1
|
Lacroix A, Harquel S, Barbosa LS, Kovarski K, Garrido MI, Vercueil L, Kauffmann L, Dutheil F, Gomot M, Mermillod M. Reduced spatial frequency differentiation and sex-related specificities in fearful face detection in autism: Insights from EEG and the predictive brain model. Autism Res 2024; 17:1778-1795. [PMID: 39092565 DOI: 10.1002/aur.3209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 07/24/2024] [Indexed: 08/04/2024]
Abstract
Face processing relies on predictive processes driven by low spatial frequencies (LSF) that convey coarse information prior to fine information conveyed by high spatial frequencies. However, autistic individuals might have atypical predictive processes, contributing to facial processing difficulties. This may be more normalized in autistic females, who often exhibit better socio-communicational abilities than males. We hypothesized that autistic females would display a more typical coarse-to-fine processing for socio-emotional stimuli compared to autistic males. To test this hypothesis, we asked adult participants (44 autistic, 51 non-autistic) to detect fearful faces among neutral faces, filtered in two orders: from coarse-to-fine (CtF) and from fine-to-coarse (FtC). Results show lower d' values and longer reaction times for fearful detection in autism compared to non-autistic (NA) individuals, regardless of the filtering order. Both groups presented shorter P100 latency after CtF compared to FtC, and larger amplitude for N170 after FtC compared to CtF. However, autistic participants presented a reduced difference in source activity between CtF and FtC in the fusiform. There was also a more spatially spread activation pattern in autistic females compared to NA females. Finally, females had faster P100 and N170 latencies, as well as larger occipital activation for FtC sequences than males, irrespective of the group. Overall, the results do not suggest impaired predictive processes from LSF in autism despite behavioral differences in fear detection. However, they do indicate reduced brain modulation by spatial frequency in autism. In addition, the findings highlight sex differences that warrant consideration in understanding autistic females.
Collapse
Affiliation(s)
- Adeline Lacroix
- Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, LPNC, Grenoble, France
| | - Sylvain Harquel
- Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, LPNC, Grenoble, France
- Defitech Chair in Clinical Neuroengineering, Center for Neuroprosthetics and Brain Mind Institute, EPFL, Geneva, Switzerland
| | - Leonardo S Barbosa
- Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, LPNC, Grenoble, France
- Fralin Biomedical Research Institute at VTC, Virginia Tech, Roanoke, Virginia, USA
| | - Klara Kovarski
- Sorbonne Université, Faculté des Lettres, INSPE, Paris, France
- LaPsyDÉ, Université Paris-Cité, CNRS, Paris, France
| | - Marta I Garrido
- Cognitive Neuroscience and Computational Psychiatry Lab, Melbourne School of Psychological Sciences, The University of Melbourne, Melbourne, Victoria, Australia
- Graeme Clark Institute for Biomedical Engineering, The University of Melbourne, Melbourne, Victoria, Australia
| | - Laurent Vercueil
- Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, LPNC, Grenoble, France
| | - Louise Kauffmann
- Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, LPNC, Grenoble, France
| | - Frédéric Dutheil
- Université Clermont Auvergne, CNRS, LaPSCo, CHU Clermont-Ferrand, Clermont-Ferrand, France
| | - Marie Gomot
- Université de Tours, INSERM, Imaging Brain and Neuropsychiatry iBraiN U1253, Tours, France
| | - Martial Mermillod
- Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, LPNC, Grenoble, France
| |
Collapse
|
2
|
Lacroix A, Harquel S, Mermillod M, Garrido M, Barbosa L, Vercueil L, Aleysson D, Dutheil F, Kovarski K, Gomot M. Sex modulation of faces prediction error in the autistic brain. Commun Biol 2024; 7:127. [PMID: 38273091 PMCID: PMC10810845 DOI: 10.1038/s42003-024-05807-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 01/11/2024] [Indexed: 01/27/2024] Open
Abstract
Recent research suggests that autistic females may have superior socio-cognitive abilities compared to autistic males, potentially contributing to underdiagnosis in females. However, it remains unclear whether these differences arise from distinct neurophysiological functioning in autistic males and females. This study addresses this question by presenting 41 autistic and 48 non-autistic adults with a spatially filtered faces oddball paradigm. Analysis of event-related potentials from scalp electroencephalography reveal a neurophysiological profile in autistic females that fell between those of autistic males and non-autistic females, highlighting sex differences in autism from the initial stages of face processing. This finding underscores the urgent need to explore neurophysiological sex differences in autism and encourages efforts toward a better comprehension of compensation mechanism and a clearer definition of what is meant by camouflaging.
Collapse
Affiliation(s)
- Adeline Lacroix
- Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, LPNC, 38000, Grenoble, France.
| | - Sylvain Harquel
- Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, LPNC, 38000, Grenoble, France
- Defitech Chair in Clinical Neuroengineering, Center for Neuroprosthetics and Brain Mind Institute, EPFL, Geneva, Switzerland
| | - Martial Mermillod
- Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, LPNC, 38000, Grenoble, France
| | - Marta Garrido
- Cognitive Neuroscience and Computational Psychiatry Lab, Melbourne School of Psychological Sciences, University of Melbourne, Melbourne, VIC, Australia
- Graeme Clark Institute for Biomedical Engineering, University of Melbourne, Melbourne, VIC, Australia
| | - Leonardo Barbosa
- Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, LPNC, 38000, Grenoble, France
- Fralin Biomedical Research Institute at VTC, Virginia Tech, Roanoke, VA, 24016, USA
| | - Laurent Vercueil
- Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, LPNC, 38000, Grenoble, France
| | - David Aleysson
- Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, LPNC, 38000, Grenoble, France
| | - Frédéric Dutheil
- Université Clermont Auvergne, CNRS, LaPSCo, CHU Clermont-Ferrand, WittyFit, F-63000, Clermont-Ferrand, France
| | - Klara Kovarski
- Sorbonne Université, Faculté des Lettres, INSPE, Paris, France
- LaPsyDÉ, Université Paris-Cité, CNRS, Paris, France
| | - Marie Gomot
- UMR 1253 iBrain, Université de Tours, Inserm, Tours, France
| |
Collapse
|
3
|
Dwyer P, Takarae Y, Zadeh I, Rivera SM, Saron CD. Multisensory integration and interactions across vision, hearing, and somatosensation in autism spectrum development and typical development. Neuropsychologia 2022; 175:108340. [PMID: 36028085 DOI: 10.1016/j.neuropsychologia.2022.108340] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 06/13/2022] [Accepted: 07/22/2022] [Indexed: 10/15/2022]
Abstract
Most prior studies of multisensory integration (MSI) in autism have measured MSI in only a single combination of modalities - typically audiovisual integration. The present study used onset reaction times (RTs) and 125-channel electroencephalography (EEG) to examine different forms of bimodal and trimodal MSI based on combinations of auditory (noise burst), somatosensory (finger tap), and visual (flash) stimuli presented in a spatially-aligned manner using a custom desktop apparatus. A total of 36 autistic and 19 non-autistic adolescents between the ages of 11-14 participated. Significant RT multisensory facilitation relative to summed unisensory RT was observed in both groups, as were significant differences between summed unisensory and multisensory ERPs. Although the present study's statistical approach was not intended to test effect latencies, these interactions may have begun as early as ∼45 ms, constituting "early" (<100 ms) MSI. RT and ERP measurements of MSI appeared independent of one another. Groups did not significantly differ in multisensory RT facilitation, but we found exploratory evidence of group differences in the magnitude of audiovisual interactions in ERPs. Future research should make greater efforts to explore MSI in under-represented populations, especially autistic people with intellectual disabilities and nonspeaking/minimally-verbal autistic people.
