1
|
Pan MK. Targeting the fundamentals for tremors: the frequency and amplitude coding in essential tremor. J Biomed Sci 2025; 32:18. [PMID: 39924504 PMCID: PMC11809078 DOI: 10.1186/s12929-024-01112-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 12/12/2024] [Indexed: 02/11/2025] Open
Abstract
Essential tremor (ET) is one of the most common movement disorders with heterogeneous pathogenesis involving both genetic and environmental factors, which often results in variable therapeutic outcomes. Despite the diverse etiology, ET is defined by a core symptom of action tremor, an involuntary rhythmic movement that can be mathematically characterized by two parameters: tremor frequency and tremor amplitude. Recent advances in neural dynamics and clinical electrophysiology have provided valuable insights to explain how tremor frequency and amplitude are generated within the central nervous system. This review summarizes both animal and clinical evidence, encompassing the kinematic features of tremors, circuitry dynamics, and the neuronal coding mechanisms for the two parameters. Neural population coding within the olivocerebellum is implicated in determining tremor frequency, while the cerebellar circuitry synchrony and cerebellar-thalamo-cortical interactions play key roles in regulating tremor amplitude. Novel therapeutic strategies aimed at tuning tremor frequency and amplitude are also discussed. These neural dynamic approaches target the conserved mechanisms across ET patients with varying etiologies, offering the potential to develop universally effective therapies for ET.
Collapse
Affiliation(s)
- Ming-Kai Pan
- Department and Graduate Institute of Pharmacology, National Taiwan University College of Medicine, No. 1, Sec. 1, Ren-Ai Road, Taipei, 100, Taiwan.
- Molecular Imaging Center, National Taiwan University, Taipei, Taiwan.
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan.
- Cerebellar Research Center, National Taiwan University Hospital, Yun-Lin Branch, Yun-Lin, Taiwan.
- Department of Medical Research, National Taiwan University Hospital, Taipei, Taiwan.
| |
Collapse
|
2
|
Canafoglia L, Meletti S, Bisulli F, Alvisi L, Assenza G, d’Orsi G, Dubbioso R, Ferlazzo E, Ferri L, Franceschetti S, Gambardella A, Granvillano A, Licchetta L, Nucera B, Panzica F, Perulli M, Provini F, Rubboli G, Strigaro G, Suppa A, Tartara E, Cantalupo G. A Reappraisal on cortical myoclonus and brief Remarks on myoclonus of different Origins. Clin Neurophysiol Pract 2024; 9:266-278. [PMID: 39559741 PMCID: PMC11570231 DOI: 10.1016/j.cnp.2024.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 10/08/2024] [Accepted: 10/13/2024] [Indexed: 11/20/2024] Open
Abstract
Myoclonus has multiple clinical manifestations and heterogeneous generators and etiologies, encompassing a spectrum of disorders and even physiological events. This paper, developed from a teaching course conducted by the Neurophysiology Commission of the Italian League against Epilepsy, aims to delineate the main types of myoclonus, identify potential underlying neurological disorders, outline diagnostic procedures, elucidate pathophysiological mechanisms, and discuss appropriate treatments. Neurophysiological techniques play a crucial role in accurately classifying myoclonic phenomena, by means of simple methods such as EEG plus polymyography (EEG + Polymyography), evoked potentials, examination of long-loop reflexes, and often more complex protocols to study intra-cortical inhibition-facilitation. In clinical practice, EEG + Polymyography often represents the first step to identify myoclonus, acquire signals for off-line studies and plan the diagnostic work-up.
