1
|
Chen JC, Dhuliyawalla A, Garcia R, Robledo A, Woods JE, Alrashdan F, O'Leary S, Husain A, Price A, Crosby S, Felicella MM, Wakhloo AK, Karas P, Provenza N, Goodman W, Sheth SA, Sheth SA, Robinson JT, Kan P. Endocisternal interfaces for minimally invasive neural stimulation and recording of the brain and spinal cord. Nat Biomed Eng 2024:10.1038/s41551-024-01281-9. [PMID: 39528629 DOI: 10.1038/s41551-024-01281-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 10/14/2024] [Indexed: 11/16/2024]
Abstract
Minimally invasive neural interfaces can be used to diagnose, manage and treat many disorders, with reduced risks of surgical complications. However, endovascular probes lack access to key cortical, subcortical and spinal targets, and are not typically explantable after endothelialization. Here we report the development and testing, in sheep, of endocisternal neural interfaces that approach brain and spinal cord targets through inner and outer spaces filled with cerebrospinal fluid. Thus, the interfaces gain access to the entire brain convexity, to deep brain structures within the ventricles and to the spinal cord from the spinal subarachnoid space. We combined an endocisternal neural interface with wireless miniature magnetoelectrically powered bioelectronics so that it can be freely navigated percutaneously from the spinal space to the cranial subarachnoid space, and from the cranial subarachnoid space to the ventricles. In sheep, we show recording and stimulation functions, as well as repositioning of the flexible electrodes and explantation of the interface after chronic implantation. Minimally invasive endocisternal bioelectronics may enable chronic and transient therapies, particularly for stroke rehabilitation and epilepsy monitoring.
Collapse
Affiliation(s)
- Joshua C Chen
- Department of Bioengineering, Rice University, Houston, TX, USA
| | - Abdeali Dhuliyawalla
- Department of Electrical and Computer Engineering, Rice University, Houston, TX, USA
| | - Robert Garcia
- Department of Neurosurgery, University of Texas Medical Branch, Galveston, TX, USA
| | - Ariadna Robledo
- Department of Neurosurgery, University of Texas Medical Branch, Galveston, TX, USA
| | - Joshua E Woods
- Department of Electrical and Computer Engineering, Rice University, Houston, TX, USA
| | - Fatima Alrashdan
- Department of Electrical and Computer Engineering, Rice University, Houston, TX, USA
| | - Sean O'Leary
- Department of Neurosurgery, University of Texas Medical Branch, Galveston, TX, USA
| | - Adam Husain
- Department of Neurosurgery, University of Texas Medical Branch, Galveston, TX, USA
| | - Anthony Price
- Department of Neurosurgery, University of Texas Medical Branch, Galveston, TX, USA
| | - Scott Crosby
- Neuromonitoring Associates LLC, Las Vegas, NV, USA
| | | | - Ajay K Wakhloo
- Department of Radiology, TUFTS University School of Medicine, Boston, MA, USA
- Deinde Medical, Miramar, FL, USA
| | - Patrick Karas
- Department of Neurosurgery, University of Texas Medical Branch, Galveston, TX, USA
| | - Nicole Provenza
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, USA
| | - Wayne Goodman
- Department of Psychiatry, Baylor College of Medicine, Houston, TX, USA
| | - Sameer A Sheth
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, USA
| | - Sunil A Sheth
- Department of Neurology, McGovern Medical School at UTHealth, Houston, TX, USA
| | - Jacob T Robinson
- Department of Bioengineering, Rice University, Houston, TX, USA.
- Department of Electrical and Computer Engineering, Rice University, Houston, TX, USA.
| | - Peter Kan
- Department of Neurosurgery, University of Texas Medical Branch, Galveston, TX, USA.