Collapse
Affiliation(s)
- Patrick Dwyer
- Department of Psychology, UC Davis, USA; Center for Mind and Brain, UC Davis, USA.
| | - Yukari Takarae
- Department of Neurosciences, UC San Diego, USA; Department of Psychology, San Diego State University, USA
| | | | - Susan M Rivera
- Department of Psychology, UC Davis, USA; Center for Mind and Brain, UC Davis, USA; MIND Institute, UC Davis, USA
| | - Clifford D Saron
- Center for Mind and Brain, UC Davis, USA; MIND Institute, UC Davis, USA
| |
Collapse
|
4
|
Sheela P, Puthankattil SD. MVME-RCMFDE framework for discerning hyper-responsivity in Autism Spectrum Disorders. Comput Biol Med 2022; 149:105958. [PMID: 36007291 DOI: 10.1016/j.compbiomed.2022.105958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 07/26/2022] [Accepted: 08/06/2022] [Indexed: 12/01/2022]
Abstract
BACKGROUND Autism Spectrum Disorder (ASD), characterized by impaired sensory processing, has a wide range of clinical heterogeneity, which handicaps effective therapeutic interventions. Therefore, it is imperative to develop potential mechanisms for delineating clinically meaningful subgroups, so as to provide individualised medical treatment. In this study, an attempt is being made to differentiate the hyper-responsive subgroup from ASD by analysing the complexity pattern of Visual Evoked Potentials (VEPs), recorded from a group of 30 ASD participants, in the presence of vertical achromatic sinewave gratings at varying contrast conditions of low (5%), medium (50%) and high (90%). METHOD This study proposes a new diagnostic framework incorporating a novel signal decomposition method termed as Modified Variational Mode Extraction (MVME) and a multiscale entropy approach. MVME segments the signal into five constituent modes with less spectral overlap in lower frequencies. Refined Composite Multiscale Fluctuation-based Dispersion entropy (RCMFDE) is extracted from these constituent modes, thereby facilitating the identification of hyper-responsive subgroup in ASD. RESULTS When tested on both simulated and real VEPs, MVME displays appreciable performance in terms of root mean square error and minimal spectral overlap in the lower frequencies, in comparison with the other state-of-the-art techniques. Relative Complexity analysis with RCMFDE exhibits a rising trend in 43%-50% of ASD in modes 1, 2, 3 and 4. CONCLUSION The proposed MVME-RCMFDE approach is efficient in discriminating the hyper-responsive subgroup in ASD in multiple modes namely mode 1, 2, 3 and 4, which correspond to delta, theta, alpha and beta frequency bands of brain signals.
Collapse
Affiliation(s)
- Priyalakshmi Sheela
- Department of Electrical Engineering, National Institute of Technology, Calicut, 673601, Kerala, India
| | - Subha D Puthankattil
- Department of Electrical Engineering, National Institute of Technology, Calicut, 673601, Kerala, India.
| |
Collapse
|
5
|
Altered EEG variability on different time scales in participants with autism spectrum disorder: an exploratory study. Sci Rep 2022; 12:13068. [PMID: 35906301 PMCID: PMC9338240 DOI: 10.1038/s41598-022-17304-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 07/22/2022] [Indexed: 11/20/2022] Open
Abstract
One of the great challenges in psychiatry is finding reliable biomarkers that may allow for more accurate diagnosis and treatment of patients. Neural variability received increasing attention in recent years as a potential biomarker. In the present explorative study we investigated temporal variability in visually evoked EEG activity in a cohort of 16 adult participants with Asperger Syndrome (AS) and 19 neurotypical (NT) controls. Participants performed a visual oddball task using fine and coarse checkerboard stimuli. We investigated various measures of neural variability and found effects on multiple time scales. (1) As opposed to the previous studies, we found reduced inter-trial variability in the AS group compared to NT. (2) This effect builds up over the entire course of a 5-min experiment and (3) seems to be based on smaller variability of neural background activity in AS compared to NTs. The here reported variability effects come with considerably large effect sizes, making them promising candidates for potentially reliable biomarkers in psychiatric diagnostics. The observed pattern of universality across different time scales and stimulation conditions indicates trait-like effects. Further research with a new and larger set of participants are thus needed to verify or falsify our findings.
Collapse
|
6
|
Di Lorenzo R, Munsters NM, Ward EK, de Jonge M, Kemner C, van den Boomen C. Is It Fear? Similar Brain Responses to Fearful and Neutral Faces in Infants with a Heightened Likelihood for Autism Spectrum Disorder. J Autism Dev Disord 2021; 51:961-972. [PMID: 32594334 PMCID: PMC7954762 DOI: 10.1007/s10803-020-04560-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Individuals with autism spectrum disorder (ASD) show atypical processing of facial expressions. Research with autistic toddlers suggests that abnormalities in processing of spatial frequencies (SFs) contribute to such differences. The current event-related-potential (ERP) study investigated differences between 10-month-old infants with high- and low-likelihood for ASD in SF processing and in discrimination of fearful and neutral faces, filtered to contain specific SF. Results indicate no group differences in general processing of higher (HSF, detailed) and lower-SF (LSF, global) information. However, unlike low-likelihood infants, high-likelihood infants do not discriminate between facial expressions when either the LSF or HSF information is available. Combined with previous findings in toddlers, the current results indicate a developmental delay in efficient processing of facial expressions in ASD.
Collapse
Affiliation(s)
- Renata Di Lorenzo
- Experimental Psychology, Helmholtz Institute, Utrecht University, Langeveld Building, Heidelberglaan 1, 3584 CS, Utrecht, The Netherlands. .,Developmental Psychology, Utrecht University, Langeveld Building, Heidelberglaan 1, 3584 CS, Utrecht, The Netherlands.
| | - Nicolette M Munsters
- Experimental Psychology, Helmholtz Institute, Utrecht University, Langeveld Building, Heidelberglaan 1, 3584 CS, Utrecht, The Netherlands.,Developmental Psychology, Utrecht University, Langeveld Building, Heidelberglaan 1, 3584 CS, Utrecht, The Netherlands.,Department of Psychiatry, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands.,Karakter Child and Adolescent Psychiatry, Ede, The Netherlands
| | - Emma K Ward
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - Maretha de Jonge
- Department of Psychiatry, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands.,Clinical Neurodevelopmental Sciences, Leiden University, Leiden, The Netherlands
| | - Chantal Kemner
- Experimental Psychology, Helmholtz Institute, Utrecht University, Langeveld Building, Heidelberglaan 1, 3584 CS, Utrecht, The Netherlands.,Developmental Psychology, Utrecht University, Langeveld Building, Heidelberglaan 1, 3584 CS, Utrecht, The Netherlands.,Department of Psychiatry, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands
| | - Carlijn van den Boomen
- Experimental Psychology, Helmholtz Institute, Utrecht University, Langeveld Building, Heidelberglaan 1, 3584 CS, Utrecht, The Netherlands.,Developmental Psychology, Utrecht University, Langeveld Building, Heidelberglaan 1, 3584 CS, Utrecht, The Netherlands
| |
Collapse
|
7
|
Marciano H, Gal E, Kimchi R, Hedley D, Goldfarb Y, Bonneh YS. Visual Detection and Decoding Skills of Aerial Photography by Adults with Autism Spectrum Disorder (ASD). J Autism Dev Disord 2021; 52:1346-1360. [PMID: 33948824 DOI: 10.1007/s10803-021-05039-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/20/2021] [Indexed: 11/27/2022]
Abstract
Despite challenges in social communication skills people with ASD often display strengths in visual processing. Aerial photography analysis is an occupation reliant on strong visual processing skills that matches this unique profile. We investigated basic-vision and "real-life" visual tasks in 20 cognitively-able young adults with ASD and 20 typically-developed (TD) "gamers". Basic-vision tests included Visual-Search, Embedded-Figures, and Vigilance; "real-life" tests included aerial-photograph detection and identification. Groups performed equally well, and did not differ significantly on any tasks. The study demonstrates strong visual skills in people with ASD in basic and "real-life" settings, and supports the idea that they may be well suited for employment in occupations that demand high visual perception skills such as aerial photography analysis.