Collapse
Affiliation(s)
- Laura Canafoglia
- Department of Diagnostic and Technology, full member of the European Reference Network EpiCARE, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milano, Italy
| | - Stefano Meletti
- Department of Biomedical, Metabolic and Neural Sciences University of Modena and Reggio Emilia, Director of Neurophysiology Unit & Epilepsy Centre, AOU Modena
| | - Francesca Bisulli
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Full member of the ERN EpiCARE, Bologna, Italy
| | - Lara Alvisi
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Full member of the ERN EpiCARE, Bologna, Italy
| | - Giovanni Assenza
- Unit of Neurology, Neurophysiology, Neurobiology, Department of Medicine, University Campus Bio-Medico of Rome, Via Álvaro del Portillo, 21, 00128, Rome, Italy
| | - Giuseppe d’Orsi
- Neurology Unit, Fondazione IRCCS Casa Sollievo della Sofferenza, S. Giovanni Rotondo, Foggia, Italy
| | - Raffaele Dubbioso
- Neurophysiology Unit, Department of Neurosciences, Reproductive Sciences and Odontostomatology, University of Naples “Federico II”, Napoli, Italy
| | - Edoardo Ferlazzo
- Regional Epilepsy Centre, Great Metropolitan “Bianchi-Melacrino-Morelli” Hospital, Reggio Calabria, Italy
- Department of Medical and Surgical Sciences, Magna Graecia University of Catanzaro, Italy
| | - Lorenzo Ferri
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Full member of the ERN EpiCARE, Bologna, Italy
| | - Silvana Franceschetti
- Neurophysiopathology, full member of the European Reference Network EpiCARE, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milano, Italy
| | - Antonio Gambardella
- Department of Medical and Surgical Sciences, Institute of Neurology, University Magna Græcia, Catanzaro, Italy
| | - Alice Granvillano
- Neurophysiopathology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Via Celoria 11, 20133 Milan, Italy
| | - Laura Licchetta
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Full member of the ERN EpiCARE, Bologna, Italy
| | - Bruna Nucera
- Department of Neurology, Hospital of Merano (SABES-ASDAA), Franz Tappeiner Hospital, Via Rossini, 5-39012, Merano, Italy. 2 Paracelsus Medical University, 5020 Salzburg, Austria
| | - Ferruccio Panzica
- Clinical Engineering Service, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Marco Perulli
- Neuropsichiatria Infantile, Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italy
| | - Federica Provini
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Full member of the ERN EpiCARE, Bologna, Italy
| | - Guido Rubboli
- Danish Epilepsy Center, Dianalund, University of Copenhagen, Denmark
| | - Gionata Strigaro
- Epilepsy Center, Neurology Unit, Department of Translational Medicine, University of Piemonte Orientale, and Azienda Ospedaliero-Universitaria “Maggiore Della Carità”, Novara, Italy
| | - Antonio Suppa
- Department of Human Neurosciences, Sapienza University of Rome, Viale dell’Università, 30, 00185 Rome, Italy
- IRCCS Neuromed Institute, Via Atinense, 18, 86077 Pozzilli (IS), Italy
| | - Elena Tartara
- Epilepsy Center, IRCCS Mondino Foundation, Pavia, Italy
| | - Gaetano Cantalupo
- Department of Engineering for Innovation Medicine, University of Verona, Italy
- Child Neuropsychiatry Unit, Verona University Hospital (AOUI Verona) - full member of the European Reference Network EpiCARE, Italy
- Center for Research on Epilepsy in Pediatric age (CREP), AOUI Verona, Verona, Italy
| |
Collapse
|
3
|
Babeliowsky WA, Bot M, Potters WV, van den Munckhof P, Blok ER, de Bie RM, Schuurman R, van Rootselaar A. Deep Brain Stimulation for Orthostatic Tremor: An Observational Study. Mov Disord Clin Pract 2024; 11:676-685. [PMID: 38586984 PMCID: PMC11145120 DOI: 10.1002/mdc3.14035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 02/09/2024] [Accepted: 03/12/2024] [Indexed: 04/09/2024] Open
Abstract
