1
|
Vergani AA, Mazzeo S, Moschini V, Burali R, Lassi M, Amato LG, Carpaneto J, Salvestrini G, Fabbiani C, Giacomucci G, Morinelli C, Emiliani F, Scarpino M, Bagnoli S, Ingannato A, Nacmias B, Padiglioni S, Sorbi S, Bessi V, Grippo A, Mazzoni A. Event-related potential markers of subjective cognitive decline and mild cognitive impairment during a sustained visuo-attentive task. Neuroimage Clin 2025; 45:103760. [PMID: 40023055 PMCID: PMC11919406 DOI: 10.1016/j.nicl.2025.103760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 02/11/2025] [Accepted: 02/16/2025] [Indexed: 03/04/2025]
Abstract
Subjective cognitive decline (SCD), mild cognitive impairment (MCI), and Alzheimer's disease stages lack well-defined electrophysiological correlates, creating a critical gap in the identification of robust biomarkers for early diagnosis and intervention. In this study, we analysed event-related potentials (ERPs) recorded during a sustained visual attention task in a cohort of 178 individuals (119 SCD, 40 MCI, and 19 healthy subjects, HS) to investigate sensory and cognitive processing alterations associated with these conditions. SCD patients exhibited significant attenuation in both sensory (P1, N1, P2) and cognitive (P300, P600, P900) components compared to HS, with cognitive components showing performance-related gains. In contrast, MCI patients did not show a further decrease in any ERP component compared to SCD. Instead, they exhibited compensatory enhancements, reversing the downward trend observed in SCD. This compensation resulted in a non-monotonic pattern of ERP alterations across clinical conditions, suggesting that MCI patients engage neural mechanisms to counterbalance sensory and cognitive deficits. These findings support the use of electrophysiological markers in support of medical decision-making, enhancing personalized prognosis and guiding targeted interventions in cognitive decline.
Collapse
Affiliation(s)
- A A Vergani
- The BioRobotics Institute, Sant'Anna School of Advanced Studies, viale Rinaldo Piaggio 34, 56025 Pontedera-Pisa, Italy; Department of Excellence in Robotics and AI, Sant'Anna School of Advanced Studies, viale Rinaldo Piaggio 34, 56025 Pontedera-Pisa, Italy
| | - S Mazzeo
- Research and Innovation Centre for Dementia-CRIDEM, Azienda Ospedaliero-Universitaria Careggi, Largo Brambilla 3, Florence 50134, Italy; Vita-Salute San Raffaele University, Via Olgettina, 58, 20132 Milano, Italy; IRCCS Policlinico San Donato, Piazza Edmondo Malan, 2, 20097 San Donato Milanese, Italy
| | - V Moschini
- Research and Innovation Centre for Dementia-CRIDEM, Azienda Ospedaliero-Universitaria Careggi, Largo Brambilla 3, Florence 50134, Italy
| | - R Burali
- IRCCS Fondazione Don Carlo Gnocchi, via di Scandicci, 269, 50143 Florence, Italy
| | - M Lassi
- The BioRobotics Institute, Sant'Anna School of Advanced Studies, viale Rinaldo Piaggio 34, 56025 Pontedera-Pisa, Italy; Department of Excellence in Robotics and AI, Sant'Anna School of Advanced Studies, viale Rinaldo Piaggio 34, 56025 Pontedera-Pisa, Italy
| | - L G Amato
- The BioRobotics Institute, Sant'Anna School of Advanced Studies, viale Rinaldo Piaggio 34, 56025 Pontedera-Pisa, Italy; Department of Excellence in Robotics and AI, Sant'Anna School of Advanced Studies, viale Rinaldo Piaggio 34, 56025 Pontedera-Pisa, Italy
| | - J Carpaneto
- The BioRobotics Institute, Sant'Anna School of Advanced Studies, viale Rinaldo Piaggio 34, 56025 Pontedera-Pisa, Italy; Department of Excellence in Robotics and AI, Sant'Anna School of Advanced Studies, viale Rinaldo Piaggio 34, 56025 Pontedera-Pisa, Italy
| | - G Salvestrini
- IRCCS Fondazione Don Carlo Gnocchi, via di Scandicci, 269, 50143 Florence, Italy
| | - C Fabbiani
- Department of Neuroscience, Psychology, Drug Research and Child Health, Azienda Ospedaliero-Universitaria Careggi, Largo Brambilla 3, Florence 50134, Italy; IRCCS Fondazione Don Carlo Gnocchi, via di Scandicci, 269, 50143 Florence, Italy
| | - G Giacomucci
- Department of Neuroscience, Psychology, Drug Research and Child Health, Azienda Ospedaliero-Universitaria Careggi, Largo Brambilla 3, Florence 50134, Italy; Research and Innovation Centre for Dementia-CRIDEM, Azienda Ospedaliero-Universitaria Careggi, Largo Brambilla 3, Florence 50134, Italy
| | - C Morinelli
- Research and Innovation Centre for Dementia-CRIDEM, Azienda Ospedaliero-Universitaria Careggi, Largo Brambilla 3, Florence 50134, Italy
| | - F Emiliani
- Department of Neuroscience, Psychology, Drug Research and Child Health, Azienda Ospedaliero-Universitaria Careggi, Largo Brambilla 3, Florence 50134, Italy
| | - M Scarpino
- IRCCS Fondazione Don Carlo Gnocchi, via di Scandicci, 269, 50143 Florence, Italy
| | - S Bagnoli
- Department of Neuroscience, Psychology, Drug Research and Child Health, Azienda Ospedaliero-Universitaria Careggi, Largo Brambilla 3, Florence 50134, Italy
| | - A Ingannato
- Department of Neuroscience, Psychology, Drug Research and Child Health, Azienda Ospedaliero-Universitaria Careggi, Largo Brambilla 3, Florence 50134, Italy
| | - B Nacmias
- Department of Neuroscience, Psychology, Drug Research and Child Health, Azienda Ospedaliero-Universitaria Careggi, Largo Brambilla 3, Florence 50134, Italy; IRCCS Fondazione Don Carlo Gnocchi, via di Scandicci, 269, 50143 Florence, Italy
| | - S Padiglioni
- Research and Innovation Centre for Dementia-CRIDEM, Azienda Ospedaliero-Universitaria Careggi, Largo Brambilla 3, Florence 50134, Italy
| | - S Sorbi
- Department of Neuroscience, Psychology, Drug Research and Child Health, Azienda Ospedaliero-Universitaria Careggi, Largo Brambilla 3, Florence 50134, Italy; Research and Innovation Centre for Dementia-CRIDEM, Azienda Ospedaliero-Universitaria Careggi, Largo Brambilla 3, Florence 50134, Italy; IRCCS Fondazione Don Carlo Gnocchi, via di Scandicci, 269, 50143 Florence, Italy
| | - V Bessi
- Department of Neuroscience, Psychology, Drug Research and Child Health, Azienda Ospedaliero-Universitaria Careggi, Largo Brambilla 3, Florence 50134, Italy; Research and Innovation Centre for Dementia-CRIDEM, Azienda Ospedaliero-Universitaria Careggi, Largo Brambilla 3, Florence 50134, Italy.
| | - A Grippo
- IRCCS Fondazione Don Carlo Gnocchi, via di Scandicci, 269, 50143 Florence, Italy
| | - A Mazzoni
- The BioRobotics Institute, Sant'Anna School of Advanced Studies, viale Rinaldo Piaggio 34, 56025 Pontedera-Pisa, Italy; Department of Excellence in Robotics and AI, Sant'Anna School of Advanced Studies, viale Rinaldo Piaggio 34, 56025 Pontedera-Pisa, Italy
| |
Collapse
|
2
|
Liao K, Martin LE, Fakorede S, Brooks WM, Burns JM, Devos H. Machine learning based on event-related oscillations of working memory differentiates between preclinical Alzheimer's disease and normal aging. Clin Neurophysiol 2025; 170:1-13. [PMID: 39644878 DOI: 10.1016/j.clinph.2024.11.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 10/11/2024] [Accepted: 11/21/2024] [Indexed: 12/09/2024]
Abstract
OBJECTIVE To apply machine learning approaches on EEG event-related oscillations (ERO) to discriminate preclinical Alzheimer's disease (AD) from age- and sex-matched controls. METHODS Twenty-two cognitively normal preclinical AD participants with elevated amyloid and 21 cognitively normal controls without elevated amyloid completed n-back working memory tasks (n = 0, 1, 2). The absolute and relative power of ERO was extracted using the discrete wavelet transform in the delta, theta, alpha, and beta bands. Four machine learning methods were employed, and classification performance was assessed using three metrics. RESULTS The low-frequency bands produced higher discriminative performances compared to high-frequency bands. The 2-back task yielded the best classification capability among the three tasks. The highest area under the curve value (0.86) was achieved in the 2-back delta band nontarget condition data. The highest accuracy (80.47%) was obtained in the 2-back delta and theta bands nontarget data. The highest F1 score (0.82) was in the 2-back theta band nontarget data. The support vector machine achieved the highest performance among tested classifiers. CONCLUSION This study demonstrates the promise of using machine learning on EEG ERO from working memory tasks to detect preclinical AD. SIGNIFICANCE EEG ERO may reveal pathophysiological differences in the earliest stage of AD when no cognitive impairments are apparent.
