1
|
Herrmann MJ, Schaub D, Ziegler GC, Mühlberger A, Cybinski LM. Disrupting fear memory reconsolidation in individuals with fear of spiders with cTBS: A Proof-of-Concept Study. Behav Brain Res 2025; 491:115644. [PMID: 40383201 DOI: 10.1016/j.bbr.2025.115644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 03/17/2025] [Accepted: 05/12/2025] [Indexed: 05/20/2025]
Abstract
Anxiety disorders can be effectively treated with both cognitive behavioural therapy and psychopharmacological interventions. However, only 50 % of patients demonstrate significant benefits from these approaches. Therefore, investigating strategies to improve treatment effectiveness or develop novel therapeutic approaches remains an important research objective. Current therapeutic modalities may leave the original fear memory intact, potentially leading to symptom recurrence over time. In contrast, the disruption of reconsolidation processes can facilitate permanent modifications to fear memory, resulting in a reduced risk of relapse after psychotherapy. Recent laboratory studies have shown that the reconsolidation of experimentally induced fear can be effectively disrupted by repetitive transcranial magnetic stimulation (rTMS) and significantly prevents the return of fear. In this study, we translated these results to participants with elevated fear of spiders. 34 participants with spider fear were randomly assigned to a verum or a placebo intervention using continuous theta-burst stimulation (80 % of resting motor threshold) applied over the right dorsolateral prefrontal cortex ten minutes after the reactivation (3 min confrontation with a living tarantula) of the spider fear memory. The ANOVA for the primary outcome (Spider Phobia Questionnaire, SPQ) resulted in a significant effect of time, but no significant interaction of time and treatment group. Notably, exploratory analyses revealed a significant correlation between stimulation intensity in the verum group and the reduction in spider fear. This association suggest that rTMS-induced disruptions of reconsolidation may serve as a viable therapeutic option for anxiety disorders; however, further research is needed to delineate the optimal parameters for such interventions.
Collapse
Affiliation(s)
- M J Herrmann
- Department of Psychiatry, Psychosomatics and Psychotherapy, Center of Mental Health, University Hospital of Würzburg, Würzburg, Germany.
| | - D Schaub
- Department of Psychiatry, Psychosomatics and Psychotherapy, Center of Mental Health, University Hospital of Würzburg, Würzburg, Germany
| | - G C Ziegler
- Department of Psychiatry, Psychosomatics and Psychotherapy, Center of Mental Health, University Hospital of Würzburg, Würzburg, Germany
| | - A Mühlberger
- Department of Psychology, Clinical Psychology and Psychotherapy, University of Regensburg, Regensburg, Germany
| | - L M Cybinski
- Department of Psychiatry, Psychosomatics and Psychotherapy, Center of Mental Health, University Hospital of Würzburg, Würzburg, Germany
| |
Collapse
|
2
|
Houde F, Butler R, St-Onge E, Martel M, Thivierge V, Descoteaux M, Whittingstall K, Leonard G. Anatomical measurements and field modeling to assess transcranial magnetic stimulation motor and non-motor effects. Neurophysiol Clin 2024; 54:103011. [PMID: 39244826 DOI: 10.1016/j.neucli.2024.103011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 08/22/2024] [Accepted: 08/22/2024] [Indexed: 09/10/2024] Open
Abstract
OBJECTIVE Explore how anatomical measurements and field modeling can be leveraged to improve investigations of transcranial magnetic stimulation (TMS) effects on both motor and non-motor TMS targets. METHODS TMS motor effects (targeting the primary motor cortex [M1]) were evaluated using the resting motor threshold (rMT), while TMS non-motor effects (targeting the superior temporal gyrus [STG]) were assessed using a pain memory task. Anatomical measurements included scalp-cortex distance (SCD) and cortical thickness (CT), whereas field modeling encompassed the magnitude of the electric field (E) induced by TMS. RESULTS Anatomical measurements and field modeling values differed significantly between M1 and STG. For TMS motor effects, rMT was correlated with SCD, CT, and E values at M1 (p < 0.05). No correlations were found between these metrics for the STG and TMS non-motor effects (pain memory; all p-values > 0.05). CONCLUSION Although anatomical measurements and field modeling are closely related to TMS motor effects, their relationship to non-motor effects - such as pain memory - appear to be much more tenuous and complex, highlighting the need for further advancement in our use of TMS and virtual lesion paradigms.
Collapse
Affiliation(s)
- Francis Houde
- Research Centre on Aging, CIUSSS de l'Estrie-CHUS, Sherbrooke, QC, Canada, J1H 5N4; Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, QC, Canada, J1H 5N4
| | - Russell Butler
- Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, QC, Canada, J1H 5N4
| | - Etienne St-Onge
- Department of Computer Science and Engineering, Université du Québec en Outaouais, Saint-Jérôme, QC, Canada, J7Z 0B7
| | - Marylie Martel
- Research Centre on Aging, CIUSSS de l'Estrie-CHUS, Sherbrooke, QC, Canada, J1H 5N4
| | - Véronique Thivierge
- Research Centre on Aging, CIUSSS de l'Estrie-CHUS, Sherbrooke, QC, Canada, J1H 5N4
| | - Maxime Descoteaux
- Sherbrooke Connectivity Imaging Laboratory (SCIL), Université de Sherbrooke, Sherbrooke, QC, Canada, J1K 0A5
| | - Kevin Whittingstall
- Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, QC, Canada, J1H 5N4
| | - Guillaume Leonard
- Research Centre on Aging, CIUSSS de l'Estrie-CHUS, Sherbrooke, QC, Canada, J1H 5N4; School of Rehabilitation, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada.
| |
Collapse
|
3
|
Yeh CH, Lin PC, Tseng RY, Chao YP, Wu CT, Chou TL, Chen RS, Gau SSF, Ni HC, Lin HY. Lack of effects of eight-week left dorsolateral prefrontal theta burst stimulation on white matter macro/microstructure and connection in autism. Brain Imaging Behav 2024; 18:794-807. [PMID: 38492129 DOI: 10.1007/s11682-024-00874-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/08/2024] [Indexed: 03/18/2024]
Abstract
Whether brain stimulation could modulate brain structure in autism remains unknown. This study explored the impact of continuous theta burst stimulation (cTBS) over the left dorsolateral prefrontal cortex (DLPFC) on white matter macro/microstructure in intellectually able children and emerging adults with autism. Sixty autistic participants were randomized (30 active) and received active or sham cTBS for eight weeks twice per week, 16 total sessions using a double-blind (participant-, rater-, analyst-blinded) design. All participants received high-angular resolution diffusion MR imaging at baseline and week 8. Twenty-eight participants in the active group and twenty-seven in the sham group with good imaging quality entered the final analysis. With longitudinal fixel-based analysis and network-based statistics, we found no significant difference between the active and sham groups in changes of white matter macro/microstructure and connections following cTBS. In addition, we found no association between baseline white matter macro/microstructure and autistic symptom changes from baseline to week 8 in the active group. In conclusion, we did not find a significant impact of left DLPFC cTBS on white matter macro/microstructure and connections in children and emerging adults with autism. These findings need to be interpreted in the context that the current intellectually able cohort in a single university hospital site limits the generalizability. Future studies are required to investigate if higher stimulation intensities and/or doses, other personal factors, or rTMS parameters might confer significant brain structural changes visible on MRI in ASD.
