1
|
Xie H, Zeng D, Chen X, Huo D, Liu L, Zhang D, Jin Q, Ke K, Hu M. Prediction on the risk population of idiosyncratic adverse reactions based on molecular docking with mutant proteins. Oncotarget 2017; 8:95568-95576. [PMID: 29221149 PMCID: PMC5707043 DOI: 10.18632/oncotarget.21509] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 09/20/2017] [Indexed: 01/11/2023] Open
Abstract
Idiosyncratic adverse drug reactions are drug reactions that occur rarely and unpredictably among the population. These reactions often occur after a drug is marketed, which means that they are strongly related to the genotype of the population. The prediction of such adverse reactions is a major challenge because of the lack of appropriate test models during the drug development process. In this study, we chose withdrawn drugs because the reasons why they were withdrawn and from which countries or regions is easily obtained. We selected Dilevalol and its chiral drug (Labetalol) as the investigatory drugs, as they have been withdrawn from a European market (Britain) because of serious hepatotoxicity. First, we searched for and obtained the Dilevalol-induced- liver-injury related protein, multidrug resistance protein 1 (MDR1), from the Comparative Toxicogenomics Database (CTD). Then, we searched and extracted 477 non-synonymous single nucleotide polymorphisms (nsSNP) on MDR1 in the dbSNP database. Second, we used the VarMod tool to predict the functional changes of MDR1 induced by these nsSNPs, from which we extracted the nsSNPs that significantly change the functions of this protein. Third, we built the three-dimensional structures of those variant proteins and used AutoDock to perform a docking study, choosing the best model to determine the sites of nsSNPs. Finally, we used the data from the 1000 Genomes Project to verify the dominant population distribution of the risk SNP. We applied the same strategy to the post-marketing drug-induced liver injury drugs to further test the feasibility of our method.
Collapse
Affiliation(s)
- Hongbo Xie
- Department of Pharmacogenomics, College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang 150081, PR China
| | - Diheng Zeng
- Department of Pharmacogenomics, College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang 150081, PR China
| | - Xiujie Chen
- Department of Pharmacogenomics, College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang 150081, PR China
| | - Diwei Huo
- The 2nd Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150081, PR China
| | - Lei Liu
- Department of Pharmacogenomics, College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang 150081, PR China
| | - Denan Zhang
- Department of Pharmacogenomics, College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang 150081, PR China
| | - Qing Jin
- Department of Pharmacogenomics, College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang 150081, PR China
| | - Kehui Ke
- Department of Pharmacogenomics, College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang 150081, PR China
| | - Ming Hu
- Department of Pharmacogenomics, College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang 150081, PR China
| |
Collapse
|
2
|
Cook SF, King AD, van den Anker JN, Wilkins DG. Simultaneous quantification of acetaminophen and five acetaminophen metabolites in human plasma and urine by high-performance liquid chromatography-electrospray ionization-tandem mass spectrometry: Method validation and application to a neonatal pharmacokinetic study. J Chromatogr B Analyt Technol Biomed Life Sci 2015; 1007:30-42. [PMID: 26571452 DOI: 10.1016/j.jchromb.2015.10.013] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Revised: 10/05/2015] [Accepted: 10/11/2015] [Indexed: 12/20/2022]
Abstract
Drug metabolism plays a key role in acetaminophen (paracetamol)-induced hepatotoxicity, and quantification of acetaminophen metabolites provides critical information about factors influencing susceptibility to acetaminophen-induced hepatotoxicity in clinical and experimental settings. The aims of this study were to develop, validate, and apply high-performance liquid chromatography-electrospray ionization-tandem mass spectrometry (HPLC-ESI-MS/MS) methods for simultaneous quantification of acetaminophen, acetaminophen-glucuronide, acetaminophen-sulfate, acetaminophen-glutathione, acetaminophen-cysteine, and acetaminophen-N-acetylcysteine in small volumes of human plasma and urine. In the reported procedures, acetaminophen-d4 and acetaminophen-d3-sulfate were utilized as internal standards (IS). Analytes and IS were recovered from human plasma (10μL) by protein precipitation with acetonitrile. Human urine (10μL) was prepared by fortification with IS followed only by sample dilution. Calibration concentration ranges were tailored to literature values for each analyte in each