| |
Collapse
|
2
|
Chen G, Dang D, Zhang C, Qin L, Yan T, Wang W, Liang W. Recent advances in neurotechnology-based biohybrid robots. SOFT MATTER 2024; 20:7993-8011. [PMID: 39328163 DOI: 10.1039/d4sm00768a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/28/2024]
Abstract
Biohybrid robots retain the innate biological characteristics and behavioral traits of animals, making them valuable in applications such as disaster relief, exploration of unknown terrains, and medical care. This review aims to comprehensively discuss the evolution of biohybrid robots, their key technologies and applications, and the challenges they face. By analyzing studies conducted on terrestrial, aquatic, and aerial biohybrid robots, we gain a deeper understanding of how these technologies have made significant progress in simulating natural organisms, improving mechanical performance, and intelligent control. Additionally, we address challenges associated with the application of electrical stimulation technology, the precision of neural signal monitoring, and the ethical considerations for biohybrid robots. We highlight the importance of future research focusing on developing more sophisticated and biocompatible control methods while prioritizing animal welfare. We believe that exploring multimodal monitoring and stimulation technologies holds the potential to enhance the performance of biohybrid robots. These efforts are expected to pave the way for biohybrid robotics technology to introduce greater innovation and well-being to human society in the future.
Collapse
Affiliation(s)
- Guiyong Chen
- School of Mechanical Engineering, Shenyang Jianzhu University, Shenyang 110168, People's Republic of China.
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, People's Republic of China.
- Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang 110169, People's Republic of China
| | - Dan Dang
- School of Sciences, Shenyang Jianzhu University, Shenyang 110168, People's Republic of China.
| | - Chuang Zhang
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, People's Republic of China.
- Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang 110169, People's Republic of China
| | - Ling Qin
- School of Life Sciences, China Medical University, Shenyang 110122, People's Republic of China
| | - Tao Yan
- Department of Anesthesiology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Beijing 100021, People's Republic of China
- Chinese Academy of Medical Sciences, Beijing 100021, People's Republic of China
- Peking Union Medical College, Beijing 100021, People's Republic of China
| | - Wenxue Wang
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, People's Republic of China.
- Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang 110169, People's Republic of China
| | - Wenfeng Liang
- School of Mechanical Engineering, Shenyang Jianzhu University, Shenyang 110168, People's Republic of China.
| |
Collapse
|
3
|
Huang Y, Yao K, Zhang Q, Huang X, Chen Z, Zhou Y, Yu X. Bioelectronics for electrical stimulation: materials, devices and biomedical applications. Chem Soc Rev 2024; 53:8632-8712. [PMID: 39132912 DOI: 10.1039/d4cs00413b] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Bioelectronics is a hot research topic, yet an important tool, as it facilitates the creation of advanced medical devices that interact with biological systems to effectively diagnose, monitor and treat a broad spectrum of health conditions. Electrical stimulation (ES) is a pivotal technique in bioelectronics, offering a precise, non-pharmacological means to modulate and control biological processes across molecular, cellular, tissue, and organ levels. This method holds the potential to restore or enhance physiological functions compromised by diseases or injuries by integrating sophisticated electrical signals, device interfaces, and designs tailored to specific biological mechanisms. This review explains the mechanisms by which ES influences cellular behaviors, introduces the essential stimulation principles, discusses the performance requirements for optimal ES systems, and highlights the representative applications. From this review, we can realize the potential of ES based bioelectronics in therapy, regenerative medicine and rehabilitation engineering technologies, ranging from tissue engineering to neurological technologies, and the modulation of cardiovascular and cognitive functions. This review underscores the versatility of ES in various biomedical contexts and emphasizes the need to adapt to complex biological and clinical landscapes it addresses.
Collapse
Affiliation(s)
- Ya Huang
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| | - Kuanming Yao
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| | - Qiang Zhang
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| | - Xingcan Huang
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| | - Zhenlin Chen
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| | - Yu Zhou
- Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Hong Kong, China.
| | - Xinge Yu
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| |
Collapse
|
4
|
Fu X, Hu Z, Li W, Ma L, Chen J, Liu M, Liu J, Hu S, Wang H, Huang Y, Tang G, Zhang B, Cai X, Wang Y, Li L, Ma J, Shi SH, Yin L, Zhang H, Li X, Sheng X. A silicon diode-based optoelectronic interface for bidirectional neural modulation. Proc Natl Acad Sci U S A 2024; 121:e2404164121. [PMID: 39012823 PMCID: PMC11287284 DOI: 10.1073/pnas.2404164121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 06/13/2024] [Indexed: 07/18/2024] Open
Abstract
The development of advanced neural modulation techniques is crucial to neuroscience research and neuroengineering applications. Recently, optical-based, nongenetic modulation approaches have been actively investigated to remotely interrogate the nervous system with high precision. Here, we show that a thin-film, silicon (Si)-based diode device is capable to bidirectionally regulate in vitro and in vivo neural activities upon adjusted illumination. When exposed to high-power and short-pulsed light, the Si diode generates photothermal effects, evoking neuron depolarization and enhancing intracellular calcium dynamics. Conversely, low-power and long-pulsed light on the Si diode hyperpolarizes neurons and reduces calcium activities. Furthermore, the Si diode film mounted on the brain of living mice can activate or suppress cortical activities under varied irradiation conditions. The presented material and device strategies reveal an innovated optoelectronic interface for precise neural modulations.
