1
|
Gruenwald J, Sieghartsleitner S, Kapeller C, Scharinger J, Kamada K, Brunner P, Guger C. Characterization of High-Gamma Activity in Electrocorticographic Signals. Front Neurosci 2023; 17:1206120. [PMID: 37609450 PMCID: PMC10440607 DOI: 10.3389/fnins.2023.1206120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 07/10/2023] [Indexed: 08/24/2023] Open
Abstract
Introduction Electrocorticographic (ECoG) high-gamma activity (HGA) is a widely recognized and robust neural correlate of cognition and behavior. However, fundamental signal properties of HGA, such as the high-gamma frequency band or temporal dynamics of HGA, have never been systematically characterized. As a result, HGA estimators are often poorly adjusted, such that they miss valuable physiological information. Methods To address these issues, we conducted a thorough qualitative and quantitative characterization of HGA in ECoG signals. Our study is based on ECoG signals recorded from 18 epilepsy patients while performing motor control, listening, and visual perception tasks. In this study, we first categorize HGA into HGA types based on the cognitive/behavioral task. For each HGA type, we then systematically quantify three fundamental signal properties of HGA: the high-gamma frequency band, the HGA bandwidth, and the temporal dynamics of HGA. Results The high-gamma frequency band strongly varies across subjects and across cognitive/behavioral tasks. In addition, HGA time courses have lowpass character, with transients limited to 10 Hz. The task-related rise time and duration of these HGA time courses depend on the individual subject and cognitive/behavioral task. Task-related HGA amplitudes are comparable across the investigated tasks. Discussion This study is of high practical relevance because it provides a systematic basis for optimizing experiment design, ECoG acquisition and processing, and HGA estimation. Our results reveal previously unknown characteristics of HGA, the physiological principles of which need to be investigated in further studies.
Collapse
Affiliation(s)
- Johannes Gruenwald
- g.tec medical engineering GmbH, Schiedlberg, Austria
- Institute of Computational Perception, Johannes Kepler University, Linz, Austria
| | - Sebastian Sieghartsleitner
- g.tec medical engineering GmbH, Schiedlberg, Austria
- Institute of Computational Perception, Johannes Kepler University, Linz, Austria
| | | | - Josef Scharinger
- Institute of Computational Perception, Johannes Kepler University, Linz, Austria
| | - Kyousuke Kamada
- Department for Neurosurgery, Asahikawa Medical University, Asahikawa, Japan
- Hokashin Group Megumino Hospital, Sapporo, Japan
| | - Peter Brunner
- National Center for Adaptive Neurotechnologies, Albany, NY, United States
- Department of Neurosurgery, Washington University School of Medicine, St. Louis, MO, United States
| | | |
Collapse
|
2
|
Ledesma-Ramírez CI, Hernández-Gloria JJ, Bojorges-Valdez E, Yanez-Suarez O, Piña-Ramírez O. Recurrence quantification analysis during a mental calculation task. CHAOS (WOODBURY, N.Y.) 2023; 33:063154. [PMID: 37368040 DOI: 10.1063/5.0147321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 05/25/2023] [Indexed: 06/28/2023]
Abstract
The identification of brain dynamical changes under different cognitive conditions with noninvasive techniques such as electroencephalography (EEG) is relevant for the understanding of their underlying neural mechanisms. The comprehension of these mechanisms has applications in the early diagnosis of neurological disorders and asynchronous brain computer interfaces. In both cases, there are no reported features that could describe intersubject and intra subject dynamics behavior accurately enough to be applied on a daily basis. The present work proposes the use of three nonlinear features (recurrence rate, determinism, and recurrence times) extracted from recurrence quantification analysis (RQA) to describe central and parietal EEG power series complexity in continuous alternating episodes of mental calculation and rest state. Our results demonstrate a consistent mean directional change of determinism, recurrence rate, and recurrence times between conditions. Increasing values of determinism and recurrence rate were present from the rest state to mental calculation, whereas recurrence times showed the opposite pattern. The analyzed features in the present study showed statistically significant changes between rest and mental calculation states in both individual and population analysis. In general, our study described mental calculation EEG power series as less complex systems in comparison to the rest state. Moreover, ANOVA showed stability of RQA features along time.