Collapse
Affiliation(s)
- Ke Liao
- Hoglund Biomedical Imaging Center, University of Kansas Medical Center, Kansas City, KS, United States.
| | - Laura E Martin
- Hoglund Biomedical Imaging Center, University of Kansas Medical Center, Kansas City, KS, United States; Department of Population Health, University of Kansas Medical Center, Kansas City, KS, United States
| | - Sodiq Fakorede
- Department of Physical Therapy, Rehabilitation Science, and Athletic Training, University of Kansas Medical Center, Kansas City, KS, United States
| | - William M Brooks
- Hoglund Biomedical Imaging Center, University of Kansas Medical Center, Kansas City, KS, United States; Department of Neurology, University of Kansas Medical Center, Kansas City, KS, United States; University of Kansas Alzheimer's Disease Research Center, University of Kansas Medical Center, Kansas City, KS, United States
| | - Jeffrey M Burns
- Department of Neurology, University of Kansas Medical Center, Kansas City, KS, United States; University of Kansas Alzheimer's Disease Research Center, University of Kansas Medical Center, Kansas City, KS, United States
| | - Hannes Devos
- Department of Physical Therapy, Rehabilitation Science, and Athletic Training, University of Kansas Medical Center, Kansas City, KS, United States; University of Kansas Alzheimer's Disease Research Center, University of Kansas Medical Center, Kansas City, KS, United States; Mobility Core, KU Center for Community Access, Rehabilitation Research, Education, and Service (KU-CARES), University of Kansas Medical Center, Kansas City, KS, United States
| |
Collapse
|
3
|
Marselli G, Favieri F, Forte G, Corbo I, Agostini F, Guarino A, Casagrande M. The protective role of cognitive reserve: an empirical study in mild cognitive impairment. BMC Psychol 2024; 12:334. [PMID: 38849930 PMCID: PMC11157959 DOI: 10.1186/s40359-024-01831-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 05/29/2024] [Indexed: 06/09/2024] Open
Abstract
BACKGROUND Mild cognitive impairment (MCI) describes an aging profile characterized by a cognitive decline that is worse than expected in normal aging but less pervasive and critical than full-blown dementia. In the absence of an effective treatment strategy, it is important to identify factors that can protect against progression to dementia. In this field, it is hypothesized that one aspect that may be a protective factor against the neurotypical outcome of dementia is cognitive reserve (CR). Cognitive reserve is the ability to maintain cognitive functionality despite accumulating brain pathology. OBJECTIVES The present study aimed to identify and analyze the differences in CR between healthy adults and patients with MCI. Specifically, it is hypothesized that (i) healthy older adult people have higher CR than older adult people diagnosed with MCI, and (II) CR could predict the classification of subjects into people with or without MCI. METHODS Two hundred forty-three adults (mean age = 60.4, SD = 7.4) participated in the present study and were classified into three groups based on Petersen's MCI criteria: healthy controls (HC), amnestic MCI (aMCI), and non-amnestic MCI (naMCI). The Cognitive Reserve Index questionnaire (CRIq) was administered to assess the level of CR, FINDINGS: Results showed that HC had significantly higher CR scores than participants diagnosed with aMCI and naMCI. Moreover, a binomial logistic regression suggested that low CR was a significant risk factor for the MCI diagnosis. CONCLUSIONS The clinical picture that emerged from the results showed that lower CR could be considered a characteristic of pathological aging, such as MCI.Public significance statement, Since the brain attempts to cope with life-related changes or pathologies, it is fundamental for both clinicians and researchers to investigate further the factors that contribute to brain resilience. As an indirect expression of brain reserve, cognitive reserve may be both a marker and a predictor of adaptive aging.
Collapse
Affiliation(s)
- Giulia Marselli
- Department of Psychology, "Sapienza" University of Rome, Rome, Italy
| | - Francesca Favieri
- Department of Dynamic and Clinical Psychology and Health, "Sapienza" University of Rome, Via degli Apuli 1, Rome, 00184, Italy
| | - Giuseppe Forte
- Department of Dynamic and Clinical Psychology and Health, "Sapienza" University of Rome, Via degli Apuli 1, Rome, 00184, Italy
| | - Ilaria Corbo
- Department of Psychology, "Sapienza" University of Rome, Rome, Italy
| | | | | | - Maria Casagrande
- Department of Dynamic and Clinical Psychology and Health, "Sapienza" University of Rome, Via degli Apuli 1, Rome, 00184, Italy.
| |
Collapse
|
4
|
Balart-Sánchez SA, Bittencourt M, van der Naalt J, Maurits NM. Lower cognitive reserve is related to worse working memory performance in older adults after mTBI. An ERP study. Brain Inj 2024; 38:550-558. [PMID: 38481123 DOI: 10.1080/02699052.2024.2328307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 03/05/2024] [Indexed: 05/15/2024]
Abstract
OBJECTIVE Older adults (OA) after mild traumatic brain injury (mTBI) have a high risk of developing persistent post-injury cognitive impairments. Lower pre-morbid cognitive reserve (CR) is increasingly investigated as a risk factor for cognitive dysfunction in OA. However, how CR protects against effects of mTBI at the brain level remains largely understudied. METHODS We examined 22 OA who sustained mTBI (mean 67.69 years, SD 5.11) in the sub-acute phase and 15 age- and CR-matched healthy OA (mean 68 years, SD 5.55) performing a three-level visual N-back task using electroencephalography. We calculated inverse efficiency scores of performance from accuracy and reaction times. Event-related potentials served as neurocognitive correlates of attentional (P2) and working memory (P3) processing. RESULTS Overall, mTBI OA performed worse than healthy OA (p = 0.031). Lower CR generally decreased performance (p < 0.001). Furthermore, with increasing task difficulty, task performance was more affected by CR (p = 0.004). At the brain level, P2 amplitude was lower in mTBI OA than in healthy OA (p = 0.05). There was no clear effect of CR on P2 or P3 measures. CONCLUSION As mTBI OA with lower CR performed worse on a working-memory task, lower CR may be a risk factor for worse recovery after mTBI in this group.
Collapse
Affiliation(s)
- S A Balart-Sánchez
- Department of Neurology, University of Groningen, University Medical Center Groningen (UMCG), Groningen, The Netherlands
- Research School of Behavioural and Cognitive Neurosciences (BCN), University of Groningen, Groningen, The Netherlands
| | - M Bittencourt
- Department of Neurology, University of Groningen, University Medical Center Groningen (UMCG), Groningen, The Netherlands
- Research School of Behavioural and Cognitive Neurosciences (BCN), University of Groningen, Groningen, The Netherlands
| | - J van der Naalt
- Department of Neurology, University of Groningen, University Medical Center Groningen (UMCG), Groningen, The Netherlands
- Research School of Behavioural and Cognitive Neurosciences (BCN), University of Groningen, Groningen, The Netherlands
| | - N M Maurits
- Department of Neurology, University of Groningen, University Medical Center Groningen (UMCG), Groningen, The Netherlands
- Research School of Behavioural and Cognitive Neurosciences (BCN), University of Groningen, Groningen, The Netherlands
| |
Collapse
|
5
|
Pappalettera C, Carrarini C, Miraglia F, Vecchio F, Rossini PM. Cognitive resilience/reserve: Myth or reality? A review of definitions and measurement methods. Alzheimers Dement 2024; 20:3567-3586. [PMID: 38477378 PMCID: PMC11095447 DOI: 10.1002/alz.13744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 12/27/2023] [Accepted: 12/28/2023] [Indexed: 03/14/2024]
Abstract
INTRODUCTION This review examines the concept of cognitive reserve (CR) in relation to brain aging, particularly in the context of dementia and its early stages. CR refers to an individual's ability to maintain or regain cognitive function despite brain aging, damage, or disease. Various factors, including education, occupation complexity, leisure activities, and genetics are believed to influence CR. METHODS We revised the literature in the context of CR. A total of 842 articles were identified, then we rigorously assessed the relevance of articles based on titles and abstracts, employing a systematic approach to eliminate studies that did not align with our research objectives. RESULTS We evaluate-also in a critical way-the methods commonly used to define and measure CR, including sociobehavioral proxies, neuroimaging, and electrophysiological and genetic measures. The challenges and limitations of these measures are discussed, emphasizing the need for more targeted research to improve the understanding, definition, and measurement of CR. CONCLUSIONS The review underscores the significance of comprehending CR in the context of both normal and pathological brain aging and emphasizes the importance of further research to identify and enhance this protective factor for cognitive preservation in both healthy and neurologically impaired older individuals. HIGHLIGHTS This review examines the concept of cognitive reserve in brain aging, in the context of dementia and its early stages. We have evaluated the methods commonly used to define and measure cognitive reserve. Sociobehavioral proxies, neuroimaging, and electrophysiological and genetic measures are discussed. The review emphasizes the importance of further research to identify and enhance this protective factor for cognitive preservation.