Collapse
Affiliation(s)
- Chun-Hung Yeh
- Department of Medical Imaging and Radiological Sciences, Chang Gung University, Taoyuan, Taiwan
- Department of Psychiatry, Chang Gung Memorial Hospital at Linkou, No.5 Fusing St. Gueishan, Taoyuan, 333, Taiwan
| | - Po-Chun Lin
- Department of Psychiatry, Chang Gung Memorial Hospital at Linkou, No.5 Fusing St. Gueishan, Taoyuan, 333, Taiwan
| | - Rung-Yu Tseng
- Department of Medical Imaging and Radiological Sciences, Chang Gung University, Taoyuan, Taiwan
| | - Yi-Ping Chao
- Deparment of Computer Science and Information Engineering, Chang Gung University, Taoyuan, Taiwan
- Department of Otorhinolaryngology-Head and Neck Surgery, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Chen-Te Wu
- Department of Medical Imaging and Intervention, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Tai-Li Chou
- Department of Psychology, National Taiwan University, Taipei, Taiwan
- Graduate Institute of Brain and Mind Sciences, College of Medicine, National Taiwan University, Taipei, Taiwan
- Neurobiology and Cognitive Science Center, National Taiwan University, Taipei, Taiwan
| | - Rou-Shayn Chen
- Department of Neurology, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Susan Shur-Fen Gau
- Graduate Institute of Brain and Mind Sciences, College of Medicine, National Taiwan University, Taipei, Taiwan
- Department of Psychiatry, National Taiwan University Hospital and College of Medicine, Taipei, Taiwan
| | - Hsing-Chang Ni
- Department of Psychiatry, Chang Gung Memorial Hospital at Linkou, No.5 Fusing St. Gueishan, Taoyuan, 333, Taiwan.
- College of Medicine, Chang Gung University, Taoyuan, Taiwan.
| | - Hsiang-Yuan Lin
- Azrieli Adult Neurodevelopmental Centre, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
4
|
Caulfield KA, LaPorta SM, Walton RM, Collins EV, Summers PM, Cho JY, Antonucci MU, Opitz A, George MS, McTeague LM. Mitigating the risk of overdosing TMS due to coil-to-scalp distance: An electric field modeling study. Brain Stimul 2024; 17:970-974. [PMID: 39127097 DOI: 10.1016/j.brs.2024.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 08/04/2024] [Accepted: 08/05/2024] [Indexed: 08/12/2024] Open
Affiliation(s)
- Kevin A Caulfield
- Brain Stimulation Division, Department of Psychiatry and Behavioral Science, Medical University of South Carolina, Charleston, SC, USA.
| | - Samantha M LaPorta
- Brain Stimulation Division, Department of Psychiatry and Behavioral Science, Medical University of South Carolina, Charleston, SC, USA
| | - Rhiannon M Walton
- Brain Stimulation Division, Department of Psychiatry and Behavioral Science, Medical University of South Carolina, Charleston, SC, USA
| | - Elisabeth V Collins
- Brain Stimulation Division, Department of Psychiatry and Behavioral Science, Medical University of South Carolina, Charleston, SC, USA
| | - Philipp M Summers
- Brain Stimulation Division, Department of Psychiatry and Behavioral Science, Medical University of South Carolina, Charleston, SC, USA
| | - Jennifer Y Cho
- College of Medicine, Medical University of South Carolina, Charleston, SC, USA
| | - Michael U Antonucci
- Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC, USA
| | - Alexander Opitz
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, USA
| | - Mark S George
- Brain Stimulation Division, Department of Psychiatry and Behavioral Science, Medical University of South Carolina, Charleston, SC, USA; Ralph H. Johnson VA Medical Center, Charleston, SC, USA
| | - Lisa M McTeague
- Brain Stimulation Division, Department of Psychiatry and Behavioral Science, Medical University of South Carolina, Charleston, SC, USA; Ralph H. Johnson VA Medical Center, Charleston, SC, USA
| |
Collapse
|
5
|
Van Hoornweder S, Geraerts M, Verstraelen S, Nuyts M, Caulfield KA, Meesen R. Differences in scalp-to-cortex tissues across age groups, sexes and brain regions: Implications for neuroimaging and brain stimulation techniques. Neurobiol Aging 2024; 138:45-62. [PMID: 38531217 PMCID: PMC11141186 DOI: 10.1016/j.neurobiolaging.2024.02.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 02/20/2024] [Accepted: 02/21/2024] [Indexed: 03/28/2024]
Abstract
Aging affects the scalp-to-cortex distance (SCD) and the comprising tissues. This is crucial for noninvasive neuroimaging and brain stimulation modalities as they rely on traversing from the scalp to the cortex or vice versa. The specific relationship between aging and these tissues has not been comprehensively investigated. We conducted a study on 250 younger and older adults to examine age-related differences in SCD and its constituent tissues. We identified region-specific differences in tissue thicknesses related to age and sex. Older adults exhibit larger SCD in the frontocentral regions compared to younger adults. Men exhibit greater SCD in the inferior scalp regions, while women show similar-to-greater SCD values in regions closer to the vertex compared to men. Younger adults and men have thicker soft tissue layers, whereas women and older adults exhibit thicker compact bone layers. CSF is considerably thicker in older adults, particularly in men. These findings emphasize the need to consider age, sex, and regional differences when interpreting SCD and its implications for noninvasive neuroimaging and brain stimulation.
Collapse
Affiliation(s)
- Sybren Van Hoornweder
- REVAL - Rehabilitation Research Center, Faculty of Rehabilitation Sciences, University of Hasselt, Diepenbeek, Belgium.
| | - Marc Geraerts
- REVAL - Rehabilitation Research Center, Faculty of Rehabilitation Sciences, University of Hasselt, Diepenbeek, Belgium
| | - Stefanie Verstraelen
- REVAL - Rehabilitation Research Center, Faculty of Rehabilitation Sciences, University of Hasselt, Diepenbeek, Belgium
| | - Marten Nuyts
- REVAL - Rehabilitation Research Center, Faculty of Rehabilitation Sciences, University of Hasselt, Diepenbeek, Belgium
| | - Kevin A Caulfield
- Brain Stimulation Laboratory, Department of Psychiatry, Medical University of South Carolina, Charleston, SC, USA
| | - Raf Meesen
- REVAL - Rehabilitation Research Center, Faculty of Rehabilitation Sciences, University of Hasselt, Diepenbeek, Belgium; Movement Control and Neuroplasticity Research Group, Department of Movement Sciences, Group Biomedical Sciences, KU Leuven, Leuven, Belgium
| |
Collapse
|
6
|
Jing C, Kuai H, Matsumoto H, Yamaguchi T, Liao IY, Wang S. Addiction-related brain networks identification via Graph Diffusion Reconstruction Network. Brain Inform 2024; 11:1. [PMID: 38190053 PMCID: PMC10774517 DOI: 10.1186/s40708-023-00216-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 12/13/2023] [Indexed: 01/09/2024] Open
Abstract
Functional magnetic resonance imaging (fMRI) provides insights into complex patterns of brain functional changes, making it a valuable tool for exploring addiction-related brain connectivity. However, effectively extracting addiction-related brain connectivity from fMRI data remains challenging due to the intricate and non-linear nature of brain connections. Therefore, this paper proposed the Graph Diffusion Reconstruction Network (GDRN), a novel framework designed to capture addiction-related brain connectivity from fMRI data acquired from addicted rats. The proposed GDRN incorporates a diffusion reconstruction module that effectively maintains the unity of data distribution by reconstructing the training samples, thereby enhancing the model's ability to reconstruct nicotine addiction-related brain networks. Experimental evaluations conducted on a nicotine addiction rat dataset demonstrate that the proposed GDRN effectively explores nicotine addiction-related brain connectivity. The findings suggest that the GDRN holds promise for uncovering and understanding the complex neural mechanisms underlying addiction using fMRI data.