biological matrix. Prepared samples from plasma and urine were analyzed under the same HPLC-ESI-MS/MS conditions, and chromatographic separation was achieved through use of an Agilent Poroshell 120 EC-C18 column with a 20-min run time per injected sample. The analytes could be accurately and precisely quantified over 2.0-3.5 orders of magnitude. Across both matrices, mean intra- and inter-assay accuracies ranged from 85% to 112%, and intra- and inter-assay imprecision did not exceed 15%. Validation experiments included tests for specificity, recovery and ionization efficiency, inter-individual variability in matrix effects, stock solution stability, and sample stability under a variety of storage and handling conditions (room temperature, freezer, freeze-thaw, and post-preparative). The utility and suitability of the reported procedures were illustrated by analysis of pharmacokinetic samples collected from neonates receiving intravenous acetaminophen.
Collapse
Affiliation(s)
- Sarah F Cook
- Center for Human Toxicology, Department of Pharmacology and Toxicology, University of Utah, 30 South 2000 East, Suite 105, Salt Lake City, UT 84112, USA.
| | - Amber D King
- Center for Human Toxicology, Department of Pharmacology and Toxicology, University of Utah, 30 South 2000 East, Suite 105, Salt Lake City, UT 84112, USA
| | - John N van den Anker
- Division of Clinical Pharmacology, Children's National Health System, 111 Michigan Avenue, NW, Washington, DC 20010, USA; Departments of Pediatrics, Integrative Systems Biology, Pharmacology & Physiology, George Washington University School of Medicine and Health Sciences, 2300 Eye Street, NW, Washington, DC 20037, USA; Intensive Care and Department of Pediatric Surgery, Erasmus Medical Center-Sophia Children's Hospital, Wytemaweg 80, 3015 CN Rotterdam, The Netherlands; Department of Paediatric Pharmacology, University Children's Hospital Basel, Spitalstrasse 33, 4056 Basel, Switzerland
| | - Diana G Wilkins
- Center for Human Toxicology, Department of Pharmacology and Toxicology, University of Utah, 30 South 2000 East, Suite 105, Salt Lake City, UT 84112, USA; Division of Medical Laboratory Sciences, Department of Pathology, University of Utah School of Medicine, 15 North Medical Drive, Salt Lake City, UT 84112, USA
| |
Collapse
|
3
|
Quantification of a biomarker of acetaminophen protein adducts in human serum by high-performance liquid chromatography-electrospray ionization-tandem mass spectrometry: clinical and animal model applications. J Chromatogr B Analyt Technol Biomed Life Sci 2015; 985:131-41. [PMID: 25681644 DOI: 10.1016/j.jchromb.2015.01.028] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Revised: 01/16/2015] [Accepted: 01/19/2015] [Indexed: 12/25/2022]
Abstract
The aims of this study were to develop, validate, and apply a high-performance liquid chromatography-electrospray ionization-tandem mass spectrometry (HPLC-ESI-MS/MS) method for quantification of protein-derived 3-(cystein-S-yl)-acetaminophen (APAP-Cys) in human serum. Formation of acetaminophen (APAP) protein adducts is thought to be a critical, early event in the development of APAP-induced hepatotoxicity, and quantification of these protein adducts in human serum represents a valuable tool for assessment of APAP exposure, metabolism, and toxicity. In the reported procedure, serum samples were first dialyzed or passed through gel filtration columns to remove APAP-Cys not covalently bound to proteins. Serum eluates were then subjected to enzymatic protease digestion to liberate protein-bound APAP-Cys. Norbuprenorphine-D3 was utilized as an internal standard (IS). APAP-Cys and IS were recovered from digested serum by protein precipitation with acetonitrile, and sample extracts were analyzed by HPLC-ESI-MS/MS. The method was validated by assessment of intra- and inter-assay accuracy and imprecision on two different analytical instrument platforms. APAP-Cys could be accurately quantified from 0.010 to 10μM, and intra- and inter-assay imprecision were <15% on both analytical instruments. APAP-Cys was stable in human serum for three freeze-thaw cycles and for 24h at ambient temperature. Extracted samples were stable when stored in refrigerated autosamplers for the typical duration of analysis or when stored at -20°C for six days. Results from process efficiency and matrix effect experiments indicated adequate recovery from human serum and insignificant ion suppression or enhancement. The utility and sensitivity of the reported procedure were illustrated by analysis of clinical samples collected from subjects taking chronic, therapeutic doses of APAP. Applicability to other biological matrices was also demonstrated by measurement of protein-derived APAP-Cys in plasma collected from APAP-treated mice, a common animal model of APAP-induced hepatotoxicity.