Collapse
Affiliation(s)
- Xin Fu
- Department of Electronic Engineering, Beijing National Research Center for Information Science and Technology, Institute for Precision Medicine, Laboratory of Flexible Electronics Technology, IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing100084, China
- School of Materials Science and Engineering, Key Laboratory of Advanced Materials (Ministry of Education), State Key Laboratory of New Ceramics and Fine Processing, Laboratory of Flexible Electronics Technology, Tsinghua University, Beijing100084, China
| | - Zhengwei Hu
- Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen518055, China
| | - Wenjun Li
- Department of Chemistry, Center for Bioanalytical Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Tsinghua University, Beijing100084, China
| | - Liang Ma
- Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen518055, China
| | - Junyu Chen
- Department of Electronic Engineering, Beijing National Research Center for Information Science and Technology, Institute for Precision Medicine, Laboratory of Flexible Electronics Technology, IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing100084, China
| | - Muyang Liu
- Department of Electronic Engineering, Beijing National Research Center for Information Science and Technology, Institute for Precision Medicine, Laboratory of Flexible Electronics Technology, IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing100084, China
| | - Jie Liu
- School of Life Sciences, IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing100084, China
| | - Shuhan Hu
- School of Life Sciences, IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing100084, China
| | - Huachun Wang
- School of Integrated Circuits, Shenzhen Campus of Sun Yat-sen University, Shenzhen518107, China
| | - Yunxiang Huang
- Department of Electronic Engineering, Beijing National Research Center for Information Science and Technology, Institute for Precision Medicine, Laboratory of Flexible Electronics Technology, IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing100084, China
- School of Materials Science and Engineering, Key Laboratory of Advanced Materials (Ministry of Education), State Key Laboratory of New Ceramics and Fine Processing, Laboratory of Flexible Electronics Technology, Tsinghua University, Beijing100084, China
| | - Guo Tang
- Department of Electronic Engineering, Beijing National Research Center for Information Science and Technology, Institute for Precision Medicine, Laboratory of Flexible Electronics Technology, IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing100084, China
| | - Bozhen Zhang
- School of Materials Science and Engineering, Key Laboratory of Advanced Materials (Ministry of Education), State Key Laboratory of New Ceramics and Fine Processing, Laboratory of Flexible Electronics Technology, Tsinghua University, Beijing100084, China
| | - Xue Cai
- Department of Electronic Engineering, Beijing National Research Center for Information Science and Technology, Institute for Precision Medicine, Laboratory of Flexible Electronics Technology, IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing100084, China
| | - Yuqi Wang
- Department of Electronic Engineering, Beijing National Research Center for Information Science and Technology, Institute for Precision Medicine, Laboratory of Flexible Electronics Technology, IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing100084, China
| | - Lizhu Li
- Department of Electronic Engineering, Beijing National Research Center for Information Science and Technology, Institute for Precision Medicine, Laboratory of Flexible Electronics Technology, IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing100084, China
| | - Jian Ma
- School of Life Sciences, IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing100084, China
| | - Song-Hai Shi
- School of Life Sciences, IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing100084, China
| | - Lan Yin
- School of Materials Science and Engineering, Key Laboratory of Advanced Materials (Ministry of Education), State Key Laboratory of New Ceramics and Fine Processing, Laboratory of Flexible Electronics Technology, Tsinghua University, Beijing100084, China
| | - Hao Zhang
- Department of Chemistry, Center for Bioanalytical Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Tsinghua University, Beijing100084, China
| | - Xiaojian Li
- Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen518055, China
| | - Xing Sheng
- Department of Electronic Engineering, Beijing National Research Center for Information Science and Technology, Institute for Precision Medicine, Laboratory of Flexible Electronics Technology, IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing100084, China
| |
Collapse
|