Collapse
Affiliation(s)
- Chiara Pappalettera
- Brain Connectivity LaboratoryDepartment of Neuroscience and NeurorehabilitationIRCCS San Raffaele RomaRomeItaly
- Department of Theoretical and Applied ScienceseCampus UniversityNovedrateItaly
| | - Claudia Carrarini
- Brain Connectivity LaboratoryDepartment of Neuroscience and NeurorehabilitationIRCCS San Raffaele RomaRomeItaly
- Department of NeuroscienceCatholic University of Sacred HeartRomeItaly
| | - Francesca Miraglia
- Brain Connectivity LaboratoryDepartment of Neuroscience and NeurorehabilitationIRCCS San Raffaele RomaRomeItaly
- Department of Theoretical and Applied ScienceseCampus UniversityNovedrateItaly
| | - Fabrizio Vecchio
- Brain Connectivity LaboratoryDepartment of Neuroscience and NeurorehabilitationIRCCS San Raffaele RomaRomeItaly
- Department of Theoretical and Applied ScienceseCampus UniversityNovedrateItaly
| | - Paolo M. Rossini
- Brain Connectivity LaboratoryDepartment of Neuroscience and NeurorehabilitationIRCCS San Raffaele RomaRomeItaly
| |
Collapse
|
6
|
Falkenstein M. Recent Advances in Clinical Applications of P300 and MMN. NEUROMETHODS 2024:1-21. [DOI: 10.1007/978-1-0716-3545-2_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
7
|
Cespón J, Chupina I, Carreiras M. Cognitive reserve counteracts typical neural activity changes related to ageing. Neuropsychologia 2023; 188:108625. [PMID: 37364777 DOI: 10.1016/j.neuropsychologia.2023.108625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 05/13/2023] [Accepted: 06/15/2023] [Indexed: 06/28/2023]
Abstract
Studies have shown that older adults with high Cognitive Reserve (HCR) exhibit better executive functioning than their low CR (LCR) counterparts. However, the neural processes linked to those differences are unclear. This study investigates (1) the neural processes underlying executive functions in older adults with HCR compared to older adults with LCR and (2) how executive control differences between HCR and LCR groups are modulated by increased task difficulty. We recruited 74 participants (37 in each group) with diverse CR levels, as determined by a standardised CR questionnaire. Participants performed two executive control tasks with lower and higher difficulty levels (i.e., Simon and spatial Stroop tasks, respectively) while recording the electroencephalogram. The accuracy on both tasks requiring inhibition of irrelevant information was better in the HCR than the LCR group. Also, in the task with higher difficulty level (i.e., the spatial Stroop task), event-related potential (ERP) latencies associated with inhibition (i.e., frontal N200) and updating of working memory (i.e., P300) were earlier in HCR than LCR. Moreover, the HCR, but not the LCR group, showed larger P300 amplitude in parietal than frontal regions and in the left than right hemisphere, suggesting a posterior to anterior shift of activity and loss of inter-hemispheric asymmetries in LCR participants. These results suggest that high CR counteracts neural activity changes related to ageing. Thus, high levels of CR may be related to maintenance of neural activity patterns typically observed in young adults rather than to deployment of neural compensatory mechanisms.
Collapse
Affiliation(s)
- Jesús Cespón
- BCBL Basque Center on Cognition, Brain, and Language, Mikeletegi Pasealekua, 69, Donostia/San Sebastián, 20009, Spain.
| | - Irina Chupina
- Radboud University, Donders Centre for Cognition, Thomas van Aquinostraat 4, 6525 GD, Nijmegen, the Netherlands
| | - Manuel Carreiras
- BCBL Basque Center on Cognition, Brain, and Language, Mikeletegi Pasealekua, 69, Donostia/San Sebastián, 20009, Spain; Ikerbasque. Basque Foundation for Science, Bilbao, Spain; University of the Basque Country (UPV/EHU). Bilbao, Spain
| |
Collapse
|
8
|
Reiter K, Butts AM, Janecek JK, Correro AN, Nencka A, Agarwal M, Franczak M, Glass Umfleet L. Relationship between cognitive reserve, brain volume, and neuropsychological performance in amnestic and nonamnestic MCI. NEUROPSYCHOLOGY, DEVELOPMENT, AND COGNITION. SECTION B, AGING, NEUROPSYCHOLOGY AND COGNITION 2023; 30:940-956. [PMID: 36573001 DOI: 10.1080/13825585.2022.2161462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 12/16/2022] [Indexed: 12/28/2022]
Abstract
Cognitive Reserve (CR) is a theoretical construct that influences the onset and course of cognitive and structural changes that occur with aging and mild cognitive impairment (MCI). There is a paucity of research that examines the relationship of CR and brain volumes in amnestic (aMCI) and nonamnestic (naMCI) separately. This study is a retrospective chart review of MCI patients who underwent neuropsychological evaluation and brain MRI with NeuroReader™ (NR). NR is an FDA-cleared software that standardizes MRI volumes to a control sample. Classifications of aMCI and naMCI were based on Petersen criteria. CR was measured as education, occupation, and word reading. Data analysis included bivariate correlations between CR, neuropsychological test scores, and NR-brain volumes by MCI subtype. The Benjamini-Hochberg method corrected for multiple comparisons. The sample included 91 participants with aMCI and 41 with naMCI. Within naMCI, positive correlations were observed between CR and whole brain volume, total gray matter, bifrontal, left parietal, left occipital, and bilateral cerebellum. Within aMCI, no significant correlations were observed between CR and brain volumes. Positive correlations with CR were observed in language, attention, and visual learning in both aMCI and naMCI groups. The current study adds to the minimal literature on CR and naMCI. Results revealed that CR is associated with volumetrics in naMCI only, though cognitive findings were similar in both MCI groups. Possible explanations include heterogeneous disease pathologies, disease stage, or a differential influence of CR on volumetrics in MCI. Additional longitudinal and biomarker studies will better elucidate this relationship.
Collapse
Affiliation(s)
- K Reiter
- Cleveland Clinic, Neurological Institute, Cleveland, OH, USA
| | - A M Butts
- Department of Neurology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - J K Janecek
- Department of Neurology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - A N Correro
- Department of Neurology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - A Nencka
- Department of Neurology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - M Agarwal
- Department of Neurology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - M Franczak
- Department of Neurology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - L Glass Umfleet
- Department of Neurology, Medical College of Wisconsin, Milwaukee, WI, USA
| |
Collapse
|
9
|
Buss SS, Fried PJ, Macone J, Zeng V, Zingg E, Santarnecchi E, Pascual-Leone A, Bartrés-Faz D. Greater cognitive reserve is related to lower cortical excitability in healthy cognitive aging, but not in early clinical Alzheimer's disease. Front Hum Neurosci 2023; 17:1193407. [PMID: 37576473 PMCID: PMC10413110 DOI: 10.3389/fnhum.2023.1193407] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 07/05/2023] [Indexed: 08/15/2023] Open
Abstract
Objective To investigate the relationship between cortico-motor excitability and cognitive reserve (CR) in cognitively unimpaired older adults (CU) and in older adults with mild cognitive impairment or mild dementia due to Alzheimer's disease (AD). Methods Data were collected and analyzed from 15 CU and 24 amyloid-positive AD participants aged 50-90 years. A cognitive reserve questionnaire score (CRQ) assessed education, occupation, leisure activities, physical activities, and social engagement. Cortical excitability was quantified as the average amplitude of motor evoked potentials (MEP amplitude) elicited with single-pulse transcranial magnetic stimulation delivered to primary motor cortex. A linear model compared MEP amplitudes between groups. A linear model tested for an effect of CRQ on MEP amplitude across all participants. Finally, separate linear models tested for an effect of CRQ on MEP amplitude within each group. Exploratory analyses tested for effect modification of demographics, cognitive scores, atrophy measures, and CSF measures within each group using nested regression analysis. Results There was no between-group difference in MEP amplitude after accounting for covariates. The primary model showed a significant interaction term of group*CRQ (R2adj = 0.18, p = 0.013), but no main effect of CRQ. Within the CU group, higher CRQ was significantly associated with lower MEP amplitude (R2adj = 0.45, p = 0.004). There was no association in the AD group. Conclusion Lower cortico-motor excitability is related to greater CRQ in CU, but not in AD. Lower MEP amplitudes may reflect greater neural efficiency in cognitively unimpaired older adults. The lack of association seen in AD participants may reflect disruption of the protective effects of CR. Future work is needed to better understand the neurophysiologic mechanisms leading to the protective effects of CR in older adults with and without neurodegenerative disorders.
Collapse
Affiliation(s)
- Stephanie S. Buss
- Division of Cognitive Neurology, Berenson-Allen Center for Noninvasive Brain Stimulation, Beth Israel Deaconess Medical Center, Boston, MA, United States
- Department of Neurology, Harvard Medical School, Boston, MA, United States
| | - Peter J. Fried
- Division of Cognitive Neurology, Berenson-Allen Center for Noninvasive Brain Stimulation, Beth Israel Deaconess Medical Center, Boston, MA, United States
- Department of Neurology, Harvard Medical School, Boston, MA, United States
| | - Joanna Macone
- Division of Cognitive Neurology, Berenson-Allen Center for Noninvasive Brain Stimulation, Beth Israel Deaconess Medical Center, Boston, MA, United States
- Department of Neurology, Harvard Medical School, Boston, MA, United States
| | - Victor Zeng
- Department of Psychiatry, Beth Israel Deaconess Medical Center, Boston, MA, United States
| | - Emma Zingg
- Division of Cognitive Neurology, Berenson-Allen Center for Noninvasive Brain Stimulation, Beth Israel Deaconess Medical Center, Boston, MA, United States
- Program of All-inclusive Care for the Elderly (PACE), Cambridge Health Alliance, Cambridge, MA, United States
| | - Emiliano Santarnecchi
- Division of Cognitive Neurology, Berenson-Allen Center for Noninvasive Brain Stimulation, Beth Israel Deaconess Medical Center, Boston, MA, United States
- Department of Neurology, Harvard Medical School, Boston, MA, United States
- Precision Neuromodulation Program, Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Alvaro Pascual-Leone
- Department of Neurology, Harvard Medical School, Boston, MA, United States
- Deanna and Sidney Wolk Center for Memory Health, Hinda and Arthur Marcus Institute for Aging Research, Hebrew SeniorLife, Boston, MA, United States
| | - David Bartrés-Faz
- Division of Cognitive Neurology, Berenson-Allen Center for Noninvasive Brain Stimulation, Beth Israel Deaconess Medical Center, Boston, MA, United States
- Department of Medicine, Faculty of Medicine and Health Sciences, Institute of Neurosciences, University of Barcelona, Barcelona, Spain
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| |
Collapse
|
10
|
Casagrande CC, Rempe MP, Springer SD, Wilson TW. Comprehensive review of task-based neuroimaging studies of cognitive deficits in Alzheimer's disease using electrophysiological methods. Ageing Res Rev 2023; 88:101950. [PMID: 37156399 PMCID: PMC10261850 DOI: 10.1016/j.arr.2023.101950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 03/27/2023] [Accepted: 05/05/2023] [Indexed: 05/10/2023]
Abstract
With an aging population, cognitive decline and neurodegenerative disorders are an emerging public health crises with enormous, yet still under-recognized burdens. Alzheimer's disease (AD) is the most common type of dementia, and the number of cases is expected to dramatically rise in the upcoming decades. Substantial efforts have been placed into understanding the disease. One of the primary avenues of research is neuroimaging, and while positron emission tomography (PET) and functional magnetic resonance imaging (fMRI) are most common, crucial recent advancements in electrophysiological methods such as magnetoencephalography (MEG) and electroencephalography (EEG) have provided novel insight into the aberrant neural dynamics at play in AD pathology. In this review, we outline task-based M/EEG studies published since 2010 using paradigms probing the cognitive domains most affected by AD, including memory, attention, and executive functioning. Furthermore, we provide important recommendations for adapting cognitive tasks for optimal use in this population and adjusting recruitment efforts to improve and expand future neuroimaging work.
