Canada
| | - Eliane Kobayashi
- Neurology and Neurosurgery Department, Montreal Neurological Institute, McGill University, Montreal, Québec, Canada
| | - Christophe Grova
- Multimodal Functional Imaging Lab, Biomedical Engineering Department, McGill University, Montreal, Québec, Canada.,Centre de Recherches Mathématiques, Université de Montréal, Montréal, Québec, Canada.,Neurology and Neurosurgery Department, Montreal Neurological Institute, McGill University, Montreal, Québec, Canada.,Multimodal Functional Imaging Lab, Department of Physics and PERFORM Centre, Concordia University, Montreal, Québec, Canada
| |
Collapse
|
8
|
Puce A, Hämäläinen MS. A Review of Issues Related to Data Acquisition and Analysis in EEG/MEG Studies. Brain Sci 2017; 7:E58. [PMID: 28561761 PMCID: PMC5483631 DOI: 10.3390/brainsci7060058] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 05/23/2017] [Accepted: 05/25/2017] [Indexed: 11/16/2022] Open
Abstract
Electroencephalography (EEG) and magnetoencephalography (MEG) are non-invasive electrophysiological methods, which record electric potentials and magnetic fields due to electric currents in synchronously-active neurons. With MEG being more sensitive to neural activity from tangential currents and EEG being able to detect both radial and tangential sources, the two methods are complementary. Over the years, neurophysiological studies have changed considerably: high-density recordings are becoming de rigueur; there is interest in both spontaneous and evoked activity; and sophisticated artifact detection and removal methods are available. Improved head models for source estimation have also increased the precision of the current estimates, particularly for EEG and combined EEG/MEG. Because of their complementarity, more investigators are beginning to perform simultaneous EEG/MEG studies to gain more complete information about neural activity. Given the increase in methodological complexity in EEG/MEG, it is important to gather data that are of high quality and that are as artifact free as possible. Here, we discuss some issues in data acquisition and analysis of EEG and MEG data. Practical considerations for different types of EEG and MEG studies are also discussed.
Collapse
Affiliation(s)
- Aina Puce
- Psychological & Brain Sciences, Indiana University, 1101 East 10th St, Bloomington, IN 47405, USA.
| | - Matti S Hämäläinen
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA.
| |
Collapse
|
9
|
Localized N20 Component of Somatosensory Evoked Magnetic Fields in Frontoparietal Brain Tumor Patients Using Noise-Normalized Approaches. Clin Neuroradiol 2017; 28:267-281. [PMID: 28116447 DOI: 10.1007/s00062-017-0557-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2016] [Accepted: 01/03/2017] [Indexed: 10/20/2022]
Abstract
PURPOSE To localize sensorimotor cortical activation in 10 patients with frontoparietal tumors using quantitative magnetoencephalography (MEG) with noise-normalized approaches. MATERIAL AND METHODS Somatosensory evoked magnetic fields (SEFs) were elicited in 10 patients with somatosensory tumors and in 10 control participants using electrical stimulation of the median nerve via the right and left wrists. We localized the N20m component of the SEFs using dynamic statistical parametric mapping (dSPM) and standardized low-resolution brain electromagnetic tomography (sLORETA) combined with 3D magnetic resonance imaging (MRI). The obtained coordinates were compared between groups. Finally, we statistically evaluated the N20m parameters across hemispheres using non-parametric statistical tests. RESULTS The N20m sources were accurately localized to Brodmann area 3b in all members of the control group and in seven of the patients; however, the sources were shifted in three patients relative to locations outside the primary somatosensory cortex (SI). Compared with the affected (tumor) hemispheres in the patient group, N20m amplitudes and the strengths of the current sources were significantly lower in the unaffected hemispheres and in both hemispheres of the control group. These results were consistent for both dSPM and sLORETA approaches. CONCLUSION Tumors in the sensorimotor cortex lead to cortical functional reorganization and an increase in N20m amplitude and current-source strengths. Noise-normalized approaches for MEG analysis that are integrated with MRI show accurate and reliable localization of sensorimotor function.