BACKGROUND Primary orthostatic tremor (OT) can affect patients' life. Treatment of OT with deep brain stimulation (DBS) of the thalamic ventral intermediate nucleus (Vim) is described in a limited number of patients. The Vim and posterior subthalamic area (PSA) can be targeted in a single trajectory, allowing both stimulation of the Vim and/or dentatorubrothalamic tract (DRT). In essential tremor this is currently often used with positive effects. OBJECTIVE To evaluate the efficacy of Vim/DRT-DBS in OT-patients, based on standing time and Quality of Life (QoL), also on the long-term. Furthermore, to relate stimulation of the Vim and DRT, medial lemniscus (ML) and pyramidal tract (PT) to beneficial clinical and side-effects. METHODS Nine severely affected OT-patients received bilateral Vim/DRT-DBS. Primary outcome measure was standing time; secondary measures included self-reported measures, neurophysiological measures, structural analyses, surgical complications, stimulation-induced side-effects, and QoL up to 56 months. Stimulation of volume of tissue activated (VTA) were related to outcome measures. RESULTS Average maximum standing time increased from 41.0 s ± 51.0 s to 109.3 s ± 65.0 s after 18 months, with improvements measured in seven of nine patients. VTA (n = 7) overlapped with the DRT in six patients and with the ML and/or PT in six patients. All patients experienced side-effects and QoL worsened during the first year after surgery, which improved again during long-term follow-up, although remaining below age-related normal values. Most patients reported a positive effect of DBS. CONCLUSION Vim/DRT-DBS improved standing time in patients with severe OT. Observed side-effects are possibly related to stimulation of the ML and PT.
Collapse
Affiliation(s)
- Wietske A. Babeliowsky
- Neurology and Clinical NeurophysiologyAmsterdam UMC location University of AmsterdamAmsterdamThe Netherlands
| | - Maarten Bot
- NeurosurgeryAmsterdam UMC location University of AmsterdamAmsterdamThe Netherlands
| | - Wouter V. Potters
- Neurology and Clinical NeurophysiologyAmsterdam UMC location University of AmsterdamAmsterdamThe Netherlands
| | | | - Edwin R. Blok
- Neurology and Clinical NeurophysiologyAmsterdam UMC location University of AmsterdamAmsterdamThe Netherlands
| | - Rob M.A. de Bie
- Neurology and Clinical NeurophysiologyAmsterdam UMC location University of AmsterdamAmsterdamThe Netherlands
- Amsterdam NeuroscienceNeurodegenerationAmsterdamThe Netherlands
| | - Rick Schuurman
- NeurosurgeryAmsterdam UMC location University of AmsterdamAmsterdamThe Netherlands
| | - Anne‐Fleur van Rootselaar
- Neurology and Clinical NeurophysiologyAmsterdam UMC location University of AmsterdamAmsterdamThe Netherlands
- Amsterdam NeuroscienceNeurodegenerationAmsterdamThe Netherlands
| |
Collapse
|
4
|
Latorre A, Belvisi D, Rothwell JC, Bhatia KP, Rocchi L. Rethinking the neurophysiological concept of cortical myoclonus. Clin Neurophysiol 2023; 156:125-139. [PMID: 37948946 DOI: 10.1016/j.clinph.2023.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 09/04/2023] [Accepted: 10/13/2023] [Indexed: 11/12/2023]
Abstract
Cortical myoclonus is thought to result from abnormal electrical discharges arising in the sensorimotor cortex. Given the ease of recording of cortical discharges, electrophysiological features of cortical myoclonus have been better characterized than those of subcortical forms, and electrophysiological criteria for cortical myoclonus have been proposed. These include the presence of giant somatosensory evoked potentials, enhanced long-latency reflexes, electroencephalographic discharges time-locked to individual myoclonic jerks and significant cortico-muscular connectivity. Other features that are assumed to support the cortical origin of myoclonus are short-duration electromyographic bursts, the presence of both positive and negative myoclonus and cranial-caudal progression of the jerks. While these criteria are widely used in clinical practice and research settings, their application can be difficult in practice and, as a result, they are fulfilled only by a minority of patients. In this review we reappraise the evidence that led to the definition of the electrophysiological criteria of cortical myoclonus, highlighting possible methodological incongruencies and misconceptions. We believe that, at present, the diagnostic accuracy of cortical myoclonus can be increased only by combining observations from multiple tests, according to their pathophysiological rationale; nevertheless, larger studies are needed to standardise the methods, to resolve methodological issues, to establish the diagnostic criteria sensitivity and specificity and to develop further methods that might be useful to clarify the pathophysiology of myoclonus.