Collapse
Affiliation(s)
- Chloe C Casagrande
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE 68010, USA
| | - Maggie P Rempe
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE 68010, USA; College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Seth D Springer
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE 68010, USA; College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Tony W Wilson
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE 68010, USA; Department of Pharmacology & Neuroscience, Creighton University, Omaha, NE 68178, USA.
| |
Collapse
|
11
|
Devos H, Gustafson KM, Liao K, Ahmadnezhad P, Kuhlmann E, Estes BJ, Martin LE, Mahnken JD, Brooks WM, Burns JM. Effect of Cognitive Reserve on Physiological Measures of Cognitive Workload in Older Adults with Cognitive Impairments. J Alzheimers Dis 2023; 92:141-151. [PMID: 36710677 PMCID: PMC10023364 DOI: 10.3233/jad-220890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
BACKGROUND Cognitive reserve may protect against cognitive decline. OBJECTIVE This cross-sectional study investigated the association between cognitive reserve and physiological measures of cognitive workload in older adults with cognitive impairment. METHODS 29 older adults with cognitive impairment (age: 75±6, 11 (38%) women, MoCA: 20±7) and 19 with normal cognition (age: 74±6; 11 (58%) women; MoCA: 28±2) completed a working memory test of increasing task demand (0-, 1-, 2-back). Cognitive workload was indexed using amplitude and latency of the P3 event-related potential (ERP) at electrode sites Fz, Cz, and Pz, and changes in pupillary size, converted to an index of cognitive activity (ICA). The Cognitive Reserve Index questionnaire (CRIq) evaluated Education, Work Activity, and Leisure Time as a proxy of cognitive reserve. Linear mixed models evaluated the main effects of cognitive status, CRIq, and the interaction effect of CRIq by cognitive status on ERP and ICA. RESULTS The interaction effect of CRIq total score by cognitive status on P3 ERP and ICA was not significant. However, higher CRIq total scores were associated with lower ICA (p = 0.03). The interaction effects of CRIq subscores showed that Work Activity affected P3 amplitude (p = 0.03) and ICA (p = 0.03) differently between older adults with and without cognitive impairments. Similarly, Education affected ICA (p = 0.02) differently between the two groups. No associations were observed between CRIq and P3 latency. CONCLUSION Specific components of cognitive reserve affect cognitive workload and neural efficiency differently in older adults with and without cognitive impairments.
Collapse
Affiliation(s)
- Hannes Devos
- Department of Physical Therapy, Rehabilitation Science, and Athletic Training, University of Kansas Medical Center, Kansas City, KS, USA.,University of Kansas Alzheimer's Disease Research Center, University of Kansas Medical Center, Kansas City, KS, USA
| | - Kathleen M Gustafson
- Department of Neurology, University of Kansas Medical Center, Kansas City, KS, USA.,Hoglund Biomedical Imaging Center, University of Kansas Medical Center, Kansas City, KS, USA
| | - Ke Liao
- Hoglund Biomedical Imaging Center, University of Kansas Medical Center, Kansas City, KS, USA
| | - Pedram Ahmadnezhad
- Department of Physical Therapy, Rehabilitation Science, and Athletic Training, University of Kansas Medical Center, Kansas City, KS, USA
| | - Emily Kuhlmann
- Department of Physical Therapy, Rehabilitation Science, and Athletic Training, University of Kansas Medical Center, Kansas City, KS, USA
| | - Bradley J Estes
- Department of Physical Therapy, Rehabilitation Science, and Athletic Training, University of Kansas Medical Center, Kansas City, KS, USA
| | - Laura E Martin
- Hoglund Biomedical Imaging Center, University of Kansas Medical Center, Kansas City, KS, USA.,Department of Population Health, University of Kansas Medical Center, Kansas City, KS, USA
| | - Jonathan D Mahnken
- University of Kansas Alzheimer's Disease Research Center, University of Kansas Medical Center, Kansas City, KS, USA.,Department of Biostatistics & Data Science, University of Kansas Medical Center, Kansas City, KS, USA
| | - William M Brooks
- University of Kansas Alzheimer's Disease Research Center, University of Kansas Medical Center, Kansas City, KS, USA.,Department of Neurology, University of Kansas Medical Center, Kansas City, KS, USA.,Hoglund Biomedical Imaging Center, University of Kansas Medical Center, Kansas City, KS, USA
| | - Jeffrey M Burns
- University of Kansas Alzheimer's Disease Research Center, University of Kansas Medical Center, Kansas City, KS, USA.,Department of Biostatistics & Data Science, University of Kansas Medical Center, Kansas City, KS, USA
| |
Collapse
|
12
|
Yuan Q, Liang X, Xue C, Qi W, Chen S, Song Y, Wu H, Zhang X, Xiao C, Chen J. Altered anterior cingulate cortex subregional connectivity associated with cognitions for distinguishing the spectrum of pre-clinical Alzheimer's disease. Front Aging Neurosci 2022; 14:1035746. [PMID: 36570538 PMCID: PMC9768430 DOI: 10.3389/fnagi.2022.1035746] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 11/14/2022] [Indexed: 12/12/2022] Open
Abstract
Background Subjective cognitive decline (SCD) and amnestic mild cognitive impairment (aMCI) are considered part of the early progression continuum of Alzheimer's disease (AD). The anterior cingulate cortex (ACC), a hub of information processing and regulation in the brain, plays an essential role in AD pathophysiology. In the present study, we aimed to systematically identify changes in the functional connectivity (FC) of ACC subregions in patients with SCD and aMCI and evaluate the association of these changes with cognition. Materials and methods Functional connectivity (FC) analysis of ACC sub-regions was performed among 66 patients with SCD, 71 patients with aMCI, and 78 healthy controls (HCs). Correlation analyses were performed to examine the relationship between FC of altered ACC subnetworks and cognition. Results Compared to HCs, SCD patients showed increased FC of the bilateral precuneus (PCUN) and caudal ACC, left superior frontal gyrus (SFG) and subgenual ACC, left inferior parietal lobule (IPL) and dorsal ACC, left middle occipital gyrus (MOG) and dorsal ACC, and left middle temporal gyrus (MTG) and subgenual ACC, while aMCI patients showed increased FC of the left inferior frontal gyrus (IFG) and dorsal ACC and left medial frontal gyrus (MFG) and subgenual ACC. Compared to patients with SCD, patients with aMCI showed increased FC of the right MFG and dorsal ACC and left ACC and subgenual ACC, while the left posterior cingulate cortex (PCC) showed decreased FC with the caudal ACC. Moreover, some FC values among the altered ACC subnetworks were significantly correlated with episodic memory and executive function. Conclusion SCD and aMCI, part of the spectrum of pre-clinical AD, share some convergent and divergent altered intrinsic connectivity of ACC subregions. These results may serve as neuroimaging biomarkers of the preclinical phase of AD and provide new insights into the design of preclinical interventions.
Collapse
Affiliation(s)
- Qianqian Yuan
- Department of Radiology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Xuhong Liang
- Department of Radiology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Chen Xue
- Department of Radiology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Wenzhang Qi
- Department of Radiology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Shanshan Chen
- Department of Radiology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Yu Song
- Department of Radiology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Huimin Wu
- Department of Radiology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Xulian Zhang
- Department of Radiology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Chaoyong Xiao
- Department of Radiology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China,*Correspondence: Chaoyong Xiao,
| | - Jiu Chen
- Department of Radiology, Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China,Institute of Medical Imaging and Artificial Intelligence, Nanjing University, Nanjing, China,Medical Imaging Center, The Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China,Jiu Chen,
| |
Collapse
|
13
|
Dautricourt S, Gonneaud J, Landeau B, Calhoun VD, de Flores R, Poisnel G, Bougacha S, Ourry V, Touron E, Kuhn E, Demintz-King H, Marchant NL, Vivien D, de la Sayette V, Lutz A, Chételat G, Arenaza-Urquijo EM, Allais F, André C, Asselineau J, Bejanin A, Champetier P, Chételat G, Chocat A, Dautricourt S, de Flores R, Delarue M, Egret S, Felisatti F, Devouge EF, Frison E, Gonneaud J, Heidmann M, Tran TH, Kuhn E, le Du G, Landeau B, Lefranc V, Lutz A, Mezenge F, Moulinet I, Ourry V, Palix C, Paly L, Poisnel G, Quillard A, Rauchs G, Rehel S, Requier F, Touron E, Vivien D, Ware C, Lugo SB, Klimecki O, Vuilleumier P, Barnhofer T, Collette F, Salmon E, de la Sayette V, Delamillieure P, Batchelor M, Beaugonin A, Gheysen F, Demnitz-King H, Marchant N, Whitfield T, Schimmer C, Wirth M, for the Medit-Ageing Research Group. Dynamic functional connectivity patterns associated with dementia risk. Alzheimers Res Ther 2022; 14:72. [PMID: 35606867 PMCID: PMC9128270 DOI: 10.1186/s13195-022-01006-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 04/06/2022] [Indexed: 12/03/2022]
Abstract
Background This study assesses the relationships between dynamic functional network connectivity (DFNC) and dementia risk. Methods DFNC of the default mode (DMN), salience (SN), and executive control networks was assessed in 127 cognitively unimpaired older adults. Stepwise regressions were performed with dementia risk and protective factors and biomarkers as predictors of DFNC. Results Associations were found between times spent in (i) a “weakly connected” state and lower self-reported engagement in early- and mid-life cognitive activity and higher LDL cholesterol; (ii) a “SN-negatively connected” state and higher blood pressure, higher depression score, and lower body mass index (BMI); (iii) a “strongly connected” state and higher self-reported engagement in early-life cognitive activity, Preclinical Alzheimer’s cognitive composite-5 score, and BMI; and (iv) a “DMN-negatively connected” state and higher self-reported engagement in early- and mid-life stimulating activities and lower LDL cholesterol and blood pressure. The lower number of state transitions was associated with lower brain perfusion. Conclusion DFNC states are differentially associated with dementia risk and could underlie reserve. Supplementary Information The online version contains supplementary material available at 10.1186/s13195-022-01006-7.