Collapse
|
10
|
Uppal N, Foxe JJ, Butler JS, Acluche F, Molholm S. The neural dynamics of somatosensory processing and adaptation across childhood: a high-density electrical mapping study. J Neurophysiol 2016; 115:1605-19. [PMID: 26763781 DOI: 10.1152/jn.01059.2015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 01/11/2016] [Indexed: 11/22/2022] Open
Abstract
Young children are often hyperreactive to somatosensory inputs hardly noticed by adults, as exemplified by irritation to seams or labels in clothing. The neurodevelopmental mechanisms underlying changes in sensory reactivity are not well understood. Based on the idea that neurodevelopmental changes in somatosensory processing and/or changes in sensory adaptation might underlie developmental differences in somatosensory reactivity, high-density electroencephalography was used to examine how the nervous system responds and adapts to repeated vibrotactile stimulation over childhood. Participants aged 6-18 yr old were presented with 50-ms vibrotactile stimuli to the right wrist over the median nerve at 5 blocked interstimulus intervals (ranging from ∼7 to ∼1 stimulus per second). Somatosensory evoked potentials (SEPs) revealed three major phases of activation within the first 200 ms, with scalp topographies suggestive of neural generators in contralateral somatosensory cortex. Although overall SEPs were highly similar for younger, middle, and older age groups (6.1-9.8, 10.0-12.9, and 13.0-17.8 yr old), there were significant age-related amplitude differences in initial and later phases of the SEP. In contrast, robust adaptation effects for fast vs. slow presentation rates were observed that did not differ as a function of age. A greater amplitude response in the later portion of the SEP was observed for the youngest group and may be related to developmental changes in responsivity to somatosensory stimuli. These data suggest the protracted development of the somatosensory system over childhood, whereas adaptation, as assayed in this study, is largely in place by ∼7 yr of age.
Collapse
Affiliation(s)
- Neha Uppal
- The Sheryl and Daniel R. Tishman Cognitive Neurophysiology Laboratory, Children's Evaluation and Rehabilitation Center, Department of Pediatrics, Albert Einstein College of Medicine, Bronx, New York; Leadership Education in Neurodevelopmental Disabilities Program, Albert Einstein College of Medicine, Bronx, New York
| | - John J Foxe
- The Sheryl and Daniel R. Tishman Cognitive Neurophysiology Laboratory, Children's Evaluation and Rehabilitation Center, Department of Pediatrics, Albert Einstein College of Medicine, Bronx, New York; Trinity College Institute of Neuroscience, Trinity College, Dublin, Ireland; The Dominick P. Purpura Department of Neuroscience, Rose F. Kennedy Intellectual and Developmental Disabilities Research Center, Albert Einstein College of Medicine, Bronx, New York; The Ernest J. Del Monte Neuromedicine Institute, Department of Neuroscience, University of Rochester Medical Center, Rochester, New York; and
| | - John S Butler
- The Sheryl and Daniel R. Tishman Cognitive Neurophysiology Laboratory, Children's Evaluation and Rehabilitation Center, Department of Pediatrics, Albert Einstein College of Medicine, Bronx, New York; Trinity College Institute of Neuroscience, Trinity College, Dublin, Ireland; Trinity Centre for Bioengineering, Trinity College, Dublin, Ireland
| | - Frantzy Acluche
- The Sheryl and Daniel R. Tishman Cognitive Neurophysiology Laboratory, Children's Evaluation and Rehabilitation Center, Department of Pediatrics, Albert Einstein College of Medicine, Bronx, New York
| | - Sophie Molholm
- The Sheryl and Daniel R. Tishman Cognitive Neurophysiology Laboratory, Children's Evaluation and Rehabilitation Center, Department of Pediatrics, Albert Einstein College of Medicine, Bronx, New York; The Dominick P. Purpura Department of Neuroscience, Rose F. Kennedy Intellectual and Developmental Disabilities Research Center, Albert Einstein College of Medicine, Bronx, New York;
| |
Collapse
|
11
|
Anninos P, Adamopoulos A, Kotini A. MEG as a Medical Diagnostic Tool in the Greek Population. ACTA MEDICA (HRADEC KRÁLOVÉ) 2015; 58:71-8. [DOI: 10.14712/18059694.2015.100] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Magnetoencephalography (MEG) is the recording of the magnetic field produced by the flowing of ions in the brain. This article reports our experience in the application of MEG in patients and healthy volunteers in the Greek population. We provide a brief description of our research work. The MEG data were recorded in a magnetically shielded room with a whole-head 122 channel or an one-channel biomagnetometer. Our results lead us to believe that the MEG is an important research field which is evolving quickly with a number of interesting findings with respect to normal and abnormal functions of the human brain. It could provide clinical practice with an easy to perform non invasive method, which could be adjunct to conventional methods for the evaluation of brain disorders.