Collapse
Affiliation(s)
- Hadas Marciano
- The Institute of Information Processing and Decision Making (IIPDM), Ergonomics and Human Factors Unit, University of Haifa, 199 Aba Khoushy Ave. Mount Carmel, 3498838, Haifa, Israel. .,Stress and Resilience Research Center, Tel-Hai College, Qiryat Shemona, Israel.
| | - Eynat Gal
- Department of Occupational Therapy, University of Haifa, Haifa, Israel
| | - Ruth Kimchi
- Department of Psychology and Institute of Information Processing and Decision Making, University of Haifa, Haifa, Israel
| | - Darren Hedley
- Olga Tennison Autism Research Centre, School of Psychology and Public Health, La Trobe University, Melbourne, Australia
| | - Yael Goldfarb
- Department of Occupational Therapy, University of Haifa, Haifa, Israel
| | - Yoram S Bonneh
- School of Optometry and Vision Science, Faculty of Life Science, Bar-Ilan University, Ramat Gan, Israel
| |
Collapse
|
8
|
Norcia AM, Lee A, Meredith WJ, Kohler PJ, Pei F, Ghassan SA, Libove RA, Phillips JM, Hardan AY. A case-control study of visual, auditory and audio-visual sensory interactions in children with autism spectrum disorder. J Vis 2021; 21:5. [PMID: 33830169 PMCID: PMC8039569 DOI: 10.1167/jov.21.4.5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 11/09/2020] [Indexed: 01/23/2023] Open
Abstract
To assess the relative integrity of early visual and auditory processes in autism spectrum disorder (ASD), we used frequency-tagged visual and auditory stimulation and high-density electroencephalogram recordings of unimodal and dual-modality responses in a case-control design. To test for the specificity of effects on ASD, we recorded from a smaller group of children with attention-deficit hyperactivity disorder (ADHD). Horizontal 3 cycle per degree (cpd) gratings were presented at 5 Hz, and a random stream of /ba/, /da/, /ga/ syllables was presented at 6 Hz. Grating contrast response functions were measured unimodally and in the presence of a 64-dB auditory input. Auditory response functions were measured unimodally and in the presence of a 40% contrast grating. Children with ASD (n = 34) and ADHD (n = 13) showed a common lack of audio-visual interaction compared to typically developing children (n = 40) when measured at the first harmonic of the visual stimulus frequency. Both patient groups also showed depressed first harmonic responses at low contrast, but the ADHD group had consistently higher first-harmonic responses at high contrast. Children with ASD had a preferential loss of second-harmonic (transient) responses. The alteredtransient responses in ASD are likely to arise very early in the visual pathway and could thus have downstream consequences for many other visual mechanisms and processes. The alteration in audio-visual interaction could be a signature of a comorbid phenotype shared by ASD and ADHD, possibly due to alterations in attentional selection systems.
Collapse
Affiliation(s)
- Anthony M Norcia
- Department of Psychology, Stanford University, Stanford, CA, USA
| | - Azalea Lee
- Department of Psychology, Stanford University, Stanford, CA, USA
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
| | | | - Peter J Kohler
- Department of Psychology, York University, Toronto, ON, Canada
- Centre for Vision Research, York University, Toronto, ON, Canada
| | - Francesca Pei
- Department of Psychology, Stanford University, Stanford, CA, USA
| | - Stephanie A Ghassan
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
| | - Robin A Libove
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
| | - Jennifer M Phillips
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
| | - Antonio Y Hardan
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
| |
Collapse
|
9
|
Jeantet C, Caharel S, Schwan R, Lighezzolo-Alnot J, Laprevote V. Factors influencing spatial frequency extraction in faces: A review. Neurosci Biobehav Rev 2018. [DOI: 10.1016/j.neubiorev.2018.03.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
10
|
Sensing and Decoding Neural Signals for Closed-Loop Neuromodulation and Advanced Diagnostics in Chronic Disease and Injury. Neuromodulation 2018. [DOI: 10.1016/b978-0-12-805353-9.00131-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
11
|
Rokszin AA, Győri-Dani D, Bácsi J, Nyúl LG, Csifcsák G. Tracking changes in spatial frequency sensitivity during natural image processing in school age: an event-related potential study. J Exp Child Psychol 2017; 166:664-678. [PMID: 29128609 DOI: 10.1016/j.jecp.2017.10.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 10/06/2017] [Accepted: 10/06/2017] [Indexed: 11/30/2022]
Abstract
Several studies have shown that behavioral and electrophysiological correlates of processing visual images containing low or high spatial frequency (LSF or HSF) information undergo development after early childhood. However, the maturation of spatial frequency sensitivity during school age has been investigated using abstract stimuli only. The aim of the current study was to assess how LSF and HSF features affect the processing of everyday photographs at the behavioral and electrophysiological levels in children aged 7-15 years and adults. We presented grayscale images containing either animals or vehicles and their luminance-matched modified versions filtered at low or high spatial frequencies. Modulations of classification accuracy, reaction time, and visual event-related potentials (posterior P1 and N1 components) were compared across five developmental groups and three image types. We found disproportionately worse response accuracies for LSF stimuli relative to HSF images in children aged 7 or 8 years, an effect that was accompanied by smaller LSF-evoked P1 amplitudes during this age period. At 7 or 8 years of age, P1 and N1 amplitudes were modulated by HSF and LSF stimuli (P1: HSF > LSF; N1: LSF > HSF), with a gradual shift toward the opposite pattern (P1: LSF > HSF; N1: HSF > LSF) with increasing age. Our results indicate that early cortical processing of both spatial frequency ranges undergo substantial development during school age, with a relative delay of LSF analysis, and underline the utility of our paradigm in tracking the maturation of LSF versus HSF sensitivity in this age group.
Collapse
Affiliation(s)
- Adrienn Aranka Rokszin
- Doctoral School of Education, Faculty of Arts, University of Szeged, Petőfi Sándor sgt. 30-34, 6722 Szeged, Hungary
| | - Dóra Győri-Dani
- Department of Applied Pedagogy and Psychology, Institute of Kindergarten and Lower-Primary Education, Juhász Gyula Faculty of Education, University of Szeged, Hattyas sor 10, 6725 Szeged, Hungary
| | - János Bácsi
- Juhász Gyula Elementary School of University of Szeged, Boldogasszony sgt. 8, 6725 Szeged, Hungary
| | - László G Nyúl
- Department of Image Processing and Computer Graphics, Faculty of Science and Informatics, University of Szeged, Árpád tér 2, 6720 Szeged, Hungary
| | - Gábor Csifcsák
- Department of Cognitive and Neuropsychology, Institute of Psychology, Faculty of Arts, University of Szeged, Egyetem u. 2, 6722 Szeged, Hungary; Department of Psychology, University of Tromsø, Huginbakken 32, 9037 Tromsø, Norway.
| |
Collapse
|
12
|
Abstract
While most typically developing (TD) participants have a coarse-to-fine processing style, people with autism spectrum disorder (ASD) seem to be less globally and more locally biased when processing visual information. The stimulus-specific spatial frequency content might be directly relevant to determine this temporal hierarchy of visual information processing in people with and without ASD. We implemented a semantic priming task in which (in)congruent coarse and/or fine spatial information preceded target categorization. Our results indicated that adolescents with ASD made more categorization errors than TD adolescents and needed more time to process the prime stimuli. Simultaneously, however, our findings argued for a processing advantage in ASD, when the prime stimulus contains detailed spatial information and presentation time permits explicit visual processing.
Collapse
|
13
|
Lin IF, Shirama A, Kato N, Kashino M. The singular nature of auditory and visual scene analysis in autism. Philos Trans R Soc Lond B Biol Sci 2017; 372:20160115. [PMID: 28044025 PMCID: PMC5206282 DOI: 10.1098/rstb.2016.0115] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/27/2016] [Indexed: 12/16/2022] Open
Abstract
Individuals with autism spectrum disorder often have difficulty acquiring relevant auditory and visual information in daily environments, despite not being diagnosed as hearing impaired or having low vision. Resent psychophysical and neurophysiological studies have shown that autistic individuals have highly specific individual differences at various levels of information processing, including feature extraction, automatic grouping and top-down modulation in auditory and visual scene analysis. Comparison of the characteristics of scene analysis between auditory and visual modalities reveals some essential commonalities, which could provide clues about the underlying neural mechanisms. Further progress in this line of research may suggest effective methods for diagnosing and supporting autistic individuals.This article is part of the themed issue 'Auditory and visual scene analysis'.