Collapse
|
14
|
Reorganization of rich clubs in functional brain networks of dementia with Lewy bodies and Alzheimer's disease. Neuroimage Clin 2021; 33:102930. [PMID: 34959050 PMCID: PMC8856913 DOI: 10.1016/j.nicl.2021.102930] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 11/18/2021] [Accepted: 12/23/2021] [Indexed: 12/12/2022]
Abstract
DLB and AD had the different functional reorganization patterns. Rich club nodes increased in frontal-parietal network in patients with DLB. The rich club nodes in temporal lobe decreased and those in cerebellum increased for AD. Compared with HC, rich club connectivity was enhanced in the DLB and AD groups.
The purpose of this study was to reveal the patterns of reorganization of rich club organization in brain functional networks in dementia with Lewy bodies (DLB) and Alzheimer’s disease (AD). The study found that the rich club node shifts from sensory/somatomotor network to fronto-parietal network in DLB. For AD, the rich club nodes switch between the temporal lobe with obvious structural atrophy and the frontal lobe, parietal lobe and cerebellum with relatively preserved structure and function. In addition, compared with healthy controls, rich club connectivity was enhanced in the DLB and AD groups. The connection strength of DLB patients was related to cognitive assessment. In conclusion, we revealed the different functional reorganization patterns of DLB and AD. The conversion and redistribution of rich club members may play a causal role in disease-specific outcomes. It may be used as a potential biomarker to provide more accurate prevention and treatment strategies.
Collapse
|
15
|
Balart-Sánchez SA, Bittencourt-Villalpando M, van der Naalt J, Maurits NM. Electroencephalography, Magnetoencephalography, and Cognitive Reserve: A Systematic Review. Arch Clin Neuropsychol 2021; 36:1374-1391. [PMID: 33522563 PMCID: PMC8517624 DOI: 10.1093/arclin/acaa132] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 10/20/2020] [Accepted: 12/28/2020] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVE Cognitive reserve (CR) is the capacity to adapt to (future) brain damage without any or only minimal clinical symptoms. The underlying neuroplastic mechanisms remain unclear. Electrocorticography (ECOG), electroencephalography (EEG), and magnetoencephalography (MEG) may help elucidate the brain mechanisms underlying CR, as CR is thought to be related to efficient utilization of remaining brain resources. The purpose of this systematic review is to collect, evaluate, and synthesize the findings on neural correlates of CR estimates using ECOG, EEG, and MEG. METHOD We examined articles that were published from the first standardized definition of CR. Eleven EEG and five MEG cross-sectional studies met the inclusion criteria: They concerned original research, analyzed (M)EEG in humans, used a validated CR estimate, and related (M)EEG to CR. Quality assessment was conducted using an adapted form of the Newcastle-Ottawa scale. No ECOG study met the inclusion criteria. RESULTS A total of 1383 participants from heterogeneous patient, young and older healthy groups were divided into three categories by (M)EEG methodology: Eight (M)EEG studies employed event-related fields or potentials, six studies analyzed brain oscillations at rest (of which one also analyzed a cognitive task), and three studies analyzed brain connectivity. Various CR estimates were employed and all studies compared different (M)EEG measures and CR estimates. Several associations between (M)EEG measures and CR estimates were observed. CONCLUSION Our findings support that (M)EEG measures are related to CR estimates, particularly in healthy individuals. However, the character of this relationship is dependent on the population and task studied, warranting further studies.
Collapse
Affiliation(s)
- Sebastián A Balart-Sánchez
- Department of Neurology, University Medical Center Groningen, University of Groningen, Groningen, 9700 RB, Netherlands
- Research School of Behavioural and Cognitive Neurosciences, University of Groningen, Groningen, 9713 AV, Netherlands
| | - Mayra Bittencourt-Villalpando
- Department of Neurology, University Medical Center Groningen, University of Groningen, Groningen, 9700 RB, Netherlands
- Research School of Behavioural and Cognitive Neurosciences, University of Groningen, Groningen, 9713 AV, Netherlands
| | - Joukje van der Naalt
- Department of Neurology, University Medical Center Groningen, University of Groningen, Groningen, 9700 RB, Netherlands
- Research School of Behavioural and Cognitive Neurosciences, University of Groningen, Groningen, 9713 AV, Netherlands
| | - Natasha M Maurits
- Department of Neurology, University Medical Center Groningen, University of Groningen, Groningen, 9700 RB, Netherlands
- Research School of Behavioural and Cognitive Neurosciences, University of Groningen, Groningen, 9713 AV, Netherlands
| |
Collapse
|
16
|
Fernandez Cruz AL, Chen CM, Sanford R, Collins DL, Brouillette MJ, Mayo NE, Fellows LK. Multimodal neuroimaging markers of variation in cognitive ability in older HIV+ men. PLoS One 2021; 16:e0243670. [PMID: 34314416 PMCID: PMC8315526 DOI: 10.1371/journal.pone.0243670] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 07/12/2021] [Indexed: 01/18/2023] Open
Abstract
OBJECTIVE This study used converging methods to examine the neural substrates of cognitive ability in middle-aged and older men with well-controlled HIV infection. METHODS Seventy-six HIV+ men on antiretroviral treatment completed an auditory oddball task and an inhibitory control (Simon) task while time-locked high-density EEG was acquired; 66 had usable EEG data from one or both tasks; structural MRI was available for 43. We investigated relationships between task-evoked EEG responses, cognitive ability and immunocompromise. We also explored the structural correlates of these EEG markers in the sub-sample with complete EEG and MRI data (N = 27). RESULTS EEG activity was associated with cognitive ability at later (P300) but not earlier stages of both tasks. Only the oddball task P300 was reliably associated with HIV severity (nadir CD4). Source localization confirmed that the tasks engaged partially distinct circuits. Thalamus volume correlated with oddball task P300 amplitude, while globus pallidus volume was related to the P300 in both tasks. INTERPRETATION This is the first study to use task-evoked EEG to identify neural correlates of individual differences in cognition in men living with well-controlled HIV infection, and to explore the structural basis of the EEG markers. We found that EEG responses evoked by the oddball task are more reliably related to cognitive performance than those evoked by the Simon task. We also provide preliminary evidence for a subcortical contribution to the effects of HIV infection severity on P300 amplitudes. These results suggest brain mechanisms and candidate biomarkers for individual differences in cognition in HIV.
Collapse
Affiliation(s)
- Ana Lucia Fernandez Cruz
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
| | - Chien-Ming Chen
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
| | - Ryan Sanford
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
| | - D. Louis Collins
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
| | | | - Nancy E. Mayo
- School of Physical and Occupational Therapy, Division of Clinical Epidemiology, Department of Medicine, McGill University, Montreal, Quebec, Canada
| | - Lesley K. Fellows
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
17
|
Duggan MR, Joshi S, Strupp J, Parikh V. Chemogenetic inhibition of prefrontal projection neurons constrains top-down control of attention in young but not aged rats. Brain Struct Funct 2021; 226:2357-2373. [PMID: 34247267 PMCID: PMC8355172 DOI: 10.1007/s00429-021-02336-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 07/01/2021] [Indexed: 11/25/2022]
Abstract
The prefrontal cortex (PFC) governs top-down control of attention and is known to be vulnerable in aging. Cortical reorganization with increased PFC recruitment is suggested to account for functional compensation. Here, we hypothesized that reduced PFC output would exert differential effects on attentional capacities in young and aged rats, with the latter exhibiting a more robust decline in performance. A chemogenetic approach involving designer receptors exclusively activated by designer drugs was utilized to determine the impact of silencing PFC projection neurons in rats performing an operant attention task. Visual distractors were presented in all behavioral testing sessions to tax attentional resources. Under control conditions, aged rats exhibited impairments in discriminating signals with the shortest duration from non-signal events. Surprisingly, chemogenetic inhibition of PFC output neurons did not worsen performance amongst aged animals. Conversely, significant impairments in attentional capacities were observed in young subjects following such manipulation. Given the involvement of PFC-projecting basal forebrain cholinergic neurons in top-down regulation of attention, amperometric recordings were conducted to measure alterations in prefrontal cholinergic transmission in a separate cohort of young and aged rats. While PFC silencing resulted in a robust attenuation of tonic cholinergic signaling across age groups, the capacity to generate phasic cholinergic transients was impaired only amongst young animals. Collectively, our findings suggest a reduced efficiency of PFC-mediated top-down control of attention and cholinergic system in aging, and that activity of PFC output neurons does not reflect compensation in aged rats, at least in the attention domain.