Collapse
|
4
|
Du K, Williams CD, McGill MR, Xie Y, Farhood A, Vinken M, Jaeschke H. The gap junction inhibitor 2-aminoethoxy-diphenyl-borate protects against acetaminophen hepatotoxicity by inhibiting cytochrome P450 enzymes and c-jun N-terminal kinase activation. Toxicol Appl Pharmacol 2013; 273:484-91. [PMID: 24070586 PMCID: PMC3858533 DOI: 10.1016/j.taap.2013.09.010] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Revised: 09/12/2013] [Accepted: 09/13/2013] [Indexed: 12/13/2022]
Abstract
Acetaminophen (APAP) hepatotoxicity is the leading cause of acute liver failure in the US. Although many aspects of the mechanism are known, recent publications suggest that gap junctions composed of connexin32 function as critical intercellular communication channels which transfer cytotoxic mediators into neighboring hepatocytes and aggravate liver injury. However, these studies did not consider off-target effects of reagents used in these experiments, especially the gap junction inhibitor 2-aminoethoxy-diphenyl-borate (2-APB). In order to assess the mechanisms of protection of 2-APB in vivo, male C56Bl/6 mice were treated with 400 mg/kg APAP to cause extensive liver injury. This injury was prevented when animals were co-treated with 20 mg/kg 2-APB and was attenuated when 2-APB was administered 1.5 h after APAP. However, the protection was completely lost when 2-APB was given 4-6 h after APAP. Measurement of protein adducts and c-jun-N-terminal kinase (JNK) activation indicated that 2-APB reduced both protein binding and JNK activation, which correlated with hepatoprotection. Although some of the protection was due to the solvent dimethyl sulfoxide (DMSO), in vitro experiments clearly demonstrated that 2-APB directly inhibits cytochrome P450 activities. In addition, JNK activation induced by phorone and tert-butylhydroperoxide in vivo was inhibited by 2-APB. The effects against APAP toxicity in vivo were reproduced in primary cultured hepatocytes without use of DMSO and in the absence of functional gap junctions. We conclude that the protective effect of 2-APB was caused by inhibition of metabolic activation of APAP and inhibition of the JNK signaling pathway and not by blocking connexin32-based gap junctions.
Collapse
Affiliation(s)
- Kuo Du
- Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - C. David Williams
- Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Mitchell R. McGill
- Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Yuchao Xie
- Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Anwar Farhood
- Department of Pathology, St. David’s North Austin Medical Center, Austin, TX 78756, USA
| | - Mathieu Vinken
- Department of Toxicology, Center for Pharmaceutical Sciences, Vrije Universiteit Brussels, 1090 Brussels, Belgium
| | - Hartmut Jaeschke
- Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, Kansas, USA
| |
Collapse
|