Collapse
Affiliation(s)
- I-Fan Lin
- NTT Communication Science Laboratories, NTT Corporation, Atsugi, Kanagawa 243-0198, Japan
- Taipei City Hospital, Taipei 106, Taiwan
| | - Aya Shirama
- NTT Communication Science Laboratories, NTT Corporation, Atsugi, Kanagawa 243-0198, Japan
| | - Nobumasa Kato
- Medical Institute of Developmental Disabilities Research, Showa University Karasuyama Hospital, Tokyo 157-8577, Japan
| | - Makio Kashino
- NTT Communication Science Laboratories, NTT Corporation, Atsugi, Kanagawa 243-0198, Japan
- School of Engineering, Tokyo Institute of Technology, Yokohama, Kanagawa 226-8503, Japan
- CREST, JST, Atsugi, Kanagawa 243-0198, Japan
| |
Collapse
|
14
|
Atypical Time Course of Object Recognition in Autism Spectrum Disorder. Sci Rep 2016; 6:35494. [PMID: 27752088 PMCID: PMC5067503 DOI: 10.1038/srep35494] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 09/30/2016] [Indexed: 11/18/2022] Open
Abstract
In neurotypical observers, it is widely believed that the visual system samples the world in a coarse-to-fine fashion. Past studies on Autism Spectrum Disorder (ASD) have identified atypical responses to fine visual information but did not investigate the time course of the sampling of information at different levels of granularity (i.e. Spatial Frequencies, SF). Here, we examined this question during an object recognition task in ASD and neurotypical observers using a novel experimental paradigm. Our results confirm and characterize with unprecedented precision a coarse-to-fine sampling of SF information in neurotypical observers. In ASD observers, we discovered a different pattern of SF sampling across time: in the first 80 ms, high SFs lead ASD observers to a higher accuracy than neurotypical observers, and these SFs are sampled differently across time in the two subject groups. Our results might be related to the absence of a mandatory precedence of global information, and to top-down processing abnormalities in ASD.
Collapse
|
15
|
Rapid and Objective Assessment of Neural Function in Autism Spectrum Disorder Using Transient Visual Evoked Potentials. PLoS One 2016; 11:e0164422. [PMID: 27716799 PMCID: PMC5055293 DOI: 10.1371/journal.pone.0164422] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 09/23/2016] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVE There is a critical need to identify biomarkers and objective outcome measures that can be used to understand underlying neural mechanisms in autism spectrum disorder (ASD). Visual evoked potentials (VEPs) offer a noninvasive technique to evaluate the functional integrity of neural mechanisms, specifically visual pathways, while probing for disease pathophysiology. METHODS Transient VEPs (tVEPs) were obtained from 96 unmedicated children, including 37 children with ASD, 36 typically developing (TD) children, and 23 unaffected siblings (SIBS). A conventional contrast-reversing checkerboard condition was compared to a novel short-duration condition, which was developed to enable objective data collection from severely affected populations who are often excluded from electroencephalographic (EEG) studies. RESULTS Children with ASD showed significantly smaller amplitudes compared to TD children at two of the earliest critical VEP components, P60-N75 and N75-P100. SIBS showed intermediate responses relative to ASD and TD groups. There were no group differences in response latency. Frequency band analyses indicated significantly weaker responses for the ASD group in bands encompassing gamma-wave activity. Ninety-two percent of children with ASD were able to complete the short-duration condition compared to 68% for the standard condition. CONCLUSIONS The current study establishes the utility of a short-duration tVEP test for use in children at varying levels of functioning and describes neural abnormalities in children with idiopathic ASD. Implications for excitatory/inhibitory balance as well as the potential application of VEP for use in clinical trials are discussed.
Collapse
|
16
|
Cantiani C, Choudhury NA, Yu YH, Shafer VL, Schwartz RG, Benasich AA. From Sensory Perception to Lexical-Semantic Processing: An ERP Study in Non-Verbal Children with Autism. PLoS One 2016; 11:e0161637. [PMID: 27560378 PMCID: PMC4999236 DOI: 10.1371/journal.pone.0161637] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2016] [Accepted: 08/09/2016] [Indexed: 11/18/2022] Open
Abstract
This study examines electrocortical activity associated with visual and auditory sensory perception and lexical-semantic processing in nonverbal (NV) or minimally-verbal (MV) children with Autism Spectrum Disorder (ASD). Currently, there is no agreement on whether these children comprehend incoming linguistic information and whether their perception is comparable to that of typically developing children. Event-related potentials (ERPs) of 10 NV/MV children with ASD and 10 neurotypical children were recorded during a picture-word matching paradigm. Atypical ERP responses were evident at all levels of processing in children with ASD. Basic perceptual processing was delayed in both visual and auditory domains but overall was similar in amplitude to typically-developing children. However, significant differences between groups were found at the lexical-semantic level, suggesting more atypical higher-order processes. The results suggest that although basic perception is relatively preserved in NV/MV children with ASD, higher levels of processing, including lexical- semantic functions, are impaired. The use of passive ERP paradigms that do not require active participant response shows significant potential for assessment of non-compliant populations such as NV/MV children with ASD.
Collapse
Affiliation(s)
- Chiara Cantiani
- Center for Molecular and Behavioral Neuroscience, Rutgers University, Newark, New Jersey, United States of America
- Child Psychopathology Unit, Scientific Institute IRCCS Eugenio Medea, Bosisio Parini, Lecco, Italy
- * E-mail:
| | - Naseem A. Choudhury
- Center for Molecular and Behavioral Neuroscience, Rutgers University, Newark, New Jersey, United States of America
- Psychology, SSHS, Ramapo College of New Jersey, Mahwah, New Jersey, United States of America
| | - Yan H. Yu
- The Graduate Center, City University of New York, New York, New York, United States of America
- Department of Communication Sciences and Disorders, St. John's University, New York, New York, United States of America
| | - Valerie L. Shafer
- The Graduate Center, City University of New York, New York, New York, United States of America
| | - Richard G. Schwartz
- The Graduate Center, City University of New York, New York, New York, United States of America
| | - April A. Benasich
- Center for Molecular and Behavioral Neuroscience, Rutgers University, Newark, New Jersey, United States of America
| |
Collapse
|
17
|
Brief Report: Early VEPs to Pattern-Reversal in Adolescents and Adults with Autism. J Autism Dev Disord 2016; 46:3377-86. [DOI: 10.1007/s10803-016-2880-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
18
|
Guy J, Mottron L, Berthiaume C, Bertone A. The developmental trajectory of contrast sensitivity in autism spectrum disorder. Autism Res 2015; 9:866-78. [PMID: 26613355 DOI: 10.1002/aur.1579] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Accepted: 10/12/2015] [Indexed: 11/07/2022]
Abstract
Autism Spectrum Disorder (ASD) is characterized by a detail-driven visual processing strategy, evidence for which has been based largely on cross-sectional studies in small participant groups of limited age ranges. It is therefore unknown when sensitivity to detailed information emerges and develops in ASD. Contrast sensitivity to sinusoidal gratings of different spatial frequencies (0.5, 1, 2, 4, and 8 cycles per degree (cpd)) was measured for 34 participants with ASD and 55 typically developing participants (aged 6-16 years). Cross-sectional, developmental trajectories were constructed to examine within and between group differences across the range of spatial frequencies tested. Developmental trajectories indicated that sensitivity across low (i.e., 0.5 and 1 cpd) and mid (2 and 4 cpd) spatial frequencies varied by chronological age within each group, with mid frequencies developing at a more significant rate than low frequencies. There was no overall difference between groups in terms of the relationship of sensitivity and age across spatial frequencies, yet the ASD group had an overall lower level of sensitivity. Closer examination revealed that the youngest participants with ASD had a reduced sensitivity for mid frequencies. Moreover, the ASD group showed a statistically significant developmental relationship at 8 cpd, which suggests that a trend for increased sensitivity to early detailed information may manifest beyond the ages tested. These findings demonstrate a differential development of contrast sensitivity for spatial frequencies in ASD and underscore the need to better identify what drives such differences in the "building blocks" of visual perception. Autism Res 2016, 9: 866-878. © 2015 International Society for Autism Research, Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Jacalyn Guy
