1
|
Lin J, Ren F, Zhu M, Hu Y, Zhao Z, Pei J, Chen H, Chen W, Zhong Q, Lyu Y, He R, Chen W. Pandanus Amaryllifolius Roxb. Polyphenol Extract Alleviates NAFLD via Regulating Gut Microbiota and AMPK/AKT/mTOR Signaling Pathway. Foods 2025; 14:1000. [PMID: 40232027 PMCID: PMC11941299 DOI: 10.3390/foods14061000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2025] [Revised: 03/06/2025] [Accepted: 03/08/2025] [Indexed: 04/16/2025] Open
Abstract
With the drastic changes in lifestyle, nonalcoholic fatty liver disease (NAFLD) has become a widespread health problem. Natural actives such as polyphenols have multi-target, multi-mechanism characteristics, and offer new opportunities for NAFLD treatment. This study established a high-fat diet (HFD)-induced NAFLD model in mice to investigate the molecular mechanism of Pandanus amaryllifolius Roxb. polyphenol extract (PAE) in alleviating NAFLD. The results showed that PAE significantly inhibited HFD-induced obesity, maintained glucose homeostasis, mitigated oxidative damage in liver tissue, and reduced liver steatosis. Moreover, PAE treatment remarkably reversed 16 endogenous DMs, and significantly affected glycerophospholipid metabolism, which increased the levels of phosphatidylcholine and phosphatidylethanolamine, and down-regulated choline and sn-glyceropl-3P. Further validation revealed that PAE was able to prevent NAFLD progression by regulating the AMPK/AKT/mTOR signaling pathway to enhance autophagy levels. Meanwhile, PAE treatment restored the balance of gut microbiota mainly by increasing the relative abundance of Bacteroidetes, decreasing the relative abundance of Firmicutes and the ratio of Firmicutes/Bacteroidetes. Overall, the findings highlight that the mechanism by which PAE alleviates NAFLD may be related to the regulation of the gut microbes and AMPK/AKT/mTOR signaling pathway, enriching the health-promoting effects of PAE on NAFLD.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Rongrong He
- College of Food Sciences & Engineering, Hainan University, 58 People Road, Haikou 570228, China; (J.L.); (F.R.); (M.Z.); (Y.H.); (Z.Z.); (J.P.); (H.C.); (W.C.); (Q.Z.); (Y.L.)
| | - Wenxue Chen
- College of Food Sciences & Engineering, Hainan University, 58 People Road, Haikou 570228, China; (J.L.); (F.R.); (M.Z.); (Y.H.); (Z.Z.); (J.P.); (H.C.); (W.C.); (Q.Z.); (Y.L.)
| |
Collapse
|
2
|
Ortega MA, Fraile-Martinez O, de Leon-Oliva D, Boaru DL, Lopez-Gonzalez L, García-Montero C, Alvarez-Mon MA, Guijarro LG, Torres-Carranza D, Saez MA, Diaz-Pedrero R, Albillos A, Alvarez-Mon M. Autophagy in Its (Proper) Context: Molecular Basis, Biological Relevance, Pharmacological Modulation, and Lifestyle Medicine. Int J Biol Sci 2024; 20:2532-2554. [PMID: 38725847 PMCID: PMC11077378 DOI: 10.7150/ijbs.95122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 04/04/2024] [Indexed: 05/12/2024] Open
Abstract
Autophagy plays a critical role in maintaining cellular homeostasis and responding to various stress conditions by the degradation of intracellular components. In this narrative review, we provide a comprehensive overview of autophagy's cellular and molecular basis, biological significance, pharmacological modulation, and its relevance in lifestyle medicine. We delve into the intricate molecular mechanisms that govern autophagy, including macroautophagy, microautophagy and chaperone-mediated autophagy. Moreover, we highlight the biological significance of autophagy in aging, immunity, metabolism, apoptosis, tissue differentiation and systemic diseases, such as neurodegenerative or cardiovascular diseases and cancer. We also discuss the latest advancements in pharmacological modulation of autophagy and their potential implications in clinical settings. Finally, we explore the intimate connection between lifestyle factors and autophagy, emphasizing how nutrition, exercise, sleep patterns and environmental factors can significantly impact the autophagic process. The integration of lifestyle medicine into autophagy research opens new avenues for promoting health and longevity through personalized interventions.