Collapse
|
12
|
Liu W, An D, Xiao J, Li J, Hao N, Zhou D. Malformations of cortical development and epilepsy: A cohort of 150 patients in western China. Seizure 2015; 32:92-9. [PMID: 26552571 DOI: 10.1016/j.seizure.2015.09.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 09/14/2015] [Accepted: 09/15/2015] [Indexed: 02/05/2023] Open
Abstract
PURPOSE Malformations of cortical development (MCDs) are abnormalities of the cerebral cortex that arise from abnormal formation of the cortical plate, and have become increasingly identified as an important etiology for refractory epilepsy. Little is known about the spectrum, distribution and clinical features of MCDs, especially in resource-limited regions. This study investigates the distribution of MCDs and compares the clinical features and long-term prognosis between the two forms of MCDs: Simple and Multiple. METHOD One hundred and fifty epilepsy patients (138 adults, 12 pediatric patients) with radiologically diagnosed MCDs were identified at a tertiary epilepsy center in western China. Patients were divided into three subtypes according to the Barkovich classification. They were further divided into either Simple or Multiple MCD forms based on whether they had a single type of MCDs or other co-existing developmental brain abnormalities. RESULTS The most common type of MCD is focal cortical dysplasia. We found perinatal insults more common in group III patients. Multiple MCD was identified in 36 of 150 patients, and was associated with higher rates of delayed milestones (p=0.005), cognitive impairment (p=0.023) and neurological deficits (p=0.002) compared to Simple MCD. Extra-temporal epilepsy was more commonly seen among individuals with Multiple MCD (p=0.017). Participants with Multiple MCD were younger at time of seizure onset (p=0.003) and at assessment (p=0.002), had a lower seizure-free rate (p=0.033) and had worse outcomes overall. Patients with heterotopias were more commonly associated with other abnormalities. CONCLUSION MCDs are a critical cause of epilepsy and pose a big challenge for resource-limited countries. Imaging techniques are crucial in diagnosing and classifying cortical deformities. Multiple malformations lead to more severe clinical features and worse prognosis. Identifying and classifying MCDs can help physicians to better estimate patient prognosis and seek the best, individualized therapeutic options.
Collapse
Affiliation(s)
- Wenyu Liu
- Departments of Neurology, West China Hospital, Sichuan University, No. 37 Guo Xue Alley, Chengdu 610041, China.
| | - Dongmei An
- Departments of Neurology, West China Hospital, Sichuan University, No. 37 Guo Xue Alley, Chengdu 610041, China.
| | - Jiahe Xiao
- Departments of Radiology, West China Hospital, Sichuan University, No. 37 Guo Xue Alley, Chengdu 610041, China.
| | - Jinmei Li
- Departments of Neurology, West China Hospital, Sichuan University, No. 37 Guo Xue Alley, Chengdu 610041, China.
| | - Nanya Hao
- Departments of Neurology, West China Hospital, Sichuan University, No. 37 Guo Xue Alley, Chengdu 610041, China.
| | - Dong Zhou
- Departments of Neurology, West China Hospital, Sichuan University, No. 37 Guo Xue Alley, Chengdu 610041, China.
| |
Collapse
|
13
|
Götz T, Milde T, Curio G, Debener S, Lehmann T, Leistritz L, Witte OW, Witte H, Haueisen J. Primary somatosensory contextual modulation is encoded by oscillation frequency change. Clin Neurophysiol 2015; 126:1769-79. [PMID: 25670344 DOI: 10.1016/j.clinph.2014.12.028] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Revised: 11/14/2014] [Accepted: 12/01/2014] [Indexed: 10/24/2022]
Abstract
OBJECTIVE This study characterized thalamo-cortical communication by assessing the effect of context-dependent modulation on the very early somatosensory evoked high-frequency oscillations (HF oscillations). METHODS We applied electrical stimuli to the median nerve together with an auditory oddball paradigm, presenting standard and deviant target tones representing differential cognitive contexts to the constantly repeated electrical stimulation. Median nerve stimulation without auditory stimulation served as unimodal control. RESULTS A model consisting of one subcortical (near thalamus) and two cortical (Brodmann areas 1 and 3b) dipolar sources explained the measured HF oscillations. Both at subcortical and the cortical levels HF oscillations were significantly smaller during bimodal (somatosensory plus auditory) than unimodal (somatosensory only) stimulation. A delay differential equation model was developed to investigate interactions within the 3-node thalamo-cortical network. Importantly, a significant change in the eigenfrequency of Brodmann area 3b was related to the context-dependent modulation, while there was no change in the network coupling. CONCLUSION This model strongly suggests cortico-thalamic feedback from both cortical Brodmann areas 1 and 3b to the thalamus. With the 3-node network model, thalamo-cortical feedback could be described. SIGNIFICANCE Frequency encoding plays an important role in contextual modulation in the somatosensory thalamo-cortical network.