- Perceptual Neuroscience Laboratory for Autism and Development
- Integrated Program in Neuroscience, McGill University
| | - Laurent Mottron
- Perceptual Neuroscience Laboratory for Autism and Development
- Integrated Program in Neuroscience, McGill University
| | - Claude Berthiaume
- Centre d'excellence en Troubles Envahissants du Développement de l'Université de Montréal (CETEDUM), Hôpital Rivière-des-Prairies
| | - Armando Bertone
- Centre d'excellence en Troubles Envahissants du Développement de l'Université de Montréal (CETEDUM), Hôpital Rivière-des-Prairies
- Department of Educational and Counseling Psychology, School/Applied Child Psychology, McGill University
| |
Collapse
|
19
|
Behavioral evidence for a functional link between low- and mid-level visual perception in the autism spectrum. Neuropsychologia 2015; 77:380-6. [PMID: 26384775 DOI: 10.1016/j.neuropsychologia.2015.09.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Revised: 08/28/2015] [Accepted: 09/11/2015] [Indexed: 11/27/2022]
Abstract
BACKGROUND Most investigations of visuo-perceptual abilities in the Autism Spectrum (AS) are level-specific, using tasks that selectively solicit either lower- (i.e., spatial frequency sensitivity), mid- (i.e., pattern discrimination) or higher-level processes (i.e., face identification) along the visual hierarchy. Less is known about how alterations at one level of processing (i.e., low-level) interact with that of another (i.e., mid-level). The aim of this study was to assess whether manipulating the physical properties (luminance vs texture) of local contour elements of a mid-level, visual pattern interferes with the discrimination of that pattern in a differential manner for individuals with AS. METHODS Twenty-nine AS individuals and thirty control participants (range 14-27 years) were asked to discriminate between perfect circles and Radial Frequency Patterns (RFP) of two, three, five, and 10 radial frequencies (RF), or deformations along the pattern's contour. When RFP have few deformations (<five RF), a global, pattern analysis is needed for shape discrimination. Conversely, when RFP contain many deformations (≥10 RF), discrimination is dependent on the analysis of local deformations along the RFP contour. The effect of manipulating RF on RFP discrimination was assessed for RFP whose local contour elements were defined by either luminance or texture information, the latter previously found less efficiently processed in AS individuals. RESULTS Two separate mixed factorial ANOVAs [2 (Group)×4 (RF)] were conducted on mean deformation thresholds for luminance- and texture-defined conditions. A significant Group×RF interaction was found for the luminance-defined condition where thresholds were higher in the AS group for the two and three RF conditions; no between-group differences were found for the five and 10 RF conditions. A significant main effect of group was identified for the texture-defined condition, where mean thresholds were higher for the AS group across all RF conditions assessed (two, three, five and 10); a Group×RF interaction effect was not found. Performance for each RFP condition was not affected across group by either chronological age or intelligence, as measured by either Weschler scales or Raven Progressive Matrices. CONCLUSIONS The ability of AS individuals to discriminate a circular pattern is differentially affected by the availability (number of deformations along the RFP contour) and type (luminance vs texture) of local, low-level elements defining its contour. Performance is unaffected in AS when RFP discrimination is dependent on the analysis of local deformations of luminance-defined contour elements, but decreased across all RF conditions when local contour elements are texture-defined. These results suggest that efficient pattern perception in AS is functionally related to the efficacy with which its local elements are processed, indicative of an early origin for altered mid-level, pattern perception in AS.
Collapse
|
20
|
Developmental changes in ERP responses to spatial frequencies. PLoS One 2015; 10:e0122507. [PMID: 25799038 PMCID: PMC4370476 DOI: 10.1371/journal.pone.0122507] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 02/16/2015] [Indexed: 11/19/2022] Open
Abstract
Social interaction starts with perception of other persons. One of the first steps in perception is processing of basic information such as spatial frequencies (SF), which represent details and global information. However, although behavioural perception of SF is well investigated, the developmental trajectory of the temporal characteristics of SF processing is not yet well understood. The speed of processing of this basic visual information is crucial, as it determines the speed and possibly accuracy of subsequent visual and social processes. The current study investigated developmental changes in the temporal characteristics of selective processing of high SF (HSF; details) versus low SF (LSF; global). To this end, brain activity was measured using EEG in 108 children aged 3–15 years, while HSF or LSF grating stimuli were presented. Interest was in the temporal characteristics of brain activity related to LSF and HSF processing, specifically at early (N80) or later (P1 or N2) peaks in brain activity. Analyses revealed that from 7–8 years onwards HSF but not LSF stimuli evoked an N80 peak. In younger children, aged 3–8 years, the visual manipulation mainly affected the visual N2 peak. Selective processing of HSF versus LSF thus occurs at a rather late time-point (N2 peak) in young children. Although behavioural research previously showed that 3–6 year-olds can perceive detailed information, the current results point out that selective processing of HSF versus LSF is still delayed in these children. The delayed processing in younger children could impede the use of LSF and HSF for emotional face processing. Thus, the current study is a starting point for understanding changes in basic visual processing which underlie social development.
Collapse
|
21
|
Corradi-Dell'acqua C, Schwartz S, Meaux E, Hubert B, Vuilleumier P, Deruelle C. Neural responses to emotional expression information in high- and low-spatial frequency in autism: evidence for a cortical dysfunction. Front Hum Neurosci 2014; 8:189. [PMID: 24782735 PMCID: PMC3988374 DOI: 10.3389/fnhum.2014.00189] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Accepted: 03/14/2014] [Indexed: 11/21/2022] Open
Abstract
Despite an overall consensus that Autism Spectrum Disorder (ASD) entails atypical processing of human faces and emotional expressions, the role of neural structures involved in early facial processing remains unresolved. An influential model for the neurotypical brain suggests that face processing in the fusiform gyrus and the amygdala is based on both high-spatial frequency (HSF) information carried by a parvocellular pathway, and low-spatial frequency (LSF) information separately conveyed by a magnocellular pathway. Here, we tested the fusiform gyrus and amygdala sensitivity to emotional face information conveyed by these distinct pathways in ASD individuals (and matched Controls). During functional Magnetical Resonance Imaging (fMRI), participants reported the apparent gender of hybrid face stimuli, made by merging two different faces (one in LSF and the other in HSF), out of which one displayed an emotional expression (fearful or happy) and the other was neutral. Controls exhibited increased fusiform activity to hybrid faces with an emotional expression (relative to hybrids composed only with neutral faces), regardless of whether this was conveyed by LSFs or HSFs in hybrid stimuli. ASD individuals showed intact fusiform response to LSF, but not HSF, expressions. Furthermore, the amygdala (and the ventral occipital cortex) was more sensitive to HSF than LSF expressions in Controls, but exhibited an opposite preference in ASD. Our data suggest spared LSF face processing in ASD, while cortical analysis of HSF expression cues appears affected. These findings converge with recent accounts suggesting that ASD might be characterized by a difficulty in integrating multiple local information and cause global processing troubles unexplained by losses in low spatial frequency inputs.