Collapse
Affiliation(s)
- Changhong Jing
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Hongzhi Kuai
- Faculty of Engineering, Maebashi Institute of Technology, Maebashi, 371-0816, Japan
| | - Hiroki Matsumoto
- Faculty of Engineering, Maebashi Institute of Technology, Maebashi, 371-0816, Japan
| | | | - Iman Yi Liao
- University of Nottingham Malaysia Campus, Semenyih, Malaysia
| | - Shuqiang Wang
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.
| |
Collapse
|
7
|
Padula CB, McCalley DM, Tenekedjieva LT, MacNiven K, Rauch A, Morales JM, Knutson B, Humphreys K, Williams LM, Durazzo TC. A pilot, randomized clinical trial: Left dorsolateral prefrontal cortex intermittent theta burst stimulation improves treatment outcomes in veterans with alcohol use disorder. ALCOHOL, CLINICAL & EXPERIMENTAL RESEARCH 2024; 48:164-177. [PMID: 38197808 DOI: 10.1111/acer.15224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 10/19/2023] [Accepted: 11/05/2023] [Indexed: 01/11/2024]
Abstract
BACKGROUND Transcranial magnetic stimulation (TMS) offers a promising treatment avenue to modulate brain function in alcohol use disorder (AUD). To the best of our knowledge, this pilot study is the first randomized, double-blind, sham-controlled trial to deliver intermittent theta burst stimulation to the left dorsolateral prefrontal cortex (DLPFC) among US veterans with AUD. We hypothesized that 20 sessions of real TMS are tolerable and feasible. As a secondary line of inquiry, we hypothesized that, relative to sham TMS, individuals receiving real TMS would experience greater reductions in 6-month relapse rates, anhedonia, and alcohol cue-reactivity. METHODS Veterans (n = 17, one woman) were enrolled in a double-blind, sham-controlled trial (2-3 sessions/day; 7-10 days; 600 pulses/session; 20 sessions). Pre- and posttreatment assessments included responses to self-report questionnaires and functional magnetic resonance imaging measures of alcohol cue-reactivity. Alcohol consumption was assessed for 6 months. Linear mixed-effects models were constructed to predict posttreatment craving, mood, and cue-reactivity. RESULTS Individuals who received active iTBS (n = 8) were less likely to relapse within 3 months after treatment than the sham-treated group (n = 9) (OR = 12.0). Greater reductions in anhedonia were observed following active iTBS (Cohen's d = -0.59), relative to sham (d = -0.25). Alcohol cue-reactivity was reduced following active iTBS and increased following sham within the left insula (d = -0.19 vs. 0.51), left thalamus (d = -0.28 vs. 0.77), right insula (d = 0.18 vs. 0.52), and right thalamus (d = -0.06 vs. 0.62). CONCLUSIONS Relative to sham, we demonstrate that 20 sessions of real left DLPFC iTBS reduced the likelihood of relapse for at least 3 months. The potential utility of this approach is underscored by observed decreases in anhedonia and alcohol cue-reactivity-strong predictors of relapse among veterans. These initial data offer a valuable set of effect sizes to inform future clinical trials in this patient population.
Collapse
Affiliation(s)
- Claudia B Padula
- Sierra Pacific Mental Illness Research Education and Clinical Center (MIRECC), Veterans Affairs Palo Alto Healthcare System, Palo Alto, California, USA
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, California, USA
| | - Daniel M McCalley
- Sierra Pacific Mental Illness Research Education and Clinical Center (MIRECC), Veterans Affairs Palo Alto Healthcare System, Palo Alto, California, USA
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, California, USA
| | - Lea-Tereza Tenekedjieva
- Sierra Pacific Mental Illness Research Education and Clinical Center (MIRECC), Veterans Affairs Palo Alto Healthcare System, Palo Alto, California, USA
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, California, USA
| | - Kelly MacNiven
- Department of Psychology, Stanford University, Stanford, California, USA
| | - Andrew Rauch
- Department of Psychology, Loyola University Chicago, Chicago, Illinois, USA
| | - Jairelisse Morales Morales
- Sierra Pacific Mental Illness Research Education and Clinical Center (MIRECC), Veterans Affairs Palo Alto Healthcare System, Palo Alto, California, USA
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, California, USA
| | - Brian Knutson
- Department of Psychology, Stanford University, Stanford, California, USA
| | - Keith Humphreys
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, California, USA
- Center for Innovation to Implementation, Veterans Affairs Palo Alto Healthcare System, Menlo Park, California, USA
| | - Leanne M Williams
- Sierra Pacific Mental Illness Research Education and Clinical Center (MIRECC), Veterans Affairs Palo Alto Healthcare System, Palo Alto, California, USA
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, California, USA
| | - Timothy C Durazzo
- Sierra Pacific Mental Illness Research Education and Clinical Center (MIRECC), Veterans Affairs Palo Alto Healthcare System, Palo Alto, California, USA
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, California, USA
| |
Collapse
|
8
|
Tang VM, Ibrahim C, Rodak T, Goud R, Blumberger DM, Voineskos D, Le Foll B. Managing substance use in patients receiving therapeutic repetitive transcranial magnetic stimulation: A scoping review. Neurosci Biobehav Rev 2023; 155:105477. [PMID: 38007879 DOI: 10.1016/j.neubiorev.2023.105477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/16/2023] [Accepted: 11/18/2023] [Indexed: 11/28/2023]
Abstract
Repetitive Transcranial Magnetic Stimulation (rTMS) is an invaluable treatment option for neuropsychiatric disorders. Co-occurring recreational and nonmedical substance use can be common in those presenting for rTMS treatment, and it is unknown how it may affect the safety and efficacy of rTMS for the treatment of currently approved neuropsychiatric indications. This scoping review aimed to map the literature on humans receiving rTMS and had a history of any type of substance use. The search identified 274 articles providing information on inclusion/exclusion criteria, withdrawal criteria, safety protocols, type of rTMS and treatment parameters, adverse events and effect on primary outcomes that related to substance use. There are neurophysiological effects of substance use on cortical excitability, although the relevance to clinical rTMS practice is unknown. The current literature supports the safety and feasibility of delivering rTMS to those who have co-occurring neuropsychiatric disorder and substance use. However, specific details on how varying degrees of substance use alters the safety, efficacy, and mechanisms of rTMS remains poorly described.