Collapse
Affiliation(s)
- T Götz
- Biomagnetic Center, Hans Berger Department of Neurology, Jena University Hospital, Erlanger Allee 101, 07747 Jena, Germany; Center for Sepsis Control and Care, Jena University Hospital, Erlanger Allee 101, 07747 Jena, Germany
| | - T Milde
- Institute of Medical Statistics, Computer Sciences and Documentation, Jena University Hospital, Bachstrasse 18, 07740 Jena, Germany
| | - G Curio
- Neurophysics Group, Department of Neurology, Campus Benjamin Franklin, Charité - University Medicine Berlin, Hindenburgdamm 30, 12200 Berlin, Germany
| | - S Debener
- Faculty VI, Department of Psychology, Neuropsychology Lab, University of Oldenburg, 26111 Oldenburg, Germany
| | - T Lehmann
- Institute of Medical Statistics, Computer Sciences and Documentation, Jena University Hospital, Bachstrasse 18, 07740 Jena, Germany
| | - L Leistritz
- Institute of Medical Statistics, Computer Sciences and Documentation, Jena University Hospital, Bachstrasse 18, 07740 Jena, Germany
| | - O W Witte
- Hans Berger Department of Neurology, Jena University Hospital, Erlanger Allee 101, 07747 Jena, Germany; Center for Sepsis Control and Care, Jena University Hospital, Erlanger Allee 101, 07747 Jena, Germany
| | - H Witte
- Institute of Medical Statistics, Computer Sciences and Documentation, Jena University Hospital, Bachstrasse 18, 07740 Jena, Germany
| | - J Haueisen
- Biomagnetic Center, Hans Berger Department of Neurology, Jena University Hospital, Erlanger Allee 101, 07747 Jena, Germany; Institute of Biomedical Engineering and Informatics, Faculty of Computer Science and Automation, Technical University Ilmenau, Gustav-Kirchhoff-Straße 2, 98693 Ilmenau, Germany.
| |
Collapse
|
14
|
Lascano AM, Grouiller F, Genetti M, Spinelli L, Seeck M, Schaller K, Michel CM. Surgically relevant localization of the central sulcus with high-density somatosensory-evoked potentials compared with functional magnetic resonance imaging. Neurosurgery 2014; 74:517-26. [PMID: 24463494 DOI: 10.1227/neu.0000000000000298] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Resection of abnormal brain tissue lying near the sensorimotor cortex entails precise localization of the central sulcus. Mapping of this area is achieved by applying invasive direct cortical electrical stimulation. However, noninvasive methods, particularly functional magnetic resonance imaging (fMRI), are also used. As a supplement to fMRI, localization of somatosensory-evoked potentials (SEPs) recorded with an electroencephalogram (EEG) has been proposed, but has not found its place in clinical practice. OBJECTIVE To assess localization accuracy of the hand somatosensory cortex with SEP source imaging. METHODS We applied electrical source imaging in 49 subjects, recorded with high-density EEG (256 channels). We compared it with fMRI in 18 participants and with direct cortical electrical stimulation in 6 epileptic patients. RESULTS Comparison of SEP source imaging with fMRI indicated differences of 3 to 8 mm, with the exception of the mesial-distal orientation, where variances of up to 20 mm were found. This discrepancy is explained by the fact that the source maximum of the first SEP peak is localized deep in the central sulcus (area 3b), where information initially arrives. Conversely, fMRI showed maximal signal change on the lateral surface of the postcentral gyrus (area 1), where sensory information is integrated later in time. Electrical source imaging and fMRI showed mean Euclidean distances of 13 and 14 mm, respectively, from the contacts where electrocorticography elicited sensory phenomena of the contralateral upper limb. CONCLUSION SEP source imaging, based on high-density EEG, reliably identifies the depth of the central sulcus. Moreover, it is a simple, flexible, and relatively inexpensive alternative to fMRI.