Collapse
Affiliation(s)
- Corrado Corradi-Dell'acqua
- Swiss Center for Affective Sciences, University of Geneva Geneva, Switzerland ; Laboratory for Neurology and Imaging of Cognition, Department of Neuroscience and Clinic of Neurology, University Medical Center Geneva, Switzerland
| | - Sophie Schwartz
- Laboratory for Neurology and Imaging of Cognition, Department of Neuroscience and Clinic of Neurology, University Medical Center Geneva, Switzerland
| | - Emilie Meaux
- Laboratory for Neurology and Imaging of Cognition, Department of Neuroscience and Clinic of Neurology, University Medical Center Geneva, Switzerland
| | - Bénedicte Hubert
- Hôpital Rivière-de-Praires, University of Montréal Montréal, QC, Canada ; CNRS, Institut de Neurosciences de la Timone, Aix-Marseille Université Marseille, France
| | - Patrik Vuilleumier
- Swiss Center for Affective Sciences, University of Geneva Geneva, Switzerland ; Laboratory for Neurology and Imaging of Cognition, Department of Neuroscience and Clinic of Neurology, University Medical Center Geneva, Switzerland
| | - Christine Deruelle
- CNRS, Institut de Neurosciences de la Timone, Aix-Marseille Université Marseille, France
| |
Collapse
|
22
|
Kodish I, Rockhill CM, Webb SJ. ASD: Psychopharmacologic Treatments and Neurophysiologic Underpinnings. Curr Top Behav Neurosci 2014; 21:257-75. [PMID: 24683058 PMCID: PMC4180816 DOI: 10.1007/7854_2014_298] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Autism Spectrum Disorder encompasses a range of neurodevelopmental disorders characterized by early deficits in social communication in addition to restricted and repetitive behaviors. Symptoms are increasingly understood to be associated with abnormalities in the coordination of neuronal assemblies responsible for processing information essential for early adaptive behaviors. Pharmacologic treatments carry evidence for clinically significant benefit of multiple impairing symptoms of ASD, yet these benefits are limited and range across a broad spectrum of medication classes, making it difficult to characterize associated neurochemical impairments. Increasing prevalence of both ASD and its pharmacologic management calls for greater understanding of the neurophysiologic basis of the disorder. This paper reviews underlying alterations in local brain regions and coordination of brain activation patterns during both resting state and task-related processes. We propose that new pharmacologic treatments may focus on realigning trajectories of network specialization across development by working in combination with behavioral treatments to enhance social and emotional learning by bolstering the impact of experience-induced plasticity on neuronal network connectivity.
Collapse
Affiliation(s)
- Ian Kodish
- University of Washington Department of Psychiatry and Behavioral Sciences, Seattle, United States of America
| | | | | |
Collapse
|
23
|
Kornmeier J, Wörner R, Riedel A, Bach M, Tebartz van Elst L. A different view on the checkerboard? Alterations in early and late visually evoked EEG potentials in Asperger observers. PLoS One 2014; 9:e90993. [PMID: 24632708 PMCID: PMC3954585 DOI: 10.1371/journal.pone.0090993] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2013] [Accepted: 02/06/2014] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Asperger Autism is a lifelong psychiatric condition with highly circumscribed interests and routines, problems in social cognition, verbal and nonverbal communication, and also perceptual abnormalities with sensory hypersensitivity. To objectify both lower-level visual and cognitive alterations we looked for differences in visual event-related potentials (EEG) between Asperger observers and matched controls while they observed simple checkerboard stimuli. METHODS In a balanced oddball paradigm checkerboards of two checksizes (0.6° and 1.2°) were presented with different frequencies. Participants counted the occurrence times of the rare fine or rare coarse checkerboards in different experimental conditions. We focused on early visual ERP differences as a function of checkerboard size and the classical P3b ERP component as an indicator of cognitive processing. RESULTS We found an early (100-200 ms after stimulus onset) occipital ERP effect of checkerboard size (dominant spatial frequency). This effect was weaker in the Asperger than in the control observers. Further a typical parietal/central oddball-P3b occurred at 500 ms with the rare checkerboards. The P3b showed a right-hemispheric lateralization, which was more prominent in Asperger than in control observers. DISCUSSION The difference in the early occipital ERP effect between the two groups may be a physiological marker of differences in the processing of small visual details in Asperger observers compared to normal controls. The stronger lateralization of the P3b in Asperger observers may indicate a stronger involvement of the right-hemispheric network of bottom-up attention. The lateralization of the P3b signal might be a compensatory consequence of the compromised early checksize effect. Higher-level analytical information processing units may need to compensate for difficulties in low-level signal analysis.
Collapse
Affiliation(s)
- Juergen Kornmeier
- Institute for Frontier Areas of Psychology and Mental Health, Freiburg, Germany
- Eye Center, Albert-Ludwigs-University of Freiburg, Freiburg, Germany
| | - Rike Wörner
- PPD Germany GmbH & Co Kg, Karlsruhe, Germany
| | - Andreas Riedel
- Section for Experimental Neuropsychiatry, Clinic for Psychiatry & Psychotherapy, Albert-Ludwigs-University of Freiburg, Freiburg, Germany
| | - Michael Bach
- Eye Center, Albert-Ludwigs-University of Freiburg, Freiburg, Germany
| | - Ludger Tebartz van Elst
- Section for Experimental Neuropsychiatry, Clinic for Psychiatry & Psychotherapy, Albert-Ludwigs-University of Freiburg, Freiburg, Germany
| |
Collapse
|
24
|
Rivest JB, Jemel B, Bertone A, McKerral M, Mottron L. Luminance- and texture-defined information processing in school-aged children with autism. PLoS One 2013; 8:e78978. [PMID: 24205355 PMCID: PMC3812000 DOI: 10.1371/journal.pone.0078978] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Accepted: 09/25/2013] [Indexed: 11/19/2022] Open
Abstract
According to the complexity-specific hypothesis, the efficacy with which individuals with autism spectrum disorder (ASD) process visual information varies according to the extensiveness of the neural network required to process stimuli. Specifically, adults with ASD are less sensitive to texture-defined (or second-order) information, which necessitates the implication of several cortical visual areas. Conversely, the sensitivity to simple, luminance-defined (or first-order) information, which mainly relies on primary visual cortex (V1) activity, has been found to be either superior (static material) or intact (dynamic material) in ASD. It is currently unknown if these autistic perceptual alterations are present in childhood. In the present study, behavioural (threshold) and electrophysiological measures were obtained for static luminance- and texture-defined gratings presented to school-aged children with ASD and compared to those of typically developing children. Our behavioural and electrophysiological (P140) results indicate that luminance processing is likely unremarkable in autistic children. With respect to texture processing, there was no significant threshold difference between groups. However, unlike typical children, autistic children did not show reliable enhancements of brain activity (N230 and P340) in response to texture-defined gratings relative to luminance-defined gratings. This suggests reduced efficiency of neuro-integrative mechanisms operating at a perceptual level in autism. These results are in line with the idea that visual atypicalities mediated by intermediate-scale neural networks emerge before or during the school-age period in autism.
Collapse
Affiliation(s)
- Jessica B. Rivest
- University of Montreal Center of Excellence for Pervasive Developmental Disorders (CETEDUM), Montreal, Quebec, Canada
- Centre de Recherche en Neuropsychologie et Cognition (CERNEC) and Department of Psychology, University of Montreal, Montreal, Quebec, Canada
| | - Boutheina Jemel
- Research Laboratory in Neuroscience and Cognitive Electrophysiology, Rivière-des-Prairies Hospital, University of Montreal, Montreal, Quebec, Canada
| | - Armando Bertone
- University of Montreal Center of Excellence for Pervasive Developmental Disorders (CETEDUM), Montreal, Quebec, Canada
| | - Michelle McKerral
- Centre de Recherche en Neuropsychologie et Cognition (CERNEC) and Department of Psychology, University of Montreal, Montreal, Quebec, Canada
| | - Laurent Mottron
- University of Montreal Center of Excellence for Pervasive Developmental Disorders (CETEDUM), Montreal, Quebec, Canada
| |
Collapse
|
25
|
Leonard HC, Annaz D, Karmiloff-Smith A, Johnson MH. Reduced Reliance on Optimal Facial Information for Identity Recognition in Autism Spectrum Disorder. JOURNAL OF COGNITION AND DEVELOPMENT 2013. [DOI: 10.1080/15248372.2012.664592] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
26
|
Frey HP, Molholm S, Lalor EC, Russo NN, Foxe JJ. Atypical cortical representation of peripheral visual space in children with an autism spectrum disorder. Eur J Neurosci 2013; 38:2125-38. [PMID: 23692590 DOI: 10.1111/ejn.12243] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Accepted: 04/03/2013] [Indexed: 11/30/2022]
Abstract
A key feature of early visual cortical regions is that they contain discretely organized retinotopic maps. Titration of these maps must occur through experience, and the fidelity of their spatial tuning will depend on the consistency and accuracy of the eye movement system. Anomalies in fixation patterns and the ballistics of eye movements are well documented in autism spectrum disorder (ASD), with off-center fixations a hallmark of the phenotype. We hypothesized that these atypicalities might affect the development of visuo-spatial maps and specifically that peripheral inputs might receive altered processing in ASD. Using high-density recordings of visual evoked potentials (VEPs) and a novel system-identification approach known as VESPA (visual evoked spread spectrum analysis), we assessed sensory responses to centrally and peripherally presented stimuli. Additionally, input luminance was varied to bias responsiveness to the magnocellular system, given previous suggestions of magnocellular-specific deficits in ASD. Participants were 22 ASD children (7-17 years of age) and 31 age- and performance-IQ-matched neurotypical controls. Both VEP and VESPA responses to central presentations were indistinguishable between groups. In contrast, peripheral presentations resulted in significantly greater early VEP and VESPA amplitudes in the ASD cohort. We found no evidence that anomalous enhancement was restricted to magnocellular-biased responses. The extent of peripheral response enhancement was related to the severity of stereotyped behaviors and restricted interests, cardinal symptoms of ASD. The current results point to differential visuo-spatial cortical mapping in ASD, shedding light on the consequences of peculiarities in gaze and stereotyped visual behaviors often reported by clinicians working with this population.