Collapse
Affiliation(s)
- Miguel A Ortega
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Oscar Fraile-Martinez
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Diego de Leon-Oliva
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Diego Liviu Boaru
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Laura Lopez-Gonzalez
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
- Department of Surgery, Medical and Social Sciences, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
| | - Cielo García-Montero
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Miguel Angel Alvarez-Mon
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Luis G Guijarro
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
- Unit of Biochemistry and Molecular Biology, Department of System Biology (CIBEREHD), University of Alcalá, 28801 Alcala de Henares, Spain
| | - Diego Torres-Carranza
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Miguel A Saez
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
- Pathological Anatomy Service, Central University Hospital of Defence-UAH Madrid, 28801 Alcala de Henares, Spain
| | - Raul Diaz-Pedrero
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
- Department of Surgery, Medical and Social Sciences, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
- Department of General and Digestive Surgery, Príncipe de Asturias Universitary Hospital, 28805 Alcala de Henares, Spain
| | - Agustin Albillos
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Melchor Alvarez-Mon
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
- Immune System Diseases-Rheumatology, Oncology Service an Internal Medicine (CIBEREHD), Príncipe de Asturias University Hospital, 28806 Alcala de Henares, Spain
| |
Collapse
|
3
|
Han W, Li H, Jiang H, Xu H, Lin Y, Chen J, Bi C, Liu Z. Progress in the mechanism of autophagy and traditional Chinese medicine herb involved in alcohol-related liver disease. PeerJ 2023; 11:e15977. [PMID: 37727691 PMCID: PMC10506582 DOI: 10.7717/peerj.15977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 08/07/2023] [Indexed: 09/21/2023] Open
Abstract
Alcohol-related liver disease (ALD) is chronic liver damage caused by long-term heavy drinking with, extremely complicated pathogenesis. The current studies speculated that excessive alcohol and its metabolites are the major causes of liver cell toxicity. Autophagy is evolutionarily conserved in eukaryotes and aggravates alcoholic liver damage, through various mechanisms, such as cellular oxidative stress, inflammation, mitochondrial damage and lipid metabolism disorders. Therefore, autophagy plays an critical role in the occurrence and development of ALD. Some studies have shown that traditional Chinese medicine extracts improve the histological characteristics of ALD, as reflected in the improvement of oxidative stress and lipid droplet clearance, which might be achieved by inducing autophagy. This article reviews the mechanisms of quercetin, baicalin, glycycoumarin, salvianolic acid A, resveratrol, ginsenoside rg1, and dihydromyricetin inducing autophagy and their participation in the inhibition of ALD. The regulation of autophagy in ALD by these traditional Chinese medicine extracts provides novel ideas for the treatment of the disease; however, its molecular mechanism needs to be elucidated further.