Collapse
Affiliation(s)
- Michael R Duggan
- Department of Psychology and Neuroscience Program, Temple University, Philadelphia, PA, 19122, USA
| | - Surbhi Joshi
- Department of Psychology and Neuroscience Program, Temple University, Philadelphia, PA, 19122, USA
| | - Jacob Strupp
- Department of Psychology and Neuroscience Program, Temple University, Philadelphia, PA, 19122, USA
| | - Vinay Parikh
- Department of Psychology and Neuroscience Program, Temple University, Philadelphia, PA, 19122, USA.
| |
Collapse
|
18
|
Doan DNT, Ku B, Choi J, Oh M, Kim K, Cha W, Kim JU. Predicting Dementia With Prefrontal Electroencephalography and Event-Related Potential. Front Aging Neurosci 2021; 13:659817. [PMID: 33927610 PMCID: PMC8077968 DOI: 10.3389/fnagi.2021.659817] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 03/19/2021] [Indexed: 11/13/2022] Open
Abstract
Objective: To examine whether prefrontal electroencephalography (EEG) can be used for screening dementia. Methods: We estimated the global cognitive decline using the results of Mini-Mental Status Examination (MMSE), measurements of brain activity from resting-state EEG, responses elicited by auditory stimulation [sensory event-related potential (ERP)], and selective attention tasks (selective-attention ERP) from 122 elderly participants (dementia, 35; control, 87). We investigated that the association between MMSE and each EEG/ERP variable by using Pearson’s correlation coefficient and performing univariate linear regression analysis. Kernel density estimation was used to examine the distribution of each EEG/ERP variable in the dementia and non-dementia groups. Both Univariate and multiple logistic regression analyses with the estimated odds ratios were conducted to assess the associations between the EEG/ERP variables and dementia prevalence. To develop the predictive models, five-fold cross-validation was applied to multiple classification algorithms. Results: Most prefrontal EEG/ERP variables, previously known to be associated with cognitive decline, show correlations with the MMSE score (strongest correlation has |r| = 0.68). Although variables such as the frontal asymmetry of the resting-state EEG are not well correlated with the MMSE score, they indicate risk factors for dementia. The selective-attention ERP and resting-state EEG variables outperform the MMSE scores in dementia prediction (areas under the receiver operating characteristic curve of 0.891, 0.824, and 0.803, respectively). In addition, combining EEG/ERP variables and MMSE scores improves the model predictive performance, whereas adding demographic risk factors do not improve the prediction accuracy. Conclusion: Prefrontal EEG markers outperform MMSE scores in predicting dementia, and additional prediction accuracy is expected when combining them with MMSE scores. Significance: Prefrontal EEG is effective for screening dementia when used independently or in combination with MMSE.
Collapse
Affiliation(s)
- Dieu Ni Thi Doan
- Korea Institute of Oriental Medicine, Daejeon, South Korea.,Korean Convergence Medicine, University of Science and Technology, Daejeon, South Korea
| | - Boncho Ku
- Korea Institute of Oriental Medicine, Daejeon, South Korea
| | - Jungmi Choi
- Human Anti-Aging Standards Research Institute, Uiryeong-gun, South Korea
| | - Miae Oh
- Korea Institute for Health and Social Affairs, Sejong, South Korea
| | - Kahye Kim
- Korea Institute of Oriental Medicine, Daejeon, South Korea
| | - Wonseok Cha
- Human Anti-Aging Standards Research Institute, Uiryeong-gun, South Korea
| | - Jaeuk U Kim
- Korea Institute of Oriental Medicine, Daejeon, South Korea.,Korean Convergence Medicine, University of Science and Technology, Daejeon, South Korea
| |
Collapse
|
19
|
Higher Cognitive Reserve Is Associated with Better Working Memory Performance and Working-Memory-Related P300 Modulation. Brain Sci 2021; 11:brainsci11030308. [PMID: 33804457 PMCID: PMC8000541 DOI: 10.3390/brainsci11030308] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 02/25/2021] [Accepted: 02/26/2021] [Indexed: 12/02/2022] Open
Abstract
This study aims to examine how two levels of cognitive reserve, as evidenced by reading syntactic skill, modify performance and neural activity in a two-load-level (high vs. low) working memory (WM) task. Two groups of participants with different reading skills, high and low, were obtained from clustering analysis. We collected the P300 event-related potential component during the performance of the WM Sternberg task. The high reading performance (HRP) group showed a higher percentage of correct answers than the low reading performance (LRP) group in the negative probes of the WM task, which were probe stimuli not included in the memory set presented immediately before. Both groups showed P300 amplitude modulations, that is, larger WM-related P300 amplitudes for low than for high WM loads. Following the behavioral results, the HRP group displayed smaller WM-related amplitude modulations than the LRP group in the negative probes. The findings together suggest that higher levels of reading skill are associated with improved neural efficiency, which reflects in a better working memory performance.
Collapse
|
20
|
Shi Y, Gu L, Wang Q, Gao L, Zhu J, Lu X, Zhou F, Zhu D, Zhang H, Xie C, Zhang Z. Platelet Amyloid-β Protein Precursor (AβPP) Ratio and Phosphorylated Tau as Promising Indicators for Early Alzheimer's Disease. J Gerontol A Biol Sci Med Sci 2021; 75:664-670. [PMID: 31336382 DOI: 10.1093/gerona/glz005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Indexed: 12/19/2022] Open
Abstract
To identify whether platelet amyloid-β protein precursor (AβPP) ratio, phosphorylated-tau (P-tau) 231, P-tau181, and serine 396 and 404 (Ser396/404) phosphorylated tau are potential peripheral indicators for early Alzheimer's disease (AD). Forty-three amnesic mild cognitive impairment (aMCI) patients and 45 normal controls were recruited. Peripheral venous blood was drawn and platelets were collected and evaluated for potential indicators by Western blot analysis. Subsequent meta-analysis was completed on these selected indicators. In platelets of aMCI patients, the AβPP ratio level was significantly lower and levels of P-tau231 and Ser396/404 phosphorylated tau were significantly higher. Moreover, in aMCI patients, a negative correlation was observed between platelet P-tau231 level and the Trail Making Tests A score, and it was found that higher platelet P-tau231 levels significantly associated with a worse performance of information processing speed. Furthermore, values of the area under the curve of platelet P-tau231 and Ser396/404 phosphorylated tau were 0.624 and 0.657, respectively. Finally, a meta-analysis indicated platelet AβPP ratio level was significantly lower in MCI cohorts. In conclusion, platelets of aMCI subjects showed a lower AβPP ratio and higher levels of P-tau231 and Ser396/404 phosphorylated tau when compared to normal controls, which may be critical in identifying early AD.
Collapse
Affiliation(s)
- Yachen Shi
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | - Lihua Gu
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | - Qing Wang
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | - Lijuan Gao
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | - Jianli Zhu
- Department of Psychology, Xinxiang Medical University, Xinxiang, Henan, China
| | - Xiang Lu
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | - Fangfang Zhou
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | - Dan Zhu
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | - Haisan Zhang
- Department of Psychology, Xinxiang Medical University, Xinxiang, Henan, China
| | - Chunming Xie
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | - Zhijun Zhang
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, China.,Department of Psychology, Xinxiang Medical University, Xinxiang, Henan, China
| |
Collapse
|
21
|
Lee SY, Kang JM, Kim DJ, Woo SK, Lee JY, Cho SJ. Cognitive Reserve, Leisure Activity, and Neuropsychological Profile in the Early Stage of Cognitive Decline. Front Aging Neurosci 2020; 12:590607. [PMID: 33192487 PMCID: PMC7649371 DOI: 10.3389/fnagi.2020.590607] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Accepted: 09/30/2020] [Indexed: 11/13/2022] Open
Abstract
In older adults with normal cognition, cognitive reserve (CR) is known to be associated with the neuropsychological profile. We investigated the association between comprehensive CR and detailed neuropsychological profile in the early stage of cognitive decline. Fifty-five participants with mild cognitive impairment or subjective cognitive decline completed the cognitive reserve index questionnaire (CRIq) that yielded total, education, working activity, and leisure time scores (CRI-Total, CRI-Education, CRI-Working activity, and CRI-Leisure time, respectively). Mini-mental state examination (MMSE) and detailed neuropsychological evaluation were performed. Psychiatric symptom scales were applied to measure depression, apathy, positive or negative affect, and quality of life. Correlation and linear regression analyses of the variables were performed. The effect of CR-Education, CRI-Working activity, and CRI-Leisure time on the composite cognitive score was determined using a multivariable regression model. We observed that for CRI-Total (B = 3.00, p = 0.005), CRI-Education (B = 3.39, p = 0.002), and CRI-Leisure time (B = 2.56, p = 0.015), CR correlated with MMSE scores, while only CRI-Leisure time associated with the naming ability (B = 2.20, p = 0.033) in the detailed neuropsychological test results of the participants. Multivariable regression model also indicated that among CRI subscores, CRI-Leisure time directly affects the composite cognitive score (β = 0.32, p = 0.011). We found that in the early stage of cognitive decline in older adults, comprehensive CR was associated with global cognition, and only leisure activity was identified to be associated with the detailed neuropsychological profile including naming ability. These results may imply the positive effect of leisure activity on cognitive function in the early stages of cognitive decline.