5
|
Sierra-Fernández CR, Garnica-Geronimo LR, Huipe-Dimas A, Ortega-Hernandez JA, Ruiz-Mafud MA, Cervantes-Arriaga A, Hernández-Medrano AJ, Rodríguez-Violante M. Electrocardiographic approach strategies in patients with Parkinson disease treated with deep brain stimulation. Front Cardiovasc Med 2024; 11:1265089. [PMID: 38682099 PMCID: PMC11047133 DOI: 10.3389/fcvm.2024.1265089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 03/19/2024] [Indexed: 05/01/2024] Open
Abstract
Deep brain stimulation (DBS) is an interdisciplinary and reversible therapy that uses high-frequency electrical stimulation to correct aberrant neural pathways in motor and cognitive neurological disorders. However, the high frequency of the waves used in DBS can interfere with electrical recording devices (e.g., electrocardiogram, electroencephalogram, cardiac monitor), creating artifacts that hinder their interpretation. The compatibility of DBS with these devices varies and depends on factors such as the underlying disease and the configuration of the neurostimulator. In emergencies where obtaining an electrocardiogram is crucial, the need for more consensus on reducing electrical artifacts in patients with DBS becomes a significant challenge. Various strategies have been proposed to attenuate the artifact generated by DBS, such as changing the DBS configuration from monopolar to bipolar, temporarily deactivating DBS during electrocardiographic recording, applying frequency filters both lower and higher than those used by DBS, and using non-standard leads. However, the inexperience of medical personnel, variability in DBS models, or the lack of a controller at the time of approach limit the application of these strategies. Current evidence on their reproducibility and efficacy is limited. Due to the growing elderly population and the rising utilization of DBS, it is imperative to create electrocardiographic methods that are easily accessible and reproducible for general physicians and emergency services.
Collapse
Affiliation(s)
| | | | - Alejandra Huipe-Dimas
- Department of Medical Education, National Institute of Cardiology Ignacio Chávez, Mexico, Mexico
| | | | - María Alejandra Ruiz-Mafud
- Department of Movement Disorders, National Institute of Neurology and Neurosurgery Manuel Velasco Suárez, Mexico, Mexico
| | - Amin Cervantes-Arriaga
- Department of Movement Disorders, National Institute of Neurology and Neurosurgery Manuel Velasco Suárez, Mexico, Mexico
| | - Ana Jimena Hernández-Medrano
- Department of Movement Disorders, National Institute of Neurology and Neurosurgery Manuel Velasco Suárez, Mexico, Mexico
| | - Mayela Rodríguez-Violante
- Department of Movement Disorders, National Institute of Neurology and Neurosurgery Manuel Velasco Suárez, Mexico, Mexico
| |
Collapse
|
6
|
Davidson B, Milosevic L, Kondrataviciute L, Kalia LV, Kalia SK. Neuroscience fundamentals relevant to neuromodulation: Neurobiology of deep brain stimulation in Parkinson's disease. Neurotherapeutics 2024; 21:e00348. [PMID: 38579455 PMCID: PMC11000190 DOI: 10.1016/j.neurot.2024.e00348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 03/05/2024] [Accepted: 03/14/2024] [Indexed: 04/07/2024] Open
Abstract
Deep Brain Stimulation (DBS) has become a pivotal therapeutic approach for Parkinson's Disease (PD) and various neuropsychiatric conditions, impacting over 200,000 patients. Despite its widespread application, the intricate mechanisms behind DBS remain a subject of ongoing investigation. This article provides an overview of the current knowledge surrounding the local, circuit, and neurobiochemical effects of DBS, focusing on the subthalamic nucleus (STN) as a key target in PD management. The local effects of DBS, once thought to mimic a reversible lesion, now reveal a more nuanced interplay with myelinated axons, neurotransmitter release, and the surrounding microenvironment. Circuit effects illuminate the modulation of oscillatory activities within the basal ganglia and emphasize communication between the STN and the primary motor cortex. Neurobiochemical effects, encompassing changes in dopamine levels and epigenetic modifications, add further complexity to the DBS landscape. Finally, within the context of understanding the mechanisms of DBS in PD, the article highlights the controversial question of whether DBS exerts disease-modifying effects in PD. While preclinical evidence suggests neuroprotective potential, clinical trials such as EARLYSTIM face challenges in assessing long-term disease modification due to enrollment timing and methodology limitations. The discussion underscores the need for robust biomarkers and large-scale prospective trials to conclusively determine DBS's potential as a disease-modifying therapy in PD.