Collapse
Affiliation(s)
- Agustina M Lascano
- *Department of Neurology, University Hospital of Geneva, Geneva, Switzerland; ‡Functional Brain Mapping Laboratory, Department of Neurology, University Hospital of Geneva and University Medical Centre, Geneva, Switzerland; §Department of Radiology and Medical Informatics, University Hospital of Geneva, Geneva, Switzerland; ¶Department of Neurosurgery, University Hospitals of Geneva, Geneva, Switzerland
| | | | | | | | | | | | | |
Collapse
|
15
|
Nevalainen P, Lauronen L, Pihko E. Development of Human Somatosensory Cortical Functions - What have We Learned from Magnetoencephalography: A Review. Front Hum Neurosci 2014; 8:158. [PMID: 24672468 PMCID: PMC3955943 DOI: 10.3389/fnhum.2014.00158] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2013] [Accepted: 03/03/2014] [Indexed: 01/01/2023] Open
Abstract
The mysteries of early development of cortical processing in humans have started to unravel with the help of new non-invasive brain research tools like multichannel magnetoencephalography (MEG). In this review, we evaluate, within a wider neuroscientific and clinical context, the value of MEG in studying normal and disturbed functional development of the human somatosensory system. The combination of excellent temporal resolution and good localization accuracy provided by MEG has, in the case of somatosensory studies, enabled the differentiation of activation patterns from the newborn’s primary (SI) and secondary somatosensory (SII) areas. Furthermore, MEG has shown that the functioning of both SI and SII in newborns has particular immature features in comparison with adults. In extremely preterm infants, the neonatal MEG response from SII also seems to potentially predict developmental outcome: those lacking SII responses at term show worse motor performance at age 2 years than those with normal SII responses at term. In older children with unilateral early brain lesions, bilateral alterations in somatosensory cortical activation detected in MEG imply that the impact of a localized insult may have an unexpectedly wide effect on cortical somatosensory networks. The achievements over the last decade show that MEG provides a unique approach for studying the development of the somatosensory system and its disturbances in childhood. MEG well complements other neuroimaging methods in studies of cortical processes in the developing brain.
Collapse
Affiliation(s)
- Päivi Nevalainen
- BioMag Laboratory, Hospital District of Helsinki and Uusimaa, HUS Medical Imaging Center, Helsinki University Central Hospital, University of Helsinki , Helsinki , Finland ; Department of Clinical Neurophysiology, Children's Hospital, HUS Medical Imaging Center, Helsinki University Central Hospital, University of Helsinki , Helsinki , Finland
| | - Leena Lauronen
- BioMag Laboratory, Hospital District of Helsinki and Uusimaa, HUS Medical Imaging Center, Helsinki University Central Hospital, University of Helsinki , Helsinki , Finland ; Department of Clinical Neurophysiology, Children's Hospital, HUS Medical Imaging Center, Helsinki University Central Hospital, University of Helsinki , Helsinki , Finland
| | - Elina Pihko
- Brain Research Unit, O.V. Lounasmaa Laboratory, Aalto University School of Science , Espoo , Finland
| |
Collapse
|
16
|
Zhang J, Liu W, Chen H, Xia H, Zhou Z, Mei S, Liu Q, Li Y. Multimodal neuroimaging in presurgical evaluation of drug-resistant epilepsy. NEUROIMAGE-CLINICAL 2013; 4:35-44. [PMID: 24282678 PMCID: PMC3840005 DOI: 10.1016/j.nicl.2013.10.017] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Revised: 09/21/2013] [Accepted: 10/25/2013] [Indexed: 01/12/2023]
Abstract
Intracranial EEG (icEEG) monitoring is critical in epilepsy surgical planning, but it has limitations. The advances of neuroimaging have made it possible to reveal epileptic abnormalities that could not be identified previously and improve the localization of the seizure focus and the vital cortex. A frequently asked question in the field is whether non-invasive neuroimaging could replace invasive icEEG or reduce the need for icEEG in presurgical evaluation. This review considers promising neuroimaging techniques in epilepsy presurgical assessment in order to address this question. In addition, due to large variations in the accuracies of neuroimaging across epilepsy centers, multicenter neuroimaging studies are reviewed, and there is much need for randomized controlled trials (RCTs) to better reveal the utility of presurgical neuroimaging. The results of multiple studies indicate that non-invasive neuroimaging could not replace invasive icEEG in surgical planning especially in non-lesional or extratemporal lobe epilepsies, but it could reduce the need for icEEG in certain cases. With technical advances, multimodal neuroimaging may play a greater role in presurgical evaluation to reduce the costs and risks of epilepsy surgery, and provide surgical options for more patients with drug-resistant epilepsy.