Collapse
Affiliation(s)
- Hans-Peter Frey
- Department of Pediatrics and Neuroscience, The Sheryl and Daniel R Tishman Cognitive Neurophysiology Laboratory, Children's Evaluation and Rehabilitation Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | | | | | | | | |
Collapse
|
27
|
Dundas E, Gastgeb H, Strauss MS. Left visual field biases when infants process faces: a comparison of infants at high- and low-risk for autism spectrum disorder. J Autism Dev Disord 2013; 42:2659-68. [PMID: 22527700 DOI: 10.1007/s10803-012-1523-y] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
While it is well-known that individuals with autism spectrum disorder (ASD) have difficulties processing faces, very little is known about the origins of these deficits. The current study focused on 6- and 11-month-old infants who were at either high-risk (n = 43) or low-risk (n = 31) for developing ASD based on having a sibling already diagnosed with the disorder. Eye-tracking data were collected while the infants viewed color photographs of faces. Similar to previous studies with both typically developing adults and infants, low-risk infants demonstrated a preference for looking at the left side of the face (known as a left visual field bias) that emerged by 11 months of age. In contrast, high-risk infants did not demonstrate a left visual field bias at either age. Comparisons of the amount of attention given to the eye versus mouth regions indicated no differences between the two risk groups.
Collapse
Affiliation(s)
- Eva Dundas
- Department of Psychology, Carnegie Mellon University, Pittsburgh, PA, USA
| | | | | |
Collapse
|
28
|
Cléry H, Bonnet-Brilhault F, Lenoir P, Barthelemy C, Bruneau N, Gomot M. Atypical visual change processing in children with autism: an electrophysiological study. Psychophysiology 2013; 50:240-52. [PMID: 23316882 DOI: 10.1111/psyp.12006] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2012] [Accepted: 10/21/2012] [Indexed: 10/27/2022]
Abstract
Children with Autism Spectrum Disorder (ASD) may display atypical behaviors in reaction to unattended changes that occur in all sensory modalities. Atypical automatic auditory change processing has been highlighted in ASD via the analysis of mismatch negativity (MMN). The present study investigated visual deviancy detection in children with ASD in order to determine whether unusual reactions to change operate in other sensory modalities. Twelve children with ASD were presented with a passive visual oddball paradigm using dynamic stimuli. Compared to controls, children with ASD showed an earlier visual mismatch response, suggesting a hypersensitivity to visual deviancy. This study is thus consistent with the hypothesis of the existence of "general" atypical change detection processing in children with ASD that might contribute to their intolerance of change.
Collapse
Affiliation(s)
- Helen Cléry
- UMR 930 Imagerie et Cerveau, Inserm, Université François Rabelais de Tours, CHRU de Tours, France
| | | | | | | | | | | |
Collapse
|
29
|
van den Boomen C, van der Smagt MJ, Kemner C. Keep your eyes on development: the behavioral and neurophysiological development of visual mechanisms underlying form processing. Front Psychiatry 2012; 3:16. [PMID: 22416236 PMCID: PMC3299398 DOI: 10.3389/fpsyt.2012.00016] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2011] [Accepted: 02/17/2012] [Indexed: 11/16/2022] Open
Abstract
Visual form perception is essential for correct interpretation of, and interaction with, our environment. Form perception depends on visual acuity and processing of specific form characteristics, such as luminance contrast, spatial frequency, color, orientation, depth, and even motion information. As other cognitive processes, form perception matures with age. This paper aims at providing a concise overview of our current understanding of the typical development, from birth to adulthood, of form-characteristic processing, as measured both behaviorally and neurophysiologically. Two main conclusions can be drawn. First, the current literature conveys that for most reviewed characteristics a developmental pattern is apparent. These trajectories are discussed in relation to the organization of the visual system. The second conclusion is that significant gaps in the literature exist for several age-ranges. To complete our understanding of the typical and, by consequence, atypical development of visual mechanisms underlying form processing, future research should uncover these missing segments.
Collapse
Affiliation(s)
- C van den Boomen
- Department of Experimental Psychology, Helmholtz Institute, Utrecht University Utrecht, Netherlands
| | | | | |
Collapse
|
30
|
Vlamings PHJM, Jonkman LM, van Daalen E, van der Gaag RJ, Kemner C. Basic abnormalities in visual processing affect face processing at an early age in autism spectrum disorder. Biol Psychiatry 2010; 68:1107-13. [PMID: 20728876 DOI: 10.1016/j.biopsych.2010.06.024] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2010] [Revised: 05/21/2010] [Accepted: 06/15/2010] [Indexed: 11/15/2022]
Abstract
BACKGROUND A detailed visual processing style has been noted in autism spectrum disorder (ASD); this contributes to problems in face processing and has been directly related to abnormal processing of spatial frequencies (SFs). Little is known about the early development of face processing in ASD and the relation with abnormal SF processing. We investigated whether young ASD children show abnormalities in low spatial frequency (LSF, global) and high spatial frequency (HSF, detailed) processing and explored whether these are crucially involved in the early development of face processing. METHODS Three- to 4-year-old children with ASD (n = 22) were compared with developmentally delayed children without ASD (n = 17). Spatial frequency processing was studied by recording visual evoked potentials from visual brain areas while children passively viewed gratings (HSF/LSF). In addition, children watched face stimuli with different expressions, filtered to include only HSF or LSF. RESULTS Enhanced activity in visual brain areas was found in response to HSF versus LSF information in children with ASD, in contrast to control subjects. Furthermore, facial-expression processing was also primarily driven by detail in ASD. CONCLUSIONS Enhanced visual processing of detailed (HSF) information is present early in ASD and occurs for neutral (gratings), as well as for socially relevant stimuli (facial expressions). These data indicate that there is a general abnormality in visual SF processing in early ASD and are in agreement with suggestions that a fast LSF subcortical face processing route might be affected in ASD. This could suggest that abnormal visual processing is causative in the development of social problems in ASD.
Collapse
|
31
|
Abstract
Adolescents with autism spectrum disorders (ASD) and typically developing (TD) controls underwent a rigorous psychophysical assessment that measured contrast sensitivity to seven spatial frequencies (0.5-20 cycles/degree). A contrast sensitivity function (CSF) was then fitted for each participant, from which four measures were obtained: visual acuity, peak spatial frequency, peak contrast sensitivity, and contrast sensitivity at a low spatial frequency. There were no group differences on any of the four CSF measures, indicating no differential spatial frequency processing in ASD. Although it has been suggested that detail-oriented visual perception in individuals with ASD may be a result of differential sensitivities to low versus high spatial frequencies, the current study finds no evidence to support this hypothesis.