Collapse
Affiliation(s)
| | | | - Erik Bojorges-Valdez
- Engineering Studies for Innovation, Universidad Iberoamericana, 01219 Ciudad de México, Mexico
| | - Oscar Yanez-Suarez
- Neuroimage Research Lab, Universidad Autónoma Metropolitana, 09340 Ciudad de México, Mexico
| | - Omar Piña-Ramírez
- Bioinformatics and Statistical Analysis Department, Instituto Nacional de Perinatología, 11000 Ciudad de México, Mexico
| |
Collapse
|
3
|
Udina C, Avtzi S, Mota-Foix M, Rosso AL, Ars J, Kobayashi Frisk L, Gregori-Pla C, Durduran T, Inzitari M. Dual-task related frontal cerebral blood flow changes in older adults with mild cognitive impairment: A functional diffuse correlation spectroscopy study. Front Aging Neurosci 2022; 14:958656. [PMID: 36605362 PMCID: PMC9807627 DOI: 10.3389/fnagi.2022.958656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 11/23/2022] [Indexed: 12/24/2022] Open
Abstract
Introduction In a worldwide aging population with a high prevalence of motor and cognitive impairment, it is paramount to improve knowledge about underlying mechanisms of motor and cognitive function and their interplay in the aging processes. Methods We measured prefrontal cerebral blood flow (CBF) using functional diffuse correlation spectroscopy during motor and dual-task. We aimed to compare CBF changes among 49 older adults with and without mild cognitive impairment (MCI) during a dual-task paradigm (normal walk, 2- forward count walk, 3-backward count walk, obstacle negotiation, and heel tapping). Participants with MCI walked slower during the normal walk and obstacle negotiation compared to participants with normal cognition (NC), while gait speed during counting conditions was not different between the groups, therefore the dual-task cost was higher for participants with NC. We built a linear mixed effects model with CBF measures from the right and left prefrontal cortex. Results MCI (n = 34) showed a higher increase in CBF from the normal walk to the 2-forward count walk (estimate = 0.34, 95% CI [0.02, 0.66], p = 0.03) compared to participants with NC, related to a right- sided activation. Both groups showed a higher CBF during the 3-backward count walk compared to the normal walk, while only among MCI, CFB was higher during the 2-forward count walk. Discussion Our findings suggest a differential prefrontal hemodynamic pattern in older adults with MCI compared to their NC counterparts during the dual-task performance, possibly as a response to increasing attentional demand.