Collapse
Affiliation(s)
- Jing Zhang
- School of Biomedical Engineering, Capital Medical University, Beijing 100069, PR China
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Juenger H, Kuhnke N, Braun C, Ummenhofer F, Wilke M, Walther M, Koerte I, Delvendahl I, Jung NH, Berweck S, Staudt M, Mall V. Two types of exercise-induced neuroplasticity in congenital hemiparesis: a transcranial magnetic stimulation, functional MRI, and magnetoencephalography study. Dev Med Child Neurol 2013; 55:941-51. [PMID: 23937719 DOI: 10.1111/dmcn.12209] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/16/2013] [Indexed: 11/30/2022]
Abstract
AIM Early unilateral brain lesions can lead to a persistence of ipsilateral corticospinal projections from the contralesional hemisphere, which can enable the contralesional hemisphere to exert motor control over the paretic hand. In contrast to the primary motor representation (M1), the primary somatosensory representation (S1) of the paretic hand always remains in the lesioned hemisphere. Here, we report on differences in exercise-induced neuroplasticity between individuals with such ipsilateral motor projections (ipsi) and individuals with early unilateral lesions but 'healthy' contralateral motor projections (contra). METHOD Sixteen children and young adults with congenital hemiparesis participated in the study (contralateral [Contra] group: n=7, four females, three males; age range 10-30y, median age 16y; ipsilateral [Ipsi] group: n=9, four females, five males; age range 11-31y, median age 12y; Manual Ability Classification System levels I to II in all individuals in both groups). The participants underwent a 12-day intervention of constraint-induced movement therapy (CIMT), consisting of individual training (2h/d) and group training (8h/d). Before and after CIMT, hand function was tested using the Wolf Motor Function Test (WMFT) and diverging neuroplastic effects were observed by transcranial magnetic stimulation (TMS), functional magnetic resonance imaging (fMRI), and magnetoencephalography (MEG). Statistical analysis of TMS data was performed using the non-parametric Wilcoxon signed-rank test for pair-wise comparison; for fMRI standard statistical parametric and non-parametric mapping (SPM5, SnPM3) procedures (first level/second level) were carried out. Statistical analyses of MEG data involved analyses of variance (ANOVA) and t-tests. RESULTS While MEG demonstrated a significant increase in S1 activation in both groups (p=0.012), TMS showed a decrease in M1 excitability in the Ipsi group (p=0.036), but an increase in M1 excitability in the Contra group (p=0.043). Similarly, fMRI showed a decrease in M1 activation in the Ipsi group, but an increase in activation in the M1-S1 region in the Contra group (for both groups p<0.001 [SnPM3] within the search volume). INTERPRETATION Different patterns of sensorimotor (re)organization in individuals with early unilateral lesions show, on a cortical level, different patterns of exercise-induced neuroplasticity. The findings help to improve the understanding of the general principles of sensorimotor learning and will help to develop more specific therapies for different pathologies in congenital hemiparesis.
Collapse
Affiliation(s)
- Hendrik Juenger
- Department of Pediatrics, Klinikum Rechts der Isar, Technical University München, München, Germany; Department of Neuropediatrics and Muscle Disorders, University Children's Hospital, Freiburg, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Validation of head movement correction and spatiotemporal signal space separation in magnetoencephalography. Clin Neurophysiol 2012; 123:2180-91. [DOI: 10.1016/j.clinph.2012.03.080] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2011] [Revised: 03/19/2012] [Accepted: 03/21/2012] [Indexed: 11/23/2022]
|
19
|
Kaiboriboon K, Lüders HO, Hamaneh M, Turnbull J, Lhatoo SD. EEG source imaging in epilepsy--practicalities and pitfalls. Nat Rev Neurol 2012; 8:498-507. [PMID: 22868868 DOI: 10.1038/nrneurol.2012.150] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
EEG source imaging (ESI) is a model-based imaging technique that integrates temporal and spatial components of EEG to identify the generating source of electrical potentials recorded on the scalp. Recent advances in computer technologies have made the analysis of ESI data less time-consuming, and have rekindled interest in this technique as a clinical diagnostic tool. On the basis of the available body of evidence, ESI seems to be a promising tool for epilepsy evaluation; however, the precise clinical value of ESI in presurgical evaluation of epilepsy and in localization of eloquent cortex remains to be investigated. In this Review, we describe two fundamental issues in ESI; namely, the forward and inverse problems, and their solutions. The clinical application of ESI in surgical planning for patients with medically refractory focal epilepsy, and its use in source reconstruction together with invasive recordings, is also discussed. As ESI can be used to map evoked responses, we discuss the clinical utility of this technique in cortical mapping-an essential process when planning resective surgery for brain regions that are in close proximity to eloquent cortex.