Collapse
Affiliation(s)
- Sook Young Lee
- Department of Psychiatry, Gil Medical Center, Gachon University College of Medicine, Incheon, South Korea
| | - Jae Myeong Kang
- Department of Psychiatry, Gil Medical Center, Gachon University College of Medicine, Incheon, South Korea
| | - Da Jeong Kim
- Department of Psychiatry, Gil Medical Center, Gachon University College of Medicine, Incheon, South Korea
| | - Soo Kyun Woo
- Department of Psychiatry, Gil Medical Center, Gachon University College of Medicine, Incheon, South Korea
| | - Jun-Young Lee
- Department of Neuropsychiatry, SMG-SNU Boramae Medical Center, Seoul National University College of Medicine, Seoul, South Korea
| | - Seong-Jin Cho
- Department of Psychiatry, Gil Medical Center, Gachon University College of Medicine, Incheon, South Korea
| |
Collapse
|
22
|
Paitel ER, Samii MR, Nielson KA. A systematic review of cognitive event-related potentials in mild cognitive impairment and Alzheimer's disease. Behav Brain Res 2020; 396:112904. [PMID: 32941881 DOI: 10.1016/j.bbr.2020.112904] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 08/29/2020] [Accepted: 09/05/2020] [Indexed: 01/28/2023]
Abstract
This systematic review examined whether event-related potentials (ERPs) during higher cognitive processing can detect subtle, early signs of neurodegenerative disease. Original, empirical studies retrieved from PsycINFO and PubMed were reviewed if they analyzed patterns in cognitive ERPs (≥150 ms post-stimulus) differentiating mild cognitive impairment (MCI), Alzheimer's disease (AD), or cognitively intact elders who carry AD risk through the Apolipoprotein-E ε4 allele (ε4+) from healthy older adult controls (HC). The 100 studies meeting inclusion criteria (MCI = 47; AD = 47; ε4+ = 6) analyzed N200, P300, N400, and occasionally, later components. While there was variability across studies, patterns of reduced amplitude and delayed latency were apparent in pathological aging, consistent with AD-related brain atrophy and cognitive impairment. These effects were particularly evident in advanced disease progression (i.e., AD > MCI) and in later ERP components measured during complex tasks. Although ERP studies in intact ε4+ elders are thus far scarce, a similar pattern of delayed latency was notable, along with a contrasting pattern of increased amplitude, consistent with compensatory neural activation. This limited work suggests ERPs might be able to index early neural changes indicative of future cognitive decline in otherwise healthy elders. As ERPs are also accessible and affordable relative to other neuroimaging methods, their addition to cognitive assessment might substantively enhance early identification and characterization of neural dysfunction, allowing opportunity for earlier differential diagnosis and targeting of intervention. To evaluate this possibility there is urgent need for well-powered studies assessing late cognitive ERPs during complex tasks, particularly in healthy elders at risk for cognitive decline.
Collapse
Affiliation(s)
| | | | - Kristy A Nielson
- Marquette University, Department of Psychology, United States; Medical College of Wisconsin, Department of Neurology and the Center for Imaging Research, United States.
| |
Collapse
|
23
|
Šneidere K, Mondini S, Stepens A. Role of EEG in Measuring Cognitive Reserve: A Rapid Review. Front Aging Neurosci 2020; 12:249. [PMID: 33005143 PMCID: PMC7479054 DOI: 10.3389/fnagi.2020.00249] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 07/20/2020] [Indexed: 12/28/2022] Open
Abstract
This review aimed to systematically summarize the possible neural correlates of cognitive reserve thus giving an insight into prospective biomarkers for the concept. A total of 44 studies were analyzed following PRISMA guidelines and four studies were included in the further analysis. The results indicated a relationship between P3b waveform and cognitive reserve, while more ambiguous outcomes were found when conducting resting-state EEG. This review indicates the first steps into assessing CR using physiological measures; however, more research is needed for deeper understanding of its underlying mechanisms.
Collapse
Affiliation(s)
- Kristı̄ne Šneidere
- Military Medicine Research and Study Centre, Rı̄ga Stradiņš University, Riga, Latvia
- Department of Health Psychology and Paedagogy, Rı̄ga Stradiņš University, Riga, Latvia
| | - Sara Mondini
- Department of Philosophy, Sociology, Pedagogy and Applied Psychology, University of Padua, Padua, Italy
| | - Ainārs Stepens
- Military Medicine Research and Study Centre, Rı̄ga Stradiņš University, Riga, Latvia
| |
Collapse
|
24
|
Probing the relationship between late endogenous ERP components with fluid intelligence in healthy older adults. Sci Rep 2020; 10:11167. [PMID: 32636427 PMCID: PMC7341872 DOI: 10.1038/s41598-020-67924-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 04/08/2020] [Indexed: 11/23/2022] Open
Abstract
The world population is rapidly aging, bringing together the necessity to better understand the advancing age. This characterization may be used to aid early diagnosis and to guide individually-tailored interventions. While some event-related potential (ERP) components, such as the P300 and late positive complex (LPC), have been associated with fluid intelligence (Gf) in young population; little is known whether these associations hold for older people. Therefore, the main goal of this study was to assess whether these ERP components are associated with Gf in the elderly. Fifty-seven older adults performed a continuous performance task (CPT) and a visual oddball paradigm while EEG was recorded. Participants were divided into two groups, according to their performance in the Raven’s Advanced Progressive Matrices test: high-performance (HP) and low-performance (LP). Results showed that the HP group, compared to the LP group, had higher LPC amplitudes in the CPT and shorter P300 latencies in the oddball task, highlighting the role of ERP components as a potential electrophysiological proxy of Gf abilities in the elderly.
Collapse
|
25
|
Yang CY, Lin CP. Classification of cognitive reserve in healthy older adults based on brain activity using support vector machine. Physiol Meas 2020; 41:065009. [PMID: 32464620 DOI: 10.1088/1361-6579/ab979e] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
OBJECTIVE Cognitive reserve (CR) refers to the capacity of the brain to actively cope with damage via the implementation of remedial cognitive processes. Traditional CR measurements focus on static proxies, which may not be able to appropriately estimate dynamic changes in CR. This study therefore investigated the cognitive performance and characteristics of brain activity of low- and high-CR healthy adults during resting and n-back task states and categorized subjects according to magnetoencephalographic (MEG) information using a support vector machine (SVM) classifier. APPROACH Forty-one volunteers were divided into groups with low and high CR indexes based on their education, occupational attainment, leisure and social activities. MAIN RESULTS The results can be summarized as follows. First, subjects with a higher CR had higher accuracies and faster reaction times in the task. Second, subjects with a lower CR had a higher M300 intensity but a constant M300 latency. Third, subjects with a higher CR had a higher beta intensity in the parietal and occipital regions during the task, whereas subjects with a higher CR had a higher gamma intensity in the right temporal region in the resting state. Finally, subjects with a higher CR had negative gamma asymmetry between the right and left occipital regions, whereas subjects with a lower CR had positive values in the resting state. SIGNIFICANCE These MEG results were subsequently used to classify subjects into high-/low-CR subjects using an SVM classifier, and a mean accuracy of 88.89% was obtained. This objective and nonstatic method for determining CR level warrants further research for a wider variety of future clinical applications.
Collapse
Affiliation(s)
- Chia-Yen Yang
- Department of Biomedical Engineering, Ming-Chuan University, Taoyuan, Taiwan
| | | |
Collapse
|
26
|
The role of cognitive reserve on prefrontal and premotor cortical activity in visuo-motor response tasks in healthy old adults. Neurobiol Aging 2020; 94:185-195. [PMID: 32645547 DOI: 10.1016/j.neurobiolaging.2020.06.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 05/28/2020] [Accepted: 06/03/2020] [Indexed: 11/21/2022]
Abstract
Cognitive reserve (CR) is a key factor to mitigate the cognitive decline during the aging process. Here, we used event-related potentials to target the preparatory brain activities associated with different levels of CR during visuo-motor simple response tasks (SRTs) and discriminative response tasks (DRTs). EEG was recorded from 28 healthy old (Age: 72.2 ± 4.7 years) and 14 young (Age: 22.2 ± 2.4 years) individuals during an SRT and a DRT. Depending on the CR median score, old participants were divided into either a high (High-CR) or a low CR (Low-CR) group. Behavioral performance and electrophysiological data were compared across the 3 groups. Compared with the Low-CR, the High-CR group showed larger prestimulus prefrontal (prefrontal negativity) and premotor activity (Bereitschaftspotential-BP), in the SRT, and increased premotor readiness (BP), in the DRT. The High-CR was faster and more accurate than the Low-CR group in the DRT and SRT, respectively. The High-CR group revealed enhanced brain preparatory activities that, paralleled to their behavioral performance, might reflect neural compensation and maintenance effects possibly counteracting the age-related decline in cognitive functioning.
Collapse
|
27
|
Balduino E, de Melo BAR, de Sousa Mota da Silva L, Martinelli JE, Cecato JF. The "SuperAgers" construct in clinical practice: neuropsychological assessment of illiterate and educated elderly. Int Psychogeriatr 2020; 32:191-198. [PMID: 31556369 DOI: 10.1017/s1041610219001364] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION The demographic transition is a global event intensified during the last decades that represents population aging. Thus, the studies directed to the elderly 80 years of age or more with preserved cognitive functions (named SuperAgers) emerges as a possible path to full comprehension of the health of those aging with acceptable levels of functionality and independency. OBJECTIVE To evaluate the cognitive performance of the elderly over 80 years old, associating the results to their educational level. METHOD We evaluated 144 healthy elders with 80 years or more through the following cognitive tests Mini-Mental State Examination (MMSE), Cambridge Cognitive Examination (CAMCOG), Clock Drawing Test (CDT), and Verbal Fluency Test (VF) and compared the tests' scores with their educational level segmented in years of formal education, being the groups ILLITR (<1 year of schooling), 1TO4 (from 1 to 4 years of schooling), and 5MORE (>5 years of schooling). RESULTS There was positive influence of educational level on the cognitive tests' score, which indicates higher cognitive reserve of the elderly with higher educational levels. CONCLUSION The functionality and independence of the so-called SuperAgers is determined by the cognitive reserve acquired throughout life, mainly developed by the years of formal education.