Collapse
Affiliation(s)
- Victor M Tang
- Addictions Division, Centre for Addiction and Mental Health, Canada; Institute for Medical Science, Temerty Faculty of Medicine, University of Toronto, Canada; Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Canada; Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Canada; Institute of Mental Health Policy Research, Centre for Addiction and Mental Health, Canada.
| | - Christine Ibrahim
- Addictions Division, Centre for Addiction and Mental Health, Canada; Institute for Medical Science, Temerty Faculty of Medicine, University of Toronto, Canada
| | - Terri Rodak
- CAMH Mental Health Sciences Library, Department of Education, Centre for Addiction and Mental Health, Canada
| | - Rachel Goud
- Addictions Division, Centre for Addiction and Mental Health, Canada
| | - Daniel M Blumberger
- Institute for Medical Science, Temerty Faculty of Medicine, University of Toronto, Canada; Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Canada; Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Canada; Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Canada
| | - Daphne Voineskos
- Institute for Medical Science, Temerty Faculty of Medicine, University of Toronto, Canada; Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Canada; Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Canada; Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Canada; Poul Hansen Family Centre for Depression, Krembil Research Institute, Toronto Western Hospital, University Health Network, Canada
| | - Bernard Le Foll
- Addictions Division, Centre for Addiction and Mental Health, Canada; Institute for Medical Science, Temerty Faculty of Medicine, University of Toronto, Canada; Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Canada; Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Canada; Institute of Mental Health Policy Research, Centre for Addiction and Mental Health, Canada; CAMH Mental Health Sciences Library, Department of Education, Centre for Addiction and Mental Health, Canada; Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Canada; Poul Hansen Family Centre for Depression, Krembil Research Institute, Toronto Western Hospital, University Health Network, Canada; Department of Pharmacology and Toxicology, Temerty Faculty of Medicine, University of Toronto, Canada; Department of Family and Community Medicine, Temerty Faculty of Medicine, University of Toronto, Canada; Waypoint Research Institute, Waypoint Centre for Mental Health Care, Penetanguishene, Canada
| |
Collapse
|
9
|
Van Hoornweder S, Nuyts M, Frieske J, Verstraelen S, Meesen RLJ, Caulfield KA. Outcome measures for electric field modeling in tES and TMS: A systematic review and large-scale modeling study. Neuroimage 2023; 281:120379. [PMID: 37716590 PMCID: PMC11008458 DOI: 10.1016/j.neuroimage.2023.120379] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/18/2023] [Accepted: 09/13/2023] [Indexed: 09/18/2023] Open
Abstract
BACKGROUND Electric field (E-field) modeling is a potent tool to estimate the amount of transcranial magnetic and electrical stimulation (TMS and tES, respectively) that reaches the cortex and to address the variable behavioral effects observed in the field. However, outcome measures used to quantify E-fields vary considerably and a thorough comparison is missing. OBJECTIVES This two-part study aimed to examine the different outcome measures used to report on tES and TMS induced E-fields, including volume- and surface-level gray matter, region of interest (ROI), whole brain, geometrical, structural, and percentile-based approaches. The study aimed to guide future research in informed selection of appropriate outcome measures. METHODS Three electronic databases were searched for tES and/or TMS studies quantifying E-fields. The identified outcome measures were compared across volume- and surface-level E-field data in ten tES and TMS modalities targeting two common targets in 100 healthy individuals. RESULTS In the systematic review, we extracted 308 outcome measures from 202 studies that adopted either a gray matter volume-level (n = 197) or surface-level (n = 111) approach. Volume-level results focused on E-field magnitude, while surface-level data encompassed E-field magnitude (n = 64) and normal/tangential E-field components (n = 47). E-fields were extracted in ROIs, such as brain structures and shapes (spheres, hexahedra and cylinders), or the whole brain. Percentiles or mean values were mostly used to quantify E-fields. Our modeling study, which involved 1,000 E-field models and > 1,000,000 extracted E-field values, revealed that different outcome measures yielded distinct E-field values, analyzed different brain regions, and did not always exhibit strong correlations in the same within-subject E-field model. CONCLUSIONS Outcome measure selection significantly impacts the locations and intensities of extracted E-field data in both tES and TMS E-field models. The suitability of different outcome measures depends on the target region, TMS/tES modality, individual anatomy, the analyzed E-field component and the research question. To enhance the quality, rigor, and reproducibility in the E-field modeling domain, we suggest standard reporting practices across studies and provide four recommendations.
Collapse
Affiliation(s)
- Sybren Van Hoornweder
- REVAL - Rehabilitation Research Center, Faculty of Rehabilitation Sciences, University of Hasselt, Diepenbeek, Belgium.
| | - Marten Nuyts
- REVAL - Rehabilitation Research Center, Faculty of Rehabilitation Sciences, University of Hasselt, Diepenbeek, Belgium
| | - Joana Frieske
- REVAL - Rehabilitation Research Center, Faculty of Rehabilitation Sciences, University of Hasselt, Diepenbeek, Belgium; Movement Control and Neuroplasticity Research Group, Department of Movement Sciences, Group Biomedical Sciences, KU Leuven, Leuven, Belgium
| | - Stefanie Verstraelen
- REVAL - Rehabilitation Research Center, Faculty of Rehabilitation Sciences, University of Hasselt, Diepenbeek, Belgium
| | - Raf L J Meesen
- REVAL - Rehabilitation Research Center, Faculty of Rehabilitation Sciences, University of Hasselt, Diepenbeek, Belgium; Movement Control and Neuroplasticity Research Group, Department of Movement Sciences, Group Biomedical Sciences, KU Leuven, Leuven, Belgium
| | - Kevin A Caulfield
- Brain Stimulation Laboratory, Department of Psychiatry, Medical University of South Carolina, Charleston, SC, United States.
| |
Collapse
|
10
|
Abstract
Noninvasive brain stimulation (NIBS) techniques are widely used tools for the study and rehabilitation of cognitive functions. Different NIBS approaches aim to enhance or impair different cognitive processes. The methodological focus for achieving this has been on stimulation protocols that are considered either inhibitory or facilitatory. However, despite more than three decades of use, their application is based on incomplete and overly simplistic conceptualizations of mechanisms of action. Such misconception limits the usefulness of these approaches in the basic science and clinical domains. In this review, we challenge this view by arguing that stimulation protocols themselves are neither inhibitory nor facilitatory. Instead, we suggest that all induced effects reflect complex interactions of internal and external factors. Given these considerations, we present a novel model in which we conceptualize NIBS effects as an interaction between brain activity and the characteristics of the external stimulus. This interactive model can explain various phenomena in the brain stimulation literature that have been considered unexpected or paradoxical. We argue that these effects no longer seem paradoxical when considered from the viewpoint of state dependency.
Collapse
Affiliation(s)
- Gesa Hartwigsen
- Lise Meitner Research Group Cognition and Plasticity, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Juha Silvanto
- School of Psychology, Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK
| |
Collapse
|
11
|
Miller A, Allen RJ, Juma AA, Chowdhury R, Burke MR. Does repetitive transcranial magnetic stimulation improve cognitive function in age-related neurodegenerative diseases? A systematic review and meta-analysis. Int J Geriatr Psychiatry 2023; 38:e5974. [PMID: 37526325 DOI: 10.1002/gps.5974] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 07/11/2023] [Indexed: 08/02/2023]
Abstract
OBJECTIVE High-frequency, repetitive transcranial magnetic stimulation (rTMS) targeted over the dorsolateral prefrontal cortex (DLPFC) is widely used in research to promote neuroplasticity and cognitive enhancement. RTMS is a promising intervention to tackle cognitive decline in people with age-related neurodegenerative diseases. However, there is currently no systematic evidence examining the effects of DLPFC-targeted, high-frequency rTMS on cognitive function in this population. The aim of this systematic review was to evaluate the efficacy and moderators of this treatment intervention. METHODS A comprehensive literature search of five electronic databases was performed to identify articles published before October, 2022. Following PRISMA guidelines, the identified articles were screened, data was extracted, and the methodological quality was assessed using the Cochrane tool, Risk of Bias 2. Meta-analyses were performed using R Studio (v.4.1.2). RESULTS Sixteen studies involving 474 participants met the inclusion criteria, of which 8 studies measured global cognitive function. The results from the random-effects meta-analysis showed rTMS significantly improved global cognitive function relative to control groups shown by a large, significant effect size (g = 1.39, 95% CI, 0.34-2.43; p = 0.017). No significant effects were found between subgroups or for individual cognitive domains. CONCLUSIONS High-frequency rTMS, targeted over the DLPFC, appears to improve global cognitive function in people with age-related neurodegenerative diseases. However, these results should be interpreted with caution due to the small number of studies included, and high between-study heterogeneity.