Collapse
Affiliation(s)
- Kitti Kaiboriboon
- Epilepsy Center, Neurological Institute, University Hospitals Case Medical Center, Case Western Reserve University School of Medicine, 11100 Euclid Avenue, Lakeside 3200, Cleveland, OH 44106, USA. kitti.kaiboriboon@ uhhospitals.org
| | | | | | | | | |
Collapse
|
20
|
American Clinical Magnetoencephalography Society Clinical Practice Guideline 2: presurgical functional brain mapping using magnetic evoked fields. J Clin Neurophysiol 2012; 28:355-61. [PMID: 21811122 DOI: 10.1097/wnp.0b013e3182272ffe] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
21
|
Baumgärtner U, Vogel H, Ohara S, Treede RD, Lenz FA. Dipole source analyses of early median nerve SEP components obtained from subdural grid recordings. J Neurophysiol 2010; 104:3029-41. [PMID: 20861430 DOI: 10.1152/jn.00116.2010] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The median nerve N20 and P22 SEP components constitute the initial response of the primary somatosensory cortex to somatosensory stimulation of the upper extremity. Knowledge of the underlying generators is important both for basic understanding of the initial sequence of cortical activation and to identify landmarks for eloquent areas to spare in resection planning of cortex in epilepsy surgery. We now set out to localize the N20 and P22 using subdural grid recording with special emphasis on the question of the origin of P22: Brodmann area 4 versus area 1. Electroencephalographic dipole source analysis of the N20 and P22 responses obtained from subdural grids over the primary somatosensory cortex after median nerve stimulation was performed in four patients undergoing epilepsy surgery. Based on anatomical landmarks, equivalent current dipoles of N20 and P22 were localized posterior to (n = 2) or on the central sulcus (n = 2). In three patients, the P22 dipole was located posterior to the N20 dipole, whereas in one patient, the P22 dipole was located on the same coordinate in anterior-posterior direction. On average, P22 sources were found to be 6.6 mm posterior [and 1 mm more superficial] compared with the N20 sources. These data strongly suggest a postcentral origin of the P22 SEP component in Brodmann area 1 and render a major precentral contribution to the earliest stages of processing from the primary motor cortex less likely.
Collapse
Affiliation(s)
- Ulf Baumgärtner
- Center for Biomedicine and Medical Technology Mannheim, Medical Faculty Mannheim, Ruprecht-Karls-University Heidelberg, Ludolf-Krehl-Str. 13-17, 68167 Mannheim, Germany.
| | | | | | | | | |
Collapse
|
22
|
Riquelme I, Montoya P. Developmental changes in somatosensory processing in cerebral palsy and healthy individuals. Clin Neurophysiol 2010; 121:1314-20. [DOI: 10.1016/j.clinph.2010.03.010] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2009] [Revised: 03/09/2010] [Accepted: 03/11/2010] [Indexed: 11/28/2022]
|
23
|
Measurement of brain function in pre-school children using a custom sized whole-head MEG sensor array. Clin Neurophysiol 2010; 121:340-9. [DOI: 10.1016/j.clinph.2009.10.017] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2009] [Revised: 10/20/2009] [Accepted: 10/31/2009] [Indexed: 11/17/2022]
|
24
|
Fukuda M, Juhász C, Hoechstetter K, Sood S, Asano E. Somatosensory-related gamma-, beta- and alpha-augmentation precedes alpha- and beta-attenuation in humans. Clin Neurophysiol 2010; 121:366-75. [PMID: 20075003 DOI: 10.1016/j.clinph.2009.10.036] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2009] [Revised: 09/25/2009] [Accepted: 10/01/2009] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Several human studies have demonstrated that the amplitudes of cortical oscillations are altered by various sensorimotor and cognitive tasks. Event-related augmentation of gamma oscillations and attenuation of alpha and beta oscillations have been often used as surrogate markers of cortical activation elicited by tasks especially in presurgical identification of eloquent cortices. In the present study, we addressed a question whether somatosensory-related gamma augmentation 'precedes' or 'co-occurs with' somatosensory-related attenuation of alpha-beta oscillations. METHODS We studied 10 patients who underwent intracranial electrocorticography for epilepsy surgery, and determined the temporal and spatial characteristics of median-nerve somatosensory-related amplitude changes at gamma- (30-100Hz), beta- (14-28Hz) and alpha-band (8-12Hz) oscillations. RESULTS We found that somatosensory-related gamma augmentation involving the post- and pre-central gyri evolved into beta and alpha augmentation, which was subsequently followed by beta and alpha attenuation involving the post- and pre-central gyri. CONCLUSIONS These observations support the hypothesis that somatosensory-related gamma augmentation but not alpha-beta attenuation represents the initial cortical processing for external somatosensory stimuli. Somatosensory-related alpha-beta attenuation appears to represent a temporally distinct stage of somatosensory processing. SIGNIFICANCE The present study has increased our understanding of event-related gamma augmentation and alpha-beta attenuation seen on electrocorticography.