Collapse
|
32
|
Vision in autism spectrum disorders. Vision Res 2009; 49:2705-39. [PMID: 19682485 DOI: 10.1016/j.visres.2009.08.005] [Citation(s) in RCA: 539] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2009] [Revised: 08/04/2009] [Accepted: 08/04/2009] [Indexed: 12/28/2022]
Abstract
Autism spectrum disorders (ASDs) are developmental disorders which are thought primarily to affect social functioning. However, there is now a growing body of evidence that unusual sensory processing is at least a concomitant and possibly the cause of many of the behavioural signs and symptoms of ASD. A comprehensive and critical review of the phenomenological, empirical, neuroscientific and theoretical literature pertaining to visual processing in ASD is presented, along with a brief justification of a new theory which may help to explain some of the data, and link it with other current hypotheses about the genetic and neural aetiologies of this enigmatic condition.
Collapse
|
33
|
Milne E, Scope A, Pascalis O, Buckley D, Makeig S. Independent component analysis reveals atypical electroencephalographic activity during visual perception in individuals with autism. Biol Psychiatry 2009; 65:22-30. [PMID: 18774554 DOI: 10.1016/j.biopsych.2008.07.017] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2007] [Revised: 07/13/2008] [Accepted: 07/24/2008] [Indexed: 11/17/2022]
Abstract
BACKGROUND Individuals with autistic spectrum disorder (ASD) experience atypical visual perception, yet the etiology of this remains unknown. The aim of this study was to investigate the neural correlates of visual perception in individuals with and without ASD by carrying out a detailed analysis of the dynamic brain processes elicited by perception of a simple visual stimulus. METHODS We investigated perception in 20 individuals with ASD and 20 control subjects with electroencephalography (EEG). Visual evoked potentials elicited by Gabor patches of varying spatial frequency and stimulus-induced changes in alpha- and gamma-frequency bands of independent components were compared in those with and without ASD. RESULTS By decomposing the EEG data into independent components, we identified several processes that contributed to the average event related potential recorded at the scalp. Differences between the ASD and control groups were found only in some of these processes. Specifically, in those components that were in or near the striate or extrastriate cortex, stimulus spatial frequency exerted a smaller effect on induced increases in alpha- and gamma-band power, and time to peak alpha-band power was reduced, in the participants with ASD. Induced alpha-band power of components that were in or near the cingulate gyrus was increased in the participants with ASD, and the components that were in or near the parietal cortex did not differ between the two groups. CONCLUSIONS Atypical processing is evident in individuals with ASD during perception of simple visual stimuli. The implications of these data for existing theories of atypical perception in ASD are discussed.
Collapse
Affiliation(s)
- Elizabeth Milne
- Department of Psychology, The University of Sheffield, Sheffield, United Kingdom.
| | | | | | | | | |
Collapse
|
34
|
de Jong MC, van Engeland H, Kemner C. Attentional effects of gaze shifts are influenced by emotion and spatial frequency, but not in autism. J Am Acad Child Adolesc Psychiatry 2008; 47:443-454. [PMID: 18356706 PMCID: PMC7616329 DOI: 10.1097/chi.0b013e31816429a6] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE Impaired gaze following is an important hallmark of autism spectrum disorders (ASDs) in clinical settings. Yet, ASD subjects perform normally on laboratory tasks involving gaze shifts. We investigated this contradiction, hypothesizing that impaired gaze following in ASDs is not related to basic impairments in attention orienting but to impaired emotion perception and abnormal processing of spatial frequencies (i.e., local and global information). METHOD We tested 30 high-functioning, school-age children with ASDs and 30 age- and IQ-matched controls on a task involving gaze shifts that cue the location of targets. The cueing faces differed in emotionality and were filtered for different spatial frequencies. We recorded behavioral responses (reaction times) and brain responses (event-related potentials). RESULTS ASD subjects performed normally when neutral faces were used. However, emotional faces elicited modified face and gaze cue processing in control subjects, but not in the ASD subjects. Furthermore, the control group was biased toward the use of low spatial frequencies (global information) to process gaze cues, whereas the ASD group was biased toward the use of high spatial frequencies (local information). CONCLUSIONS We conclude that impaired gaze following in ASDs is related to impaired emotion processing. Moreover, ASD subjects show an abnormal reliance on local information to process gaze cues.
Collapse
Affiliation(s)
- Maartje Cathelijne de Jong
- The authors are with the Rudolf Magnus Institute of Neuroscience, Department of Child and Adolescent Psychiatry, University Medical Center Utrecht, the Netherlands..
| | - Herman van Engeland
- The authors are with the Rudolf Magnus Institute of Neuroscience, Department of Child and Adolescent Psychiatry, University Medical Center Utrecht, the Netherlands
| | - Chantal Kemner
- The authors are with the Rudolf Magnus Institute of Neuroscience, Department of Child and Adolescent Psychiatry, University Medical Center Utrecht, the Netherlands
| |
Collapse
|
35
|
Coherent versus Component Motion Perception in Autism Spectrum Disorder. J Autism Dev Disord 2007; 38:941-9. [DOI: 10.1007/s10803-007-0467-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2007] [Accepted: 09/20/2007] [Indexed: 11/25/2022]
|
36
|
Boeschoten MA, Kenemans JL, van Engeland H, Kemner C. Face processing in Pervasive Developmental Disorder (PDD): the roles of expertise and spatial frequency. J Neural Transm (Vienna) 2007; 114:1619-29. [PMID: 17636350 DOI: 10.1007/s00702-007-0780-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2006] [Accepted: 06/13/2007] [Indexed: 10/23/2022]
Abstract
Both a reduced face expertise and a basic abnormality in visual information, e.g. spatial frequency, processing have been proposed as possible causes of the abnormal face processing in Pervasive Developmental Disorder (PDD). This study investigated both the roles of expertise and spatial frequency for face processing in PDD. Event-related potentials (ERPs) and dipole sources were measured in response to (upright/inverted) high- and low-pass filtered faces, houses, and stimuli for which children with PDD were experts. ERP analyses for specific posterior electrodes showed no differences between children with PDD and matched controls, but source analyses did. These showed that controls activated specialized brain sources for the processing of faces, which was dependent on low spatial frequency content. However, children with PDD did not. Importantly, present results argue against the idea that this is due to a reduced face expertise on the part of the children with PDD, but instead support an abnormality in spatial frequency processing.
Collapse
Affiliation(s)
- M A Boeschoten
- Department of Child and Adolescent Psychiatry, Rudolf Magnus Institute of Neuroscience, University Medical Center Utrecht, Utrecht, The Netherlands.
| | | | | | | |
Collapse
|
37
|
Mottron L, Dawson M, Soulières I, Hubert B, Burack J. Enhanced perceptual functioning in autism: an update, and eight principles of autistic perception. J Autism Dev Disord 2006; 36:27-43. [PMID: 16453071 DOI: 10.1007/s10803-005-0040-7] [Citation(s) in RCA: 1088] [Impact Index Per Article: 57.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
We propose an "Enhanced Perceptual Functioning" model encompassing the main differences between autistic and non-autistic social and non-social perceptual processing: locally oriented visual and auditory perception, enhanced low-level discrimination, use of a more posterior network in "complex" visual tasks, enhanced perception of first order static stimuli, diminished perception of complex movement, autonomy of low-level information processing toward higher-order operations, and differential relation between perception and general intelligence. Increased perceptual expertise may be implicated in the choice of special ability in savant autistics, and in the variability of apparent presentations within PDD (autism with and without typical speech, Asperger syndrome) in non-savant autistics. The overfunctioning of brain regions typically involved in primary perceptual functions may explain the autistic perceptual endophenotype.
Collapse
Affiliation(s)
- Laurent Mottron
- Pervasive Developmental Disorders Specialized Clinic, Rivière-des-Prairies Hospital, & Fernand Seguin Research Center, University of Montréal, Canada.
| | | | | | | | | |
Collapse
|