Collapse
Affiliation(s)
- Amy Miller
- School of Psychology, University of Leeds, Leeds, UK
| | | | - Alisha A Juma
- School of Psychology, University of Leeds, Leeds, UK
| | | | | |
Collapse
|
12
|
Quinn DK, Upston J, Jones TR, Gibson BC, Olmstead TA, Yang J, Price AM, Bowers-Wu DH, Durham E, Hazlewood S, Farrar DC, Miller J, Lloyd MO, Garcia CA, Ojeda CJ, Hager BW, Vakhtin AA, Abbott CC. Electric field distribution predicts efficacy of accelerated intermittent theta burst stimulation for late-life depression. Front Psychiatry 2023; 14:1215093. [PMID: 37593449 PMCID: PMC10427506 DOI: 10.3389/fpsyt.2023.1215093] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 07/13/2023] [Indexed: 08/19/2023] Open
Abstract
Introduction Repetitive transcranial magnetic stimulation (rTMS) is a promising intervention for late-life depression (LLD) but may have lower rates of response and remission owing to age-related brain changes. In particular, rTMS induced electric field strength may be attenuated by cortical atrophy in the prefrontal cortex. To identify clinical characteristics and treatment parameters associated with response, we undertook a pilot study of accelerated fMRI-guided intermittent theta burst stimulation (iTBS) to the right dorsolateral prefrontal cortex in 25 adults aged 50 or greater diagnosed with LLD and qualifying to receive clinical rTMS. Methods Participants underwent baseline behavioral assessment, cognitive testing, and structural and functional MRI to generate individualized targets and perform electric field modeling. Forty-five sessions of iTBS were delivered over 9 days (1800 pulses per session, 50-min inter-session interval). Assessments and testing were repeated after 15 sessions (Visit 2) and 45 sessions (Visit 3). Primary outcome measure was the change in depressive symptoms on the Inventory of Depressive Symptomatology-30-Clinician (IDS-C-30) from Visit 1 to Visit 3. Results Overall there was a significant improvement in IDS score with the treatment (Visit 1: 38.6; Visit 2: 31.0; Visit 3: 21.3; mean improvement 45.5%) with 13/25 (52%) achieving response and 5/25 (20%) achieving remission (IDS-C-30 < 12). Electric field strength and antidepressant effect were positively correlated in a subregion of the ventrolateral prefrontal cortex (VLPFC) (Brodmann area 47) and negatively correlated in the posterior dorsolateral prefrontal cortex (DLPFC). Conclusion Response and remission rates were lower than in recently published trials of accelerated fMRI-guided iTBS to the left DLPFC. These results suggest that sufficient electric field strength in VLPFC may be a contributor to effective rTMS, and that modeling to optimize electric field strength in this area may improve response and remission rates. Further studies are needed to clarify the relationship of induced electric field strength with antidepressant effects of rTMS for LLD.
Collapse
Affiliation(s)
- Davin K. Quinn
- Department of Psychiatry and Behavioral Sciences, UNM, Albuquerque, NM, United States
| | - Joel Upston
- Department of Psychiatry and Behavioral Sciences, UNM, Albuquerque, NM, United States
| | - Thomas R. Jones
- Department of Psychiatry and Behavioral Sciences, UNM, Albuquerque, NM, United States
| | - Benjamin C. Gibson
- Department of Psychology, University of New Mexico, Albuquerque, NM, United States
| | - Tessa A. Olmstead
- Department of Psychiatry and Behavioral Sciences, UNM, Albuquerque, NM, United States
| | - Justine Yang
- Department of Psychiatry and Behavioral Sciences, UNM, Albuquerque, NM, United States
| | | | - Dorothy H. Bowers-Wu
- Department of Psychiatry and Behavioral Sciences, UNM, Albuquerque, NM, United States
| | - Erick Durham
- Department of Psychiatry, Texas Tech University, El Paso, TX, United States
| | - Shawn Hazlewood
- Department of Psychiatry and Behavioral Sciences, UNM, Albuquerque, NM, United States
| | - Danielle C. Farrar
- Department of Psychiatry and Behavioral Sciences, UNM, Albuquerque, NM, United States
| | - Jeremy Miller
- Department of Psychiatry and Behavioral Sciences, UNM, Albuquerque, NM, United States
| | - Megan O. Lloyd
- Department of Psychiatry and Behavioral Sciences, UNM, Albuquerque, NM, United States
| | - Crystal A. Garcia
- Department of Psychiatry and Behavioral Sciences, UNM, Albuquerque, NM, United States
| | - Cesar J. Ojeda
- Department of Psychiatry and Behavioral Sciences, UNM, Albuquerque, NM, United States
| | - Brant W. Hager
- Department of Psychiatry and Behavioral Sciences, UNM, Albuquerque, NM, United States
| | | | - Christopher C. Abbott
- Department of Psychiatry and Behavioral Sciences, UNM, Albuquerque, NM, United States
| |
Collapse
|
13
|
Van Hoornweder S, Geraerts M, Verstraelen S, Nuyts M, Caulfield KA, Meesen R. From scalp to cortex, the whole isn't greater than the sum of its parts: introducing GetTissueThickness (GTT) to assess age and sex differences in tissue thicknesses. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.18.537177. [PMID: 37131842 PMCID: PMC10153183 DOI: 10.1101/2023.04.18.537177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Noninvasive techniques to record and stimulate the brain rely on passing through the tissues in between the scalp and cortex. Currently, there is no method to obtain detailed information about these scalp-to-cortex distance (SCD) tissues. We introduce GetTissueThickness (GTT), an open-source, automated approach to quantify SCD, and unveil how tissue thicknesses differ across age groups, sexes and brain regions (n = 250). We show that men have larger SCD in lower scalp regions and women have similar-to-larger SCD in regions closer to the vertex, with aging resulting in increased SCD in fronto-central regions. Soft tissue thickness varies by sex and age, with thicker layers and greater age-related decreases in men. Compact and spongy bone thickness also differ across sexes and age groups, with thicker compact bone in women in both age groups and an age-related thickening. Older men generally have the thickest cerebrospinal fluid layer and younger women and men having similar cerebrospinal fluid layers. Aging mostly results in grey matter thinning. Concerning SCD, the whole isn't greater than the sum of its parts. GTT enables rapid quantification of the SCD tissues. The distinctive sensitivity of noninvasive recording and stimulation modalities to different tissues underscores the relevance of GTT.