Collapse
Affiliation(s)
- Miho Fukuda
- Department of Pediatrics, Children's Hospital of Michigan, Wayne State University, Detroit Medical Center, Detroit, MI 48201, USA
| | | | | | | | | |
Collapse
|
25
|
Anwar MN, Bonzano L, Sebastiano DR, Roccatagliata L, Gualniera G, Vitali P, Ogliastro C, Spadavecchia L, Rodriguez G, Sanguineti V, Morasso P, Bandini F. Real-time artifact filtering in continuous VEPs/fMRI recording. J Neurosci Methods 2009; 184:213-23. [PMID: 19682492 DOI: 10.1016/j.jneumeth.2009.08.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2009] [Revised: 08/04/2009] [Accepted: 08/05/2009] [Indexed: 11/19/2022]
Abstract
Continuous recording of Visual Evoked Potentials (VEPs) and functional Magnetic Resonance Imaging (fMRI) exploits the VEPs high temporal resolution and the fMRI high spatial resolution. In this work, we present a new method of continuous VEPs/fMRI recording to study visual function in seven normal subjects. Our real-time artifact filtering is characterized by a procedure based on an analytical study of echo-planar imaging (EPI) sequence parameters related electro-encephalogram (EEG)-artifact shapes. The magnetic field artifacts were minimized by using a dedicated amagnetic device and by a subtraction algorithm that takes into account the EPI sequence parameters. No significant decrease in signal-to-noise ratio was observed in case of EEG recording simultaneously with MR acquisition; similarly, transient and steady-state VEPs parameters were comparable during fMRI acquisition and in the off-phase of fMRI recording. We also applied this method to one patient with optic neuritis, and, compared with controls, found different results. We suggest that our technique can be reliably used to investigate the function of human visual cortex and properly correlate the electrophysiological and functional neuroimaging related changes.
Collapse
Affiliation(s)
- Muhammad Nabeel Anwar
- Department of Computational Intelligence and Systems Science, Tokyo Institute of Technology, G3-50, 4259 Nagatsuta, Midori-ku, Yokohama 226-8502, Japan.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Increasing the Diagnostic Value of Evoked Potentials in Multiple Sclerosis by Quantitative Topographic Analysis of Multichannel Recordings. J Clin Neurophysiol 2009; 26:316-25. [DOI: 10.1097/wnp.0b013e3181baac00] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
|
27
|
Schwartz ES, Dlugos DJ, Storm PB, Dell J, Magee R, Flynn TP, Zarnow DM, Zimmerman RA, Roberts TPL. Magnetoencephalography for pediatric epilepsy: how we do it. AJNR Am J Neuroradiol 2008; 29:832-7. [PMID: 18272549 PMCID: PMC8128599 DOI: 10.3174/ajnr.a1029] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Magnetoencephalography (MEG) is increasingly being used in the preoperative evaluation of pediatric patients with epilepsy. The ability to noninvasively localize ictal onset zones (IOZ) and their relationships to eloquent functional cortex allows the pediatric epilepsy team to more accurately assess the likelihood of postoperative seizure freedom, while more precisely prognosticating the potential functional deficits that may be expected from resective surgery. Confirmation of clinically suggested multifocality may result in a recommendation against resective surgery because the probability of seizure freedom will be low. Current paradigms for motor and somatosensory testing are robust. Paradigms allowing localization of those regions necessary for competent language function, though promising, are under continuous optimization. MR imaging white matter trajectory data, created from diffusion tensor imaging obtained in the same setting as the localization brain MR imaging, provide ancillary information regarding connectivity of the IOZ to sites of rapid secondary spread and the spatial relationship of the IOZ to functionally important white matter bundles, such as the corticospinal tracts. A collaborative effort between neuroradiology, neurology, neurosurgery, neuropsychology, technology, and physics ensures successful implementation of MEG within a pediatric epilepsy program.
Collapse
Affiliation(s)
- E S Schwartz
- Divisions of Neuroradiology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Rampp S, Stefan H. On the opposition of EEG and MEG. Clin Neurophysiol 2007; 118:1658-9. [PMID: 17574913 DOI: 10.1016/j.clinph.2007.04.021] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2007] [Accepted: 04/28/2007] [Indexed: 11/28/2022]
|