Collapse
Affiliation(s)
- Wenwen Han
- Department of Medical Laboratory, School of Medicine, Shaoxing University, Shaoxing, Zhejiang Province, China
- Department of Clinical Medicine, School of Medicine, Shaoxing University, Shaoxing, Zhejiang Province, China
| | - Haiyu Li
- Department of Medical Laboratory, School of Medicine, Shaoxing University, Shaoxing, Zhejiang Province, China
- Department of Clinical Medicine, School of Medicine, Shaoxing University, Shaoxing, Zhejiang Province, China
| | - Hanqi Jiang
- Department of Clinical Medicine, School of Medicine, Shaoxing University, Shaoxing, Zhejiang Province, China
| | - Hang Xu
- Department of Clinical Medicine, School of Medicine, Shaoxing University, Shaoxing, Zhejiang Province, China
| | - Yifeng Lin
- Department of Clinical Medicine, School of Medicine, Shaoxing University, Shaoxing, Zhejiang Province, China
| | - Jiahuan Chen
- Department of Medical Laboratory, School of Medicine, Shaoxing University, Shaoxing, Zhejiang Province, China
| | - Chenchen Bi
- Department of Clinical Medicine, School of Medicine, Shaoxing University, Shaoxing, Zhejiang Province, China
| | - Zheng Liu
- Department of Pharmacology, School of Medicine, Shaoxing University, Shaoxing, Zhejiang Province, China
| |
Collapse
|
4
|
Wang Y, Chen Q, Wu S, Sun X, Yin R, Ouyang Z, Yin H, Wei Y. Amelioration of ethanol-induced oxidative stress and alcoholic liver disease by in vivo RNAi targeting Cyp2e1. Acta Pharm Sin B 2023; 13:3906-3918. [PMID: 37719371 PMCID: PMC10502278 DOI: 10.1016/j.apsb.2023.01.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/16/2022] [Accepted: 12/10/2022] [Indexed: 09/19/2023] Open
Abstract
Alcoholic liver disease (ALD) results from continuous and heavy alcohol consumption. The current treatment strategy for ALD is based on alcohol withdrawal coupled with antioxidant drug intervention, which is a long process with poor efficacy and low patient compliance. Alcohol-induced CYP2E1 upregulation has been demonstrated as a key regulator of ALD, but CYP2E1 knockdown in humans was impractical, and pharmacological inhibition of CYP2E1 by a clinically relevant approach for treating ALD was not shown. In this study, we developed a RNAi therapeutics delivered by lipid nanoparticle, and treated mice fed on Lieber-DeCarli ethanol liquid diet weekly for up to 12 weeks. This RNAi-based inhibition of Cyp2e1 expression reduced reactive oxygen species and oxidative stress in mouse livers, and contributed to improved ALD symptoms in mice. The liver fat accumulation, hepatocyte inflammation, and fibrosis were reduced in ALD models. Therefore, this study suggested the feasibility of RNAi targeting to CYP2E1 as a potential therapeutic tool to the development of ALD.
Collapse
Affiliation(s)
- Yalan Wang
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, China
| | - Qiubing Chen
- Department of Urology, Frontier Science Centre for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
- Department of Pulmonary and Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Shuang Wu
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, China
| | - Xinyu Sun
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, China
| | - Runting Yin
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, China
| | - Zhen Ouyang
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, China
| | - Hao Yin
- Department of Urology, Frontier Science Centre for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
- Department of Pulmonary and Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
- Department of Pathology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
- RNA Institute, Wuhan University, Wuhan 430072, China
- Wuhan Research Centre for Infectious Diseases and Cancer, Chinese Academy of Medical Sciences, Wuhan 430010, China
| | - Yuan Wei
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
5
|
Han YH, He XM, Jin MH, Sun HN, Kwon T. Lipophagy: A potential therapeutic target for nonalcoholic and alcoholic fatty liver disease. Biochem Biophys Res Commun 2023; 672:36-44. [PMID: 37336123 DOI: 10.1016/j.bbrc.2023.06.030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 06/07/2023] [Indexed: 06/21/2023]
Abstract
Lipid droplets are unique lipid storage organelles in hepatocytes. Lipophagy is a key mechanism of selective degradation of lipid droplets through lysosomes. It plays a crucial role in the prevention of metabolic liver disease, including nonalcoholic fatty liver disease (NAFLD) and alcoholic fatty liver disease (AFLD), and is a potential therapeutic target for treating these dysfunctions. In this review, we highlighted recent research and discussed advances in key proteins and molecular mechanisms related to lipophagy in liver disease. Reactive oxygen species (ROS) is an inevitable product of metabolism in alcohol-treated or high-fat-treated cells. Under this light, the potential role of ROS in autophagy in lipid droplet removal was initially explored to provide insights into the link between oxidative stress and metabolic liver disease. Subsequently, the current measures and drugs that treat NAFLD and AFLD through lipophagy regulation were summarized. The complexity of molecular mechanisms underlying lipophagy in hepatocytes and the need for further studies for their elucidation, as well as the status and limitations of current therapeutic measures and drugs, were also discussed.