Collapse
Affiliation(s)
- Everton Balduino
- Geriatrics Division, Faculty of Medicine of Jundiaí, Jundiaí, Brazil
| | | | | | | | | |
Collapse
|
28
|
Xue C, Yuan B, Yue Y, Xu J, Wang S, Wu M, Ji N, Zhou X, Zhao Y, Rao J, Yang W, Xiao C, Chen J. Distinct Disruptive Patterns of Default Mode Subnetwork Connectivity Across the Spectrum of Preclinical Alzheimer's Disease. Front Aging Neurosci 2019; 11:307. [PMID: 31798440 PMCID: PMC6863958 DOI: 10.3389/fnagi.2019.00307] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 10/25/2019] [Indexed: 12/28/2022] Open
Abstract
Background: The early progression continuum of Alzheimer’s disease (AD) has been considered to advance through subjective cognitive decline (SCD), non-amnestic mild cognitive impairment (naMCI), and amnestic mild cognitive impairment (aMCI). Altered functional connectivity (FC) in the default mode network (DMN) is regarded as a hallmark of AD. Furthermore, the DMN can be divided into two subnetworks, the anterior and posterior subnetworks. However, little is known about distinct disruptive patterns in the subsystems of the DMN across the preclinical AD spectrum. This study investigated the connectivity patterns of anterior DMN (aDMN) and posterior DMN (pDMN) across the preclinical AD spectrum. Methods: Resting-state functional magnetic resonance imaging (rs-fMRI) was used to investigate the FC in the DMN subnetworks in 20 healthy controls (HC), eight SCD, 11 naMCI, and 28 aMCI patients. Moreover, a correlation analysis was used to examine associations between the altered connectivity of the DMN subnetworks and the neurocognitive performance. Results: Compared to the HC, SCD patients showed increased FC in the bilateral superior frontal gyrus (SFG), naMCI patients showed increased FC in the left inferior parietal lobule (IPL), and aMCI patients showed increased FC in the bilateral IPL in the aDMN; while SCD patients showed decreased FC in the precuneus, naMCI patients showed increased FC in the left middle temporal gyrus (MTG), and aMCI patients also showed increased FC in the right middle frontal gyrus (MFG) in the pDMN. Notably, the FC between the ventromedial prefrontal cortex (vmPFC) and the left MFG and the IPL in the aDMN was associated with episodic memory in the SCD and aMCI groups. Interestingly, the FC between the posterior cingulated cortex (PCC) and several regions in the pDMN was associated with other cognitive functions in the SCD and naMCI groups. Conclusions: This study demonstrates that the three preclinical stages of AD exhibit distinct FC alternations in the DMN subnetworks. Furthermore, the patient group data showed that the altered FC involves cognitive function. These findings can provide novel insights for tailored clinical intervention across the preclinical AD spectrum.
Collapse
Affiliation(s)
- Chen Xue
- Department of Radiology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China.,Institute of Neuropsychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Fourth Clinical College of Nanjing Medical University, Nanjing, China
| | - Baoyu Yuan
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Yingying Yue
- Department of Psychosomatics and Psychiatry, ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Jiani Xu
- Institute of Neuropsychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Fourth Clinical College of Nanjing Medical University, Nanjing, China
| | - Siyu Wang
- Institute of Neuropsychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Fourth Clinical College of Nanjing Medical University, Nanjing, China
| | - Meilin Wu
- Institute of Neuropsychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Fourth Clinical College of Nanjing Medical University, Nanjing, China
| | - Nanxi Ji
- Institute of Neuropsychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Fourth Clinical College of Nanjing Medical University, Nanjing, China
| | - Xingzhi Zhou
- Institute of Neuropsychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Fourth Clinical College of Nanjing Medical University, Nanjing, China
| | - Yilin Zhao
- Institute of Neuropsychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Fourth Clinical College of Nanjing Medical University, Nanjing, China
| | - Jiang Rao
- Department of Rehabilitation, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China.,Institute of Brain Functional Imaging, Nanjing Medical University, Nanjing, China
| | - Wenjie Yang
- Department of Rehabilitation, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China.,Institute of Brain Functional Imaging, Nanjing Medical University, Nanjing, China
| | - Chaoyong Xiao
- Department of Radiology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China.,Institute of Brain Functional Imaging, Nanjing Medical University, Nanjing, China
| | - Jiu Chen
- Institute of Neuropsychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Fourth Clinical College of Nanjing Medical University, Nanjing, China.,Institute of Brain Functional Imaging, Nanjing Medical University, Nanjing, China
| |
Collapse
|
29
|
Eijlers AJ, Dekker I, Steenwijk MD, Meijer KA, Hulst HE, Pouwels PJ, Uitdehaag BM, Barkhof F, Vrenken H, Schoonheim MM, Geurts JJ. Cortical atrophy accelerates as cognitive decline worsens in multiple sclerosis. Neurology 2019; 93:e1348-e1359. [DOI: 10.1212/wnl.0000000000008198] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 05/02/2019] [Indexed: 01/15/2023] Open
Abstract
ObjectiveTo determine which pathologic process could be responsible for the acceleration of cognitive decline during the course of multiple sclerosis (MS), using longitudinal structural MRI, which was related to cognitive decline in relapsing-remitting MS (RRMS) and progressive MS (PMS).MethodsA prospective cohort of 230 patients with MS (179 RRMS and 51 PMS) and 59 healthy controls was evaluated twice with 5-year (mean 4.9, SD 0.94) interval during which 22 patients with RRMS converted to PMS. Annual rates of cortical and deep gray matter atrophy as well as lesion volume increase were computed on longitudinal (3T) MRI data and correlated to the annual rate of cognitive decline as measured using an extensive cognitive evaluation at both time points.ResultsThe deep gray matter atrophy rate did not differ between PMS and RRMS (−0.82%/year vs −0.71%/year, p = 0.11), while faster cortical atrophy was observed in PMS (−0.87%/year vs −0.48%/year, p < 0.01). Similarly, faster cognitive decline was observed in PMS compared to RRMS (p < 0.01). Annual cognitive decline was related to the rate of annual lesion volume increase in stable RRMS (r = −0.17, p = 0.03) to the rate of annual deep gray matter atrophy in converting RRMS (r = 0.50, p = 0.02) and annual cortical atrophy in PMS (r = 0.35, p = 0.01).ConclusionsThese results indicate that cortical atrophy and cognitive decline accelerate together during the course of MS. Substrates of cognitive decline shifted from worsening lesional pathology in stable RRMS to deep gray matter atrophy in converting RRMS and to accelerated cortical atrophy in PMS only.
Collapse
|
30
|
López-Sanz D, Bruña R, de Frutos-Lucas J, Maestú F. Magnetoencephalography applied to the study of Alzheimer's disease. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2019; 165:25-61. [PMID: 31481165 DOI: 10.1016/bs.pmbts.2019.04.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Magnetoencephalography (MEG) is a relatively modern neuroimaging technique able to study normal and pathological brain functioning with temporal resolution in the order of milliseconds and adequate spatial resolution. Although its clinical applications are still relatively limited, great advances have been made in recent years in the field of dementia and Alzheimer's disease (AD) in particular. In this chapter, we briefly describe the physiological phenomena underlying MEG brain signals and the different metrics that can be computed from these data in order to study the alterations disrupting brain activity not only in demented patients, but also in the preclinical and prodromal stages of the disease. Changes in non-linear brain dynamics, power spectral properties, functional connectivity and network topological changes observed in AD are narratively summarized in the context of the pathophysiology of the disease. Furthermore, the potential of MEG as a potential biomarker to identify AD pathology before dementia onset is discussed in the light of current knowledge and the relationship between potential MEG biomarkers and current established hallmarks of the disease is also reviewed. To this aim, findings from different approaches such as resting state or during the performance of different cognitive paradigms are discussed.Lastly, there is an increasing interest in current scientific literature in promoting interventions aimed at modifying certain lifestyles, such as nutrition or physical activity among others, thought to reduce or delay AD risk. We discuss the utility of MEG as a potential marker of the success of such interventions from the available literature.
Collapse
Affiliation(s)
- David López-Sanz
- Laboratory of Cognitive and Computational Neuroscience (UCM-UPM), Centre for Biomedical Technology (CTB), Technical University of Madrid (UPM), Madrid, Spain; Department of Experimental Psychology, Complutense University of Madrid (UCM), Madrid, Spain
| | - Ricardo Bruña
- Laboratory of Cognitive and Computational Neuroscience (UCM-UPM), Centre for Biomedical Technology (CTB), Technical University of Madrid (UPM), Madrid, Spain; Department of Experimental Psychology, Complutense University of Madrid (UCM), Madrid, Spain; Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Zaragoza, Spain
| | - Jaisalmer de Frutos-Lucas
- Laboratory of Cognitive and Computational Neuroscience (UCM-UPM), Centre for Biomedical Technology (CTB), Technical University of Madrid (UPM), Madrid, Spain; Biological and Health Psychology Department, Universidad Autonoma de Madrid, Madrid, Spain; School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
| | - Fernando Maestú
- Laboratory of Cognitive and Computational Neuroscience (UCM-UPM), Centre for Biomedical Technology (CTB), Technical University of Madrid (UPM), Madrid, Spain; Department of Experimental Psychology, Complutense University of Madrid (UCM), Madrid, Spain; Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Zaragoza, Spain.
| |
Collapse
|
31
|
Rajji TK. Neurophysiology and cognitive reserve: A promising path. Clin Neurophysiol 2018; 129:286-287. [DOI: 10.1016/j.clinph.2017.12.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 12/14/2017] [Indexed: 10/18/2022]
|