Collapse
Affiliation(s)
- Sybren Van Hoornweder
- REVAL - Rehabilitation Research Center, Faculty of Rehabilitation Sciences, University of Hasselt, Diepenbeek, Belgium
| | - Marc Geraerts
- REVAL - Rehabilitation Research Center, Faculty of Rehabilitation Sciences, University of Hasselt, Diepenbeek, Belgium
| | - Stefanie Verstraelen
- REVAL - Rehabilitation Research Center, Faculty of Rehabilitation Sciences, University of Hasselt, Diepenbeek, Belgium
| | - Marten Nuyts
- REVAL - Rehabilitation Research Center, Faculty of Rehabilitation Sciences, University of Hasselt, Diepenbeek, Belgium
| | - Kevin A. Caulfield
- Brain Stimulation Laboratory, Department of Psychiatry, Medical University of South Carolina, Charleston, SC, USA
| | - Raf Meesen
- REVAL - Rehabilitation Research Center, Faculty of Rehabilitation Sciences, University of Hasselt, Diepenbeek, Belgium
- Movement Control and Neuroplasticity Research Group, Department of Movement Sciences, Group Biomedical Sciences, KU Leuven, Leuven, Belgium
| |
Collapse
|
14
|
Esmaeilpour T, Lotfealian A, Anvari M, Namavar M, Karbalaei N, Shahedi A, Bokkon I, Salari V, Oblak D. Effect of methamphetamine on ultraweak photon emission and level of reactive oxygen species in male rat brain. Neurosci Lett 2023; 801:137136. [PMID: 36804571 DOI: 10.1016/j.neulet.2023.137136] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 01/20/2023] [Accepted: 02/15/2023] [Indexed: 02/21/2023]
Abstract
All living cells, including neurons, generate ultra-weak photon emission (UPE) during biological activity, and in particular, in the brain, it has been shown that UPE is correlated with neuronal activity and associated metabolic processes. Various intracellular factors, as well as external factors, can reduce or increase the intensity of UPE. In this study, we have used Methamphetamine (METH) as one potentially effective external factor, which is a substance that has the property of stimulating the central nervous system. METH can impair mitochondrial function by causing toxicity via various pathways, including an increase in the number of mitochondria, hyperthermia, the increased metabolic activity of the brain, and the production of glutamate and excess calcium. In addition to mitochondrial dysfunction, METH alters cellular homeostasis, leading to cell damage and the production of excess ROS. The aim of this study is to measure and compare the UPE intensity and reactive oxygen species (ROS) levels of the prefrontal, motor, and visual cortex before and after METH administration. Twenty male rats were randomly assigned to two groups, the control, and METH groups. In the control group, 2 h after injection of normal saline and without any intervention, and in the experimental group 2 h after IP injection of 20 mg/kg METH, sections were prepared from three areas: prefrontal, motor, and V1-V2 cortex, which were used to evaluate the emission of UPE using a photomultiplier tube (PMT) device and to evaluate the amount of ROS. The results showed that the amount of ROS and UPE in the experimental group in all three areas significantly increased compared to the control group. So, METH increases UPE and ROS in the prefrontal, motor, and visual regions, and there is a direct relationship between UPE intensity and ROS production. Therefore, UPE may be used as a dynamic reading tool to monitor oxidative metabolism in physiological processes related to ROS and METH research. Also, the results of this experiment may create a new avenue to test the hypothesis that the excess in UPE generation may lead to the phenomenon of phosphene and visual hallucinations.
Collapse
Affiliation(s)
- Tahereh Esmaeilpour
- Department of Anatomical Sciences, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Azam Lotfealian
- Department of Biology and Anatomical Sciences, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Morteza Anvari
- Department of Biology and Anatomical Sciences, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Mohammadreza Namavar
- Department of Anatomical Sciences, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran; Histomorphometry and Stereology Research Center, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran; Clinical Neurology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Narges Karbalaei
- Histomorphometry and Stereology Research Center, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Physiology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Abbas Shahedi
- Department of Biology and Anatomical Sciences, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Istvan Bokkon
- Psychosomatic Outpatient Clinics, Budapest, Hungary; Vision Research Institute, Neuroscience and Consciousness Research Department, Lowell, MA, USA
| | - Vahid Salari
- Institute for Quantum Science and Technology, Department of Physics and Astronomy, University of Calgary, Alberta T2N 1N4, Canada.
| | - Daniel Oblak
- Institute for Quantum Science and Technology, Department of Physics and Astronomy, University of Calgary, Alberta T2N 1N4, Canada
| |
Collapse
|
15
|
Van Hoornweder S, Nuyts M, Frieske J, Verstraelen S, Meesen RLJ, Caulfield KA. A Systematic Review and Large-Scale tES and TMS Electric Field Modeling Study Reveals How Outcome Measure Selection Alters Results in a Person- and Montage-Specific Manner. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.22.529540. [PMID: 36865243 PMCID: PMC9980068 DOI: 10.1101/2023.02.22.529540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
Background Electric field (E-field) modeling is a potent tool to examine the cortical effects of transcranial magnetic and electrical stimulation (TMS and tES, respectively) and to address the high variability in efficacy observed in the literature. However, outcome measures used to report E-field magnitude vary considerably and have not yet been compared in detail. Objectives The goal of this two-part study, encompassing a systematic review and modeling experiment, was to provide an overview of the different outcome measures used to report the magnitude of tES and TMS E-fields, and to conduct a direct comparison of these measures across different stimulation montages. Methods Three electronic databases were searched for tES and/or TMS studies reporting E-field magnitude. We extracted and discussed outcome measures in studies meeting the inclusion criteria. Additionally, outcome measures were compared via models of four common tES and two TMS modalities in 100 healthy younger adults. Results In the systematic review, we included 118 studies using 151 outcome measures related to E-field magnitude. Structural and spherical regions of interest (ROI) analyses and percentile-based whole-brain analyses were used most often. In the modeling analyses, we found that there was an average of only 6% overlap between ROI and percentile-based whole-brain analyses in the investigated volumes within the same person. The overlap between ROI and whole-brain percentiles was montage- and person-specific, with more focal montages such as 4Ã-1 and APPS-tES, and figure-of-eight TMS showing up to 73%, 60%, and 52% overlap between ROI and percentile approaches respectively. However, even in these cases, 27% or more of the analyzed volume still differed between outcome measures in every analyses. Conclusions The choice of outcome measures meaningfully alters the interpretation of tES and TMS E-field models. Well-considered outcome measure selection is imperative for accurate interpretation of results, valid between-study comparisons, and depends on stimulation focality and study goals. We formulated four recommendations to increase the quality and rigor of E-field modeling outcome measures. With these data and recommendations, we hope to guide future studies towards informed outcome measure selection, and improve the comparability of studies.
Collapse
|
16
|
Optimized APPS-tDCS electrode position, size, and distance doubles the on-target stimulation magnitude in 3000 electric field models. Sci Rep 2022; 12:20116. [PMID: 36418438 PMCID: PMC9684449 DOI: 10.1038/s41598-022-24618-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Accepted: 11/17/2022] [Indexed: 11/24/2022] Open
Abstract
Transcranial direct current stimulation (tDCS) is a widely used noninvasive brain stimulation technique with mixed results to date. A potential solution is to apply more efficient stimulation to ensure that each participant receives sufficient cortical activation. In this four-part study, we used electric field (E-field) modeling to systematically investigate the cortical effects of conventional and novel tDCS electrode montages, with the goal of creating a new easily adoptable form of tDCS that induces higher and more focal E-fields. We computed 3000 anatomically accurate, MRI-based E-field models using 2 mA tDCS to target the left primary motor cortex in 200 Human Connectome Project (HCP) participants and tested the effects of: 1. Novel Electrode Position, 2. Electrode Size, and 3. Inter-Electrode Distance on E-field magnitude and focality. In particular, we examined the effects of placing electrodes surrounding the corticomotor target in the anterior and posterior direction (anterior posterior pad surround tDCS; APPS-tDCS). We found that electrode position, electrode size, and inter-electrode distance all significantly impact the cortical E-field magnitude and focality of stimulation (all p < 0.0001). At the same 2 mA scalp stimulation intensity, APPS-tDCS with smaller than conventional 1 × 1 cm electrodes surrounding the neural target deliver more than double the on-target cortical E-field (APPS-tDCS: average of 0.55 V/m from 2 mA; M1-SO and bilateral M1: both 0.27 V/m from 2 mA) while stimulating only a fraction of the off-target brain regions; 2 mA optimized APPS-tDCS produces 4.08 mA-like cortical E-fields. In sum, this new optimized APPS-tDCS method produces much stronger cortical stimulation intensities at the same 2 mA scalp intensity. APPS-tDCS also more focally stimulates the cortex at the intended target, using simple EEG coordinate locations and without MRI scans. This APPS-tDCS method is adoptable to any existing, commercially available tDCS device and can be used to ensure sufficient cortical activation in each person. Future directions include testing whether APPS-tDCS produces larger and more consistent therapeutic tDCS effects.