Collapse
Affiliation(s)
- Anna Latorre
- Department of Clinical and Movement Neurosciences, Queen Square Institute of Neurology University College London, London, United Kingdom.
| | - Daniele Belvisi
- Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy; IRCCS Neuromed, Pozzilli, Italy
| | - John C Rothwell
- Department of Clinical and Movement Neurosciences, Queen Square Institute of Neurology University College London, London, United Kingdom
| | - Kailash P Bhatia
- Department of Clinical and Movement Neurosciences, Queen Square Institute of Neurology University College London, London, United Kingdom
| | - Lorenzo Rocchi
- Department of Clinical and Movement Neurosciences, Queen Square Institute of Neurology University College London, London, United Kingdom; Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| |
Collapse
|
5
|
Kumar A, Lin CC, Kuo SH, Pan MK. Physiological Recordings of the Cerebellum in Movement Disorders. CEREBELLUM (LONDON, ENGLAND) 2023; 22:985-1001. [PMID: 36070135 PMCID: PMC10354710 DOI: 10.1007/s12311-022-01473-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/27/2022] [Indexed: 06/15/2023]
Abstract
The cerebellum plays an important role in movement disorders, specifically in symptoms of ataxia, tremor, and dystonia. Understanding the physiological signals of the cerebellum contributes to insights into the pathophysiology of these movement disorders and holds promise in advancing therapeutic development. Non-invasive techniques such as electroencephalogram and magnetoencephalogram can record neural signals with high temporal resolution at the millisecond level, which is uniquely suitable to interrogate cerebellar physiology. These techniques have recently been implemented to study cerebellar physiology in healthy subjects as well as individuals with movement disorders. In the present review, we focus on the current understanding of cerebellar physiology using these techniques to study movement disorders.
Collapse
Affiliation(s)
- Ami Kumar
- Department of Neurology, Columbia University Irving Medical Center and the New York Presbyterian Hospital, 650 W 168thStreet, Room 305, New York, NY, 10032, USA
- Initiative for Columbia Ataxia and Tremor, Columbia University Irving Medical Center, New York, NY, USA
| | - Chih-Chun Lin
- Department of Neurology, Columbia University Irving Medical Center and the New York Presbyterian Hospital, 650 W 168thStreet, Room 305, New York, NY, 10032, USA
- Initiative for Columbia Ataxia and Tremor, Columbia University Irving Medical Center, New York, NY, USA
| | - Sheng-Han Kuo
- Department of Neurology, Columbia University Irving Medical Center and the New York Presbyterian Hospital, 650 W 168thStreet, Room 305, New York, NY, 10032, USA.
- Initiative for Columbia Ataxia and Tremor, Columbia University Irving Medical Center, New York, NY, USA.
| | - Ming-Kai Pan
- Cerebellar Research Center, National Taiwan University Hospital, Yun-Lin Branch, Yun-Lin, 64041, Taiwan.
- Department and Graduate Institute of Pharmacology, National Taiwan University College of Medicine, Taipei, 10051, Taiwan.
- Department of Medical Research, National Taiwan University Hospital, Taipei, 10002, Taiwan.