Collapse
Affiliation(s)
- Benjamin Davidson
- Division of Neurosurgery, Department of Surgery, University of Toronto, Canada.
| | - Luka Milosevic
- KITE, Toronto, Canada; CRANIA, Toronto, Canada; Krembil Research Institute, University Health Network Toronto, Canada; Institute of Biomedical Engineering, University of Toronto, Canada
| | - Laura Kondrataviciute
- CRANIA, Toronto, Canada; Krembil Research Institute, University Health Network Toronto, Canada; Institute of Biomedical Engineering, University of Toronto, Canada
| | - Lorraine V Kalia
- CRANIA, Toronto, Canada; Krembil Research Institute, University Health Network Toronto, Canada; Division of Neurology, Department of Medicine, University of Toronto, Canada
| | - Suneil K Kalia
- Division of Neurosurgery, Department of Surgery, University of Toronto, Canada; KITE, Toronto, Canada; CRANIA, Toronto, Canada; Krembil Research Institute, University Health Network Toronto, Canada
| |
Collapse
|
7
|
Hu Y, Feng Z, Zheng L, Ye X. Interactions between cathodic- and anodic-pulses during high-frequency stimulations with the monophasic-pulses alternating in polarity at axons-experiment and simulation studies. J Neural Eng 2023; 20:056021. [PMID: 37703869 DOI: 10.1088/1741-2552/acf959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 09/13/2023] [Indexed: 09/15/2023]
Abstract
Background. Electrical neuromodulation therapies commonly utilize high-frequency stimulations (HFS) of biphasic-pulses to treat neurological disorders. The biphasic pulse consists of a leading cathodic-phase to activate neurons and a lagging anodic-phase to balance electrical charges. Because both monophasic cathodic- and anodic-pulses can depolarize neuronal membranes, splitting biphasic-pulses into alternate cathodic- and anodic-pulses could be a feasible strategy to improve stimulation efficiency.Objective. We speculated that neurons in the volume initially activated by both polarity pulses could change to be activated only by anodic-pulses during sustained HFS of alternate monophasic-pulses. To verify the hypothesis, we investigated the interactions of the monophasic pulses during HFS and revealed possible underlying mechanisms.Approach. Different types of pulse stimulations were applied at the alvear fibers (i.e. the axons of CA1 pyramidal neurons) to antidromically activate the neuronal cell bodies in the hippocampal CA1 region of anesthetized ratsin-vivo. Sequences of antidromic HFS (A-HFS) were applied with alternate monophasic-pulses or biphasic-pulses. The pulse frequency in the A-HFS sequences was 50 or 100 Hz. The A-HFS duration was 120 s. The amplitude of antidromically-evoked population spike was measured to evaluate the neuronal firing induced by each pulse. A computational model of axon was used to explore the possible mechanisms of neuronal modulations. The changes of model variables during sustained A-HFS were analyzed.Main results. In rat experiments, with a same pulse intensity, the activation volume of a cathodic-pulse was greater than that of an anodic-pulse. In paired-pulse tests, a preceding cathodic-pulse was able to prevent a following anodic-pulse from activating neurons due to refractory period. This indicated that the activation volume of a cathodic-pulse covered that of an anodic-pulse. However, during sustained A-HFS of alternate monophasic-pulses, the anodic-pulses were able to prevail over the cathodic-pulses in activating neurons in the overlapped activation volume. Model simulation results show the mechanisms of the activation failures of cathodic-pulses. They include the excessive membrane depolarization caused by an accumulation of potassium ions, the obstacle of hyperpolarization in the conduction pathway and the interactions from anodic-pulses.Significance. The study firstly showed the domination of anodic-pulses over cathodic-pulses in their competitions to activate neurons during sustained HFS. The finding provides new clues for designing HFS paradigms to improve the efficiency of neuromodulation therapies.
Collapse
Affiliation(s)
- Yifan Hu
- Key Laboratory of Biomedical Engineering for Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Zhouyan Feng
- Key Laboratory of Biomedical Engineering for Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Lvpiao Zheng
- Key Laboratory of Biomedical Engineering for Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Xiangyu Ye
- Key Laboratory of Biomedical Engineering for Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| |
Collapse
|