Collapse
|
17
|
Caulfield KA, Fleischmann HH, Cox CE, Wolf JP, George MS, McTeague LM. Neuronavigation maximizes accuracy and precision in TMS positioning: Evidence from 11,230 distance, angle, and electric field modeling measurements. Brain Stimul 2022; 15:1192-1205. [PMID: 36031059 PMCID: PMC10026380 DOI: 10.1016/j.brs.2022.08.013] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 08/12/2022] [Accepted: 08/18/2022] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Researchers and clinicians have traditionally relied on elastic caps with markings to reposition the transcranial magnetic stimulation (TMS) coil between trains and sessions. Newer neuronavigation technology co-registers the patient's head and structural magnetic resonance imaging (MRI) scan, providing the researcher with real-time feedback about how to adjust the coil to be on-target. However, there has been no head to head comparison of accuracy and precision across treatment sessions. OBJECTIVE /Hypothesis: In this two-part study, we compared elastic cap and neuronavigation targeting methodologies on distance, angle, and electric field (E-field) magnitude values. METHODS In 42 participants receiving up to 50 total accelerated rTMS sessions in 5 days, we compared cap and neuronavigation targeting approaches in 3408 distance and 6816 angle measurements. In Experiment 1, TMS administrators saved an on-target neuronavigation location at Beam F3, which served as the landmark for all other measurements. Next, the operators placed the TMS coil based on cap markings or neuronavigation software to measure the distance and angle differences from the on-target sample. In Experiment 2, we saved each XYZ coordinate of the TMS coil from cap and neuronavigation targeting in 12 participants to compare the E-field magnitude differences at the cortical prefrontal target in 1106 cap and neuronavigation models. RESULTS Cap targeting was significantly off-target for distance, placing the coil an average of 10.66 mm off-target (Standard error of the mean; SEM = 0.19 mm) compared to 0.3 mm (SEM = 0.03 mm) for neuronavigation (p < 0.0001). Cap targeting also significantly deviated for angles off-target, averaging 7.79 roll/pitch degrees (SEM = 1.07°) off-target and 5.99 yaw degrees (SEM = 0.12°) off-target; in comparison, neuronavigation targeting positioned the coil 0.34 roll/pitch degrees (SEM = 0.01°) and 0.22 yaw (SEM = 0.004°) off-target (both p < 0.0001). Further analyses revealed that there were significant inter-operator differences on distance and angle positioning for F3 (all p < 0.05), but not neuronavigation. Lastly, cap targeting resulted in significantly lower E-fields at the intended prefrontal cortical target, with equivalent E-fields as 110.7% motor threshold (MT; range = 58.3-127.4%) stimulation vs. 119.9% MT (range = 115-123.3%) from neuronavigated targeting with 120% MT stimulation applied (p < 0.001). CONCLUSIONS Cap-based targeting is an inherent source of target variability compared to neuronavigation. Additionally, cap-based coil placement is more prone to differences across operators. Off-target coil placement secondary to cap-based measurements results in significantly lower amounts of stimulation reaching the cortical target, with some individuals receiving only 48.6% of the intended on-target E-field. Neuronavigation technology enables more precise and accurate TMS positioning, resulting in the intended stimulation intensities at the targeted cortical level.
Collapse
Affiliation(s)
- Kevin A Caulfield
- Department of Psychiatry, Medical University of South Carolina, Charleston, SC, USA.
| | - Holly H Fleischmann
- Department of Psychiatry, Medical University of South Carolina, Charleston, SC, USA; Department of Psychology, University of Georgia, Athens, GA, USA
| | - Claire E Cox
- Department of Psychiatry, Medical University of South Carolina, Charleston, SC, USA
| | - Julia P Wolf
- Department of Psychiatry, Medical University of South Carolina, Charleston, SC, USA
| | - Mark S George
- Department of Psychiatry, Medical University of South Carolina, Charleston, SC, USA; Ralph H. Johnson VA Medical Center, Charleston, SC, USA
| | - Lisa M McTeague
- Department of Psychiatry, Medical University of South Carolina, Charleston, SC, USA; Ralph H. Johnson VA Medical Center, Charleston, SC, USA
| |
Collapse
|
18
|
Turi Z, Hananeia N, Shirinpour S, Opitz A, Jedlicka P, Vlachos A. Dosing Transcranial Magnetic Stimulation of the Primary Motor and Dorsolateral Prefrontal Cortices With Multi-Scale Modeling. Front Neurosci 2022; 16:929814. [PMID: 35898411 PMCID: PMC9309210 DOI: 10.3389/fnins.2022.929814] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 05/27/2022] [Indexed: 11/15/2022] Open
Abstract
Transcranial magnetic stimulation (TMS) can depolarize cortical neurons through the intact skin and skull. The characteristics of the induced electric field (E-field) have a major impact on specific outcomes of TMS. Using multi-scale computational modeling, we explored whether the stimulation parameters derived from the primary motor cortex (M1) induce comparable macroscopic E-field strengths and subcellular/cellular responses in the dorsolateral prefrontal cortex (DLPFC). To this aim, we calculated the TMS-induced E-field in 16 anatomically realistic head models and simulated the changes in membrane voltage and intracellular calcium levels of morphologically and biophysically realistic human pyramidal cells in the M1 and DLPFC. We found that the conventional intensity selection methods (i.e., motor threshold and fixed intensities) produce variable macroscopic E-fields. Consequently, it was challenging to produce comparable subcellular/cellular responses across cortical regions with distinct folding characteristics. Prospectively, personalized stimulation intensity selection could standardize the E-fields and the subcellular/cellular responses to repetitive TMS across cortical regions and individuals. The suggested computational approach points to the shortcomings of the conventional intensity selection methods used in clinical settings. We propose that multi-scale modeling has the potential to overcome some of these limitations and broaden our understanding of the neuronal mechanisms for TMS.