- Institute of Biomedical Sciences, Academia Sinica, Taipei City, 11529, Taiwan.
| |
Collapse
|
6
|
Connecting tremors - a circuits perspective. Curr Opin Neurol 2022; 35:518-524. [PMID: 35788547 DOI: 10.1097/wco.0000000000001071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE OF REVIEW Tremor is one of the most prevalent movement disorders in clinical practice. Here, we review new insights in the pathophysiology of tremor. We focus on the three most common tremor disorders: essential tremor (ET), dystonic tremor syndrome (DTS), and Parkinson's disease (PD) tremor. RECENT FINDINGS Converging evidence suggests that ET, DTS, and PD tremor are all associated with (partly) overlapping cerebral networks involving the basal ganglia and cerebello-thalamo-cortical circuit. Recent studies have assessed the role of these networks in tremor by measuring tremor-related activity and connectivity with electrophysiology and neuroimaging, and by perturbing network components using invasive and noninvasive brain stimulation. The cerebellum plays a more dominant and causal role in action tremors than in rest tremor, as exemplified by recent findings in ET, DTS, and re-emergent tremor in PD. Furthermore, the role of the cerebellum in DTS is related to clinical differences between patients, for example, whether or not the tremor occurs in a dystonic limb, and whether the tremor is jerky or sinusoidal. SUMMARY Insight into the pathophysiological mechanisms of tremor may provide a more direct window into mechanism-based treatment options than either the etiology or the clinical phenotype of a tremor syndrome.
Collapse
|
7
|
Cho HJ. Is essential tremor a degenerative or an electrical disorder? Electrical disorder. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2022; 163:103-128. [PMID: 35750360 DOI: 10.1016/bs.irn.2022.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Essential tremor (ET) is one of the most common movement disorders, yet we do not have a complete understanding of its pathophysiology. From a phenomenology standpoint, ET is an isolated tremor syndrome of bilateral upper limb action tremor with or without tremor in other body locations. ET is a pathological tremor that arises from excessive oscillation in the central motor network. The tremor network comprises of multiple brain regions including the inferior olive, cerebellum, thalamus, and motor cortex, and there is evidence that a dynamic oscillatory disturbance within this network leads to tremor. ET is a chronic disorder, and the natural history shows a slow progression of tremor intensity with age. There are reported data suggesting that ET follows the disease model of a neurodegenerative disorder, however whether ET is a degenerative or electrical disorder has been a subject of debate. In this chapter, we will review cumulative evidence that ET as a syndrome is a fundamentally electric disorder. The etiology is likely heterogenous and may not be primarily neurodegenerative.
Collapse
Affiliation(s)
- Hyun Joo Cho
- Human Motor Control Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States.
| |
Collapse
|
8
|
Pan MK, Kuo SH. Essential tremor: Clinical perspectives and pathophysiology. J Neurol Sci 2022; 435:120198. [PMID: 35299120 PMCID: PMC10363990 DOI: 10.1016/j.jns.2022.120198] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 12/01/2021] [Accepted: 02/17/2022] [Indexed: 12/12/2022]
Abstract
Essential tremor (ET) is one of the most common neurological disorders and can be highly disabling. In recent years, studies on the clinical perspectives and pathophysiology have advanced our understanding of ET. Specifically, clinical heterogeneity of ET, with co-existence of tremor and other neurological features such as dystonia, ataxia, and cognitive dysfunction, has been identified. The cerebellum has been found to be the key brain region for tremor generation, and structural alterations of the cerebellum have been extensively studied in ET. Finally, four main ET pathophysiologies have been proposed: 1) environmental exposures to β-carboline alkaloids and the consequent olivocerebellar hyper-excitation, 2) cerebellar GABA deficiency, 3) climbing fiber synaptic pathology with related cerebellar oscillatory activity, 4) extra-cerebellar oscillatory activity. While these four theories are not mutually exclusive, they can represent distinctive ET subtypes, indicating multiple types of abnormal brain circuitry can lead to action tremor. This article is part of the Special Issue "Tremor" edited by Daniel D. Truong, Mark Hallett, and Aasef Shaikh.
Collapse
|