Collapse
Affiliation(s)
- Cristina Udina
- REFiT Barcelona Research Group, Parc Sanitari Pere Virgili and Vall d’Hebron Research Institute (VHIR), Barcelona, Spain,Medicine Department, Universitat Autònoma de Barcelona, Barcelona, Spain,*Correspondence: Cristina Udina,
| | - Stella Avtzi
- ICFO – Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Miriam Mota-Foix
- Statistics and Bioinformatics Unit, Vall d’Hebron Institut de Recerca (VHIR), Barcelona, Spain
| | - Andrea L. Rosso
- Department of Epidemiology, School of Public Health, University of Pittsburgh, Pittsburgh, PA, United States
| | - Joan Ars
- REFiT Barcelona Research Group, Parc Sanitari Pere Virgili and Vall d’Hebron Research Institute (VHIR), Barcelona, Spain,Medicine Department, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Lisa Kobayashi Frisk
- ICFO – Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Clara Gregori-Pla
- ICFO – Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Turgut Durduran
- ICFO – Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, Barcelona, Spain,Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Marco Inzitari
- REFiT Barcelona Research Group, Parc Sanitari Pere Virgili and Vall d’Hebron Research Institute (VHIR), Barcelona, Spain,Faculty of Health Sciences, Universitat Oberta de Catalunya (UOC), Barcelona, Spain
| |
Collapse
|
4
|
Belkacem AN, Kiso K, Uokawa E, Goto T, Yorifuji S, Hirata M. Neural Processing Mechanism of Mental Calculation Based on Cerebral Oscillatory Changes: A Comparison Between Abacus Experts and Novices. Front Hum Neurosci 2020; 14:137. [PMID: 32351373 PMCID: PMC7176303 DOI: 10.3389/fnhum.2020.00137] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 03/23/2020] [Indexed: 11/15/2022] Open
Abstract
Background: Abacus experts could mentally calculate fast some mathematical operations using multi-digit numbers. The temporal dynamics of abacus mental calculation are still unknown although some behavioral and neuroimaging studies have suggested a visuospatial and visuomotor neural process during abacus mental calculation. Therefore, this contribution aims to clarify the significant similarities and the differences between experts and novices by investigating calculation-induced neuromagnetic responses based on cerebral oscillatory changes. Methods: Twelve to 13 healthy abacus experts and 17 non-experts participated in two experimental paradigms using non-invasive neuromagnetic measurements. In experiments 1 and 2, the spatial distribution of oscillatory changes presented mental calculations and temporal frequency profiles during addition while examining multiplication tasks. The MEG data were analyzed using synthetic aperture magnetometry (SAM) with an adaptive beamformer to calculate the group average of the spatial distribution of oscillatory changes and their temporal frequency profiles in source-level analyses. Results: Using a group average of the spatial distribution of oscillatory changes, we observed some common brain activities in both right-handed abacus experts and non-experts. In non-experts, we detected the right dorsolateral prefrontal cortex (DLPFC) and bilateral Intraparietal sulcus (IPS); whereas in experts, detected the bilateral parieto-occipital sulcus (POS), right inferior frontal gyrus (IFG), and left sensorimotor areas mainly. Based on the findings generated, we could propose calculation processing models for both abacus experts and non- experts conveniently. Conclusion: The proposed model of calculation processing in abacus experts and novices revealed that the novices could calculate logically depending on numerical processing in the left IPS. In contrast, abacus experts are utilizing spatial processing using a memorized imaginary abacus, which distributed over the bilateral hemispheres in the IFG and sensorimotor areas.
Collapse
Affiliation(s)
- Abdelkader Nasreddine Belkacem
- Department of Computer and Network Engineering, College of Information Technology, United Arab Emirates University, Al Ain, United Arab Emirates.,Department of Neurological Diagnosis and Restoration, Osaka University Graduate School of Medicine, Suita, Japan
| | - Kanako Kiso
- Department of Neurosurgery, Osaka University Graduate School of Medicine, Suita, Japan
| | - Etsuko Uokawa
- Department of Neurosurgery, Osaka University Graduate School of Medicine, Suita, Japan