Collapse
Affiliation(s)
- Zsolt Turi
- Department of Neuroanatomy, Faculty of Medicine, Institute of Anatomy and Cell Biology, University of Freiburg, Freiburg, Germany
| | - Nicholas Hananeia
- Faculty of Medicine, Interdisciplinary Centre for 3Rs in Animal Research, Justus-Liebig-University, Giessen, Germany
| | - Sina Shirinpour
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, United States
| | - Alexander Opitz
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, United States
| | - Peter Jedlicka
- Faculty of Medicine, Interdisciplinary Centre for 3Rs in Animal Research, Justus-Liebig-University, Giessen, Germany
| | - Andreas Vlachos
- Department of Neuroanatomy, Faculty of Medicine, Institute of Anatomy and Cell Biology, University of Freiburg, Freiburg, Germany
- Center BrainLinks-BrainTools, University of Freiburg, Freiburg, Germany
- Center for Basics in Neuromodulation, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- *Correspondence: Andreas Vlachos
| |
Collapse
|
19
|
Van Hoornweder S, Meesen RLJ, Caulfield KA. Accurate tissue segmentation from including both T1-weighted and T2-weighted MRI scans significantly affect electric field simulations of prefrontal but not motor TMS. Brain Stimul 2022; 15:942-945. [PMID: 35779855 PMCID: PMC11016292 DOI: 10.1016/j.brs.2022.06.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/16/2022] [Accepted: 06/21/2022] [Indexed: 11/21/2022] Open
Affiliation(s)
- Sybren Van Hoornweder
- REVAL - Rehabilitation Research Center, Faculty of Rehabilitation Sciences, University of Hasselt, Diepenbeek, Belgium.
| | - Raf L J Meesen
- REVAL - Rehabilitation Research Center, Faculty of Rehabilitation Sciences, University of Hasselt, Diepenbeek, Belgium; Movement Control and Neuroplasticity Research Group, Department of Movement Sciences, Group Biomedical Sciences, KU Leuven, Leuven, Belgium
| | - Kevin A Caulfield
- Brain Stimulation Laboratory, Department of Psychiatry, Medical University of South Carolina, Charleston, SC, USA.
| |
Collapse
|
20
|
Dannhauer M, Huang Z, Beynel L, Wood E, Bukhari-Parlakturk N, Peterchev AV. TAP: targeting and analysis pipeline for optimization and verification of coil placement in transcranial magnetic stimulation. J Neural Eng 2022; 19:10.1088/1741-2552/ac63a4. [PMID: 35377345 PMCID: PMC9131512 DOI: 10.1088/1741-2552/ac63a4] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 04/01/2022] [Indexed: 11/12/2022]
Abstract
Objective.Transcranial magnetic stimulation (TMS) can modulate brain function via an electric field (E-field) induced in a brain region of interest (ROI). The ROI E-field can be computationally maximized and set to match a specific reference using individualized head models to find the optimal coil placement and stimulus intensity. However, the available software lacks many practical features for prospective planning of TMS interventions and retrospective evaluation of the experimental targeting accuracy.Approach.The TMS targeting and analysis pipeline (TAP) software uses an MRI/fMRI-derived brain target to optimize coil placement considering experimental parameters such as the subject's hair thickness and coil placement restrictions. The coil placement optimization is implemented in SimNIBS 3.2, for which an additional graphical user interface (TargetingNavigator) is provided to visualize/adjust procedural parameters. The coil optimization process also computes the E-field at the target, allowing the selection of the TMS device intensity setting to achieve specific E-field strengths. The optimized coil placement information is prepared for neuronavigation software, which supports targeting during the TMS procedure. The neuronavigation system can record the coil placement during the experiment, and these data can be processed in TAP to quantify the accuracy of the experimental TMS coil placement and induced E-field.Main results.TAP was demonstrated in a study consisting of three repetitive TMS sessions in five subjects. TMS was delivered by an experienced operator under neuronavigation with the computationally optimized coil placement. Analysis of the experimental accuracy from the recorded neuronavigation data indicated coil location and orientation deviations up to about 2 mm and 2°, respectively, resulting in an 8% median decrease in the target E-field magnitude compared to the optimal placement.Significance.TAP supports navigated TMS with a variety of features for rigorous and reproducible stimulation delivery, including planning and evaluation of coil placement and intensity selection for E-field-based dosing.
Collapse
Affiliation(s)
- Moritz Dannhauer
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC 27710, USA
| | - Ziping Huang
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC 27710, USA
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Lysianne Beynel
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC 27710, USA
| | - Eleanor Wood
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC 27710, USA
| | | | - Angel V. Peterchev
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC 27710, USA
- Department of Electrical and Computer Engineering, Duke University, Durham, NC 27708, USA
- Department of Neurosurgery, Duke University, Durham, NC 27710, USA
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| |
Collapse
|
21
|
Caulfield KA, Brown JC. The Problem and Potential of TMS' Infinite Parameter Space: A Targeted Review and Road Map Forward. Front Psychiatry 2022; 13:867091. [PMID: 35619619 PMCID: PMC9127062 DOI: 10.3389/fpsyt.2022.867091] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 04/21/2022] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Repetitive transcranial magnetic stimulation (rTMS) is a non-invasive, effective, and FDA-approved brain stimulation method. However, rTMS parameter selection remains largely unexplored, with great potential for optimization. In this review, we highlight key studies underlying next generation rTMS therapies, particularly focusing on: (1) rTMS Parameters, (2) rTMS Target Engagement, (3) rTMS Interactions with Endogenous Brain Activity, and (4) Heritable Predisposition to Brain Stimulation Treatments. METHODS We performed a targeted review of pre-clinical and clinical rTMS studies. RESULTS Current evidence suggests that rTMS pattern, intensity, frequency, train duration, intertrain interval, intersession interval, pulse and session number, pulse width, and pulse shape can alter motor excitability, long term potentiation (LTP)-like facilitation, and clinical antidepressant response. Additionally, an emerging theme is how endogenous brain state impacts rTMS response. Researchers have used resting state functional magnetic resonance imaging (rsfMRI) analyses to identify personalized rTMS targets. Electroencephalography (EEG) may measure endogenous alpha rhythms that preferentially respond to personalized stimulation frequencies, or in closed-loop EEG, may be synchronized with endogenous oscillations and even phase to optimize response. Lastly, neuroimaging and genotyping have identified individual predispositions that may underlie rTMS efficacy. CONCLUSIONS We envision next generation rTMS will be delivered using optimized stimulation parameters to rsfMRI-determined targets at intensities determined by energy delivered to the cortex, and frequency personalized and synchronized to endogenous alpha-rhythms. Further research is needed to define the dose-response curve of each parameter on plasticity and clinical response at the group level, to determine how these parameters interact, and to ultimately personalize these parameters.
Collapse
Affiliation(s)
- Kevin A Caulfield
- Department of Psychiatry, Medical University of South Carolina, Charleston, SC, United States
| | - Joshua C Brown
- Departments of Psychiatry and Neurology, Brown University Medical School, Providence, RI, United States
| |
Collapse
|
22
|
Caulfield KA, Li X, George MS. Four electric field modeling methods of Dosing Prefrontal Transcranial Magnetic Stimulation (TMS): Introducing APEX MT dosimetry. Brain Stimul 2021; 14:1032-1034. [PMID: 34186248 PMCID: PMC8866033 DOI: 10.1016/j.brs.2021.06.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 06/24/2021] [Indexed: 11/26/2022] Open
Affiliation(s)
- Kevin A Caulfield
- Brain Stimulation Laboratory, Department of Psychiatry, Medical University of South Carolina, Charleston, SC, USA.
| | - Xingbao Li
- Brain Stimulation Laboratory, Department of Psychiatry, Medical University of South Carolina, Charleston, SC, USA
| | - Mark S George
- Brain Stimulation Laboratory, Department of Psychiatry, Medical University of South Carolina, Charleston, SC, USA; Ralph H. Johnson VA Medical Center, Charleston, SC, USA
| |
Collapse
|