| | - Tetsu Goto
- Department of Neurosurgery, Osaka University Graduate School of Medicine, Suita, Japan
| | - Shiro Yorifuji
- Department of Neurosurgery, Osaka University Graduate School of Medicine, Suita, Japan
| | - Masayuki Hirata
- Department of Neurological Diagnosis and Restoration, Osaka University Graduate School of Medicine, Suita, Japan.,Department of Neurosurgery, Osaka University Graduate School of Medicine, Suita, Japan.,Endowed Research Department of Clinical Neuroengineering, Global Center for Medical Engineering and Informatics, Osaka University, Suita, Japan.,Center for Information and Neural Networks (CiNet), National Institute of Information and Communications Technology, Osaka University, Suita, Japan
| |
Collapse
|
5
|
Doi T, Blumen HM, Verghese J, Shimada H, Makizako H, Tsutsumimoto K, Hotta R, Nakakubo S, Suzuki T. Gray matter volume and dual-task gait performance in mild cognitive impairment. Brain Imaging Behav 2018; 11:887-898. [PMID: 27392792 DOI: 10.1007/s11682-016-9562-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Dual-task gait performance is impaired in older adults with mild cognitive impairment, but the brain substrates associated with dual-task gait performance are not well-established. The relationship between gray matter and gait speed under single-task and dual-task conditions (walking while counting backward) was examined in 560 seniors with mild cognitive impairment (non-amnestic mild cognitive impairment: n = 270; mean age = 72.4 yrs., 63.6 % women; amnestic mild cognitive impairment: n = 290; mean age = 73.4 yrs., 45.4 % women). Multivariate covariance-based analyses of magnetic resonance imaging data, adjusted for potential confounders including single-task gait speed, were performed to identify gray matter patterns associated with dual-task gait speed. There were no differences in gait speed or cognitive performance during dual-task gait between individuals with non-amnestic mild cognitive impairment and amnestic mild cognitive impairment. Overall, increased dual-task gait speed was associated with a gray matter pattern of increased volume in medial frontal gyrus, superior frontal gyrus, anterior cingulate, cingulate, precuneus, fusiform gyrus, middle occipital gyrus, inferior temporal gyrus and middle temporal gyrus. The relationship between dual-task gait speed and brain substrates also differed by mild cognitive impairment subtype. Our study revealed a pattern of gray matter regions associated with dual-task performance. Although dual-task gait performance was similar in amnestic and non-amnestic mild cognitive impairment, the gray matter patterns associated with dual-task gait performance differed by mild cognitive impairment subtype. These findings suggest that the brain substrates supporting dual-task gait performance in amnestic and non-amnestic subtypes are different, and consequently may respond differently to interventions, or require different interventions.
Collapse
Affiliation(s)
- Takehiko Doi
- Department of Preventive Gerontology, Center for Gerontology and Social Science, National Center for Geriatrics and Gerontology, 7-430 Morioka-cho, Obu, Aichi, Japan.
- Japan Society for the Promotion of Science, Chiyoda-ku, Tokyo, Japan.
- Department of Neurology, Albert Einstein College of Medicine, Yeshiva University, Bronx, NY, USA.
- Department of Medicine, Albert Einstein College of Medicine, Yeshiva University, Bronx, NY, USA.
| | - Helena M Blumen
- Department of Neurology, Albert Einstein College of Medicine, Yeshiva University, Bronx, NY, USA
- Department of Medicine, Albert Einstein College of Medicine, Yeshiva University, Bronx, NY, USA
| | - Joe Verghese
- Department of Neurology, Albert Einstein College of Medicine, Yeshiva University, Bronx, NY, USA
- Department of Medicine, Albert Einstein College of Medicine, Yeshiva University, Bronx, NY, USA
| | - Hiroyuki Shimada
- Department of Preventive Gerontology, Center for Gerontology and Social Science, National Center for Geriatrics and Gerontology, 7-430 Morioka-cho, Obu, Aichi, Japan
| | - Hyuma Makizako
- Department of Preventive Gerontology, Center for Gerontology and Social Science, National Center for Geriatrics and Gerontology, 7-430 Morioka-cho, Obu, Aichi, Japan
| | - Kota Tsutsumimoto
- Department of Preventive Gerontology, Center for Gerontology and Social Science, National Center for Geriatrics and Gerontology, 7-430 Morioka-cho, Obu, Aichi, Japan
| | - Ryo Hotta
- Department of Preventive Gerontology, Center for Gerontology and Social Science, National Center for Geriatrics and Gerontology, 7-430 Morioka-cho, Obu, Aichi, Japan
| | - Sho Nakakubo
- Department of Preventive Gerontology, Center for Gerontology and Social Science, National Center for Geriatrics and Gerontology, 7-430 Morioka-cho, Obu, Aichi, Japan
| | - Takao Suzuki
- National Center for Geriatrics and Gerontology, 7-430 Morioka-cho, Obu, Aichi, 474-8511, Japan
- Graduate School of Gerontology, J.F. Oberlin University, Machida, Tokyo, Japan
| |
Collapse
|
6
|
Michels L, Muthuraman M, Anwar AR, Kollias S, Leh SE, Riese F, Unschuld PG, Siniatchkin M, Gietl AF, Hock C. Changes of Functional and Directed Resting-State Connectivity Are Associated with Neuronal Oscillations, ApoE Genotype and Amyloid Deposition in Mild Cognitive Impairment. Front Aging Neurosci 2017; 9:304. [PMID: 29081745 PMCID: PMC5646353 DOI: 10.3389/fnagi.2017.00304] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 09/04/2017] [Indexed: 01/03/2023] Open
Abstract
The assessment of effects associated with cognitive impairment using electroencephalography (EEG) power mapping allows the visualization of frequency-band specific local changes in oscillatory activity. In contrast, measures of coherence and dynamic source synchronization allow for the study of functional and effective connectivity, respectively. Yet, these measures have rarely been assessed in parallel in the context of mild cognitive impairment (MCI) and furthermore it has not been examined if they are related to risk factors of Alzheimer’s disease (AD) such as amyloid deposition and apolipoprotein ε4 (ApoE) allele occurrence. Here, we investigated functional and directed connectivities with Renormalized Partial Directed Coherence (RPDC) in 17 healthy controls (HC) and 17 participants with MCI. Participants underwent ApoE-genotyping and Pittsburgh compound B positron emission tomography (PiB-PET) to assess amyloid deposition. We observed lower spectral source power in MCI in the alpha and beta bands. Coherence was stronger in HC than MCI across different neuronal sources in the delta, theta, alpha, beta and gamma bands. The directed coherence analysis indicated lower information flow between fronto-temporal (including the hippocampus) sources and unidirectional connectivity in MCI. In MCI, alpha and beta RPDC showed an inverse correlation to age and gender; global amyloid deposition was inversely correlated to alpha coherence, RPDC and beta and gamma coherence. Furthermore, the ApoE status was negatively correlated to alpha coherence and RPDC, beta RPDC and gamma coherence. A classification analysis of cognitive state revealed the highest accuracy using EEG power, coherence and RPDC as input. For this small but statistically robust (Bayesian power analyses) sample, our results suggest that resting EEG related functional and directed connectivities are sensitive to the cognitive state and are linked to ApoE and amyloid burden.
Collapse
Affiliation(s)
- Lars Michels
- Clinic of Neuroradiology, University Hospital of ZurichZurich, Switzerland.,MR-Center, University Children's Hospital ZurichZurich, Switzerland
| | - Muthuraman Muthuraman
- Clinic for Neurology, University of KielKiel, Germany.,Clinic for Neurology, University of MainzMainz, Germany
| | - Abdul R Anwar
- Clinic for Neurology, University of KielKiel, Germany
| | - Spyros Kollias
- Clinic of Neuroradiology, University Hospital of ZurichZurich, Switzerland
| | - Sandra E Leh
- Division of Psychiatry Research and Psychogeriatric Medicine, University of ZurichZurich, Switzerland
| | - Florian Riese
- Division of Psychiatry Research and Psychogeriatric Medicine, University of ZurichZurich, Switzerland
| | - Paul G Unschuld
- Division of Psychiatry Research and Psychogeriatric Medicine, University of ZurichZurich, Switzerland
| | - Michael Siniatchkin
- Institute of Medical Psychology and Medical Sociology, Christian-Albrechts-University of KielKiel, Germany
| | - Anton F Gietl
- Division of Psychiatry Research and Psychogeriatric Medicine, University of ZurichZurich, Switzerland
| | - Christoph Hock
- Division of Psychiatry Research and Psychogeriatric Medicine, University of ZurichZurich, Switzerland
| |
Collapse
|