Collapse
Affiliation(s)
- Ying-Hao Han
- College of Life Science & Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, 163319, China.
| | - Xin-Mei He
- College of Life Science & Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, 163319, China
| | - Mei-Hua Jin
- College of Life Science & Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, 163319, China
| | - Hu-Nan Sun
- College of Life Science & Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, 163319, China.
| | - Taeho Kwon
- Primate Resources Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeonbuk, 56216, Republic of Korea; Department of Functional Genomics, KRIBB School of Bioscience, University of Science and Technology, Daejeon, 34113, Republic of Korea.
| |
Collapse
|
6
|
Qian H, Chao X, Wang S, Li Y, Jiang X, Sun Z, Rülicke T, Zatloukal K, Ni HM, Ding WX. Loss of SQSTM1/p62 Induces Obesity and Exacerbates Alcohol-Induced Liver Injury in Aged Mice. Cell Mol Gastroenterol Hepatol 2023; 15:1027-1049. [PMID: 36754207 PMCID: PMC10036741 DOI: 10.1016/j.jcmgh.2023.01.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 01/31/2023] [Accepted: 01/31/2023] [Indexed: 02/10/2023]
Abstract
BACKGROUND Alcohol-associated liver disease (ALD) is a worldwide health problem, of which the effective treatment is still lacking. Both detrimental and protective roles of adipose tissue have been implicated in ALD. Although alcohol increases adipose tissue lipolysis to promote alcohol-induced liver injury, alcohol also activates brown adipose tissue (BAT) thermogenesis as an adaptive response in protecting against alcohol-induced liver injury. Moreover, aging and obesity are also risk factors for ALD. In the present study, we investigated the effects of autophagy receptor protein SQSTM1/p62 on adipose tissue and obesity in alcohol-induced liver injury in both young and aged mice. METHODS Young and aged whole-body SQSTM1/p62 knockout (KO) and their age-matched wild-type (WT) mice were subjected to chronic plus binge (Gao-binge) alcohol feeding. Blood, adipose and liver tissues were collected for biochemical and histologic analysis. RESULTS Aged but not young SQSTM1/p62 KO mice had significantly increased body weight and fat mass compared with the matched WT mice. Gao-binge alcohol feeding induced white adipose atrophy and decreased levels of SQSTM1/p62 levels in adipose tissue in aged WT mice. SQSTM1/p62 KO aged mice were resistant to Gao-binge alcohol-induced white adipose atrophy. Alcohol feeding increased the expression of thermogenic genes in WT mouse BAT, which was significantly blunted in SQSTM1/p62 KO aged mice. Alcohol-fed aged SQSTM1/p62 KO mice showed significantly higher levels of serum alanine aminotransferase, hepatic triglyceride, and inflammation compared with young and aged WT mice fed with alcohol. Alcohol-fed SQSTM1/p62 KO mice also increased secretion of proinflammatory and angiogenic adipokines that may promote alcohol-induced liver injury. CONCLUSIONS Loss of SQSTM1/p62 in aged mice leads to obesity and impairs alcohol-induced BAT adaptation, resulting in exacerbated alcohol-induced liver injury in mice.
Collapse
Affiliation(s)
- Hui Qian
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas
| | - Xiaojuan Chao
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas
| | - Shaogui Wang
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas
| | - Yuan Li
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas
| | - Xiaoxiao Jiang
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas
| | - Zhaoli Sun
- Department of Surgery, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Thomas Rülicke
- Department of Biomedical Sciences, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Kurt Zatloukal
- Institute of Pathology, Medical University of Graz, Graz, Austria
| | - Hong-Min Ni
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas
| | - Wen-Xing Ding
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas; Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas.
| |
Collapse
|
7
|
Ma Y, Ding Q, Qian Q, Feng L, Zhu Q, Si C, Dou X, Li S. AMPK-Regulated Autophagy Contributes to Ursolic Acid Supplementation-Alleviated Hepatic Steatosis and Liver Injury in Chronic Alcohol-Fed Mice. ACS OMEGA 2023; 8:907-914. [PMID: 36643445 PMCID: PMC9835778 DOI: 10.1021/acsomega.2c06252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 12/08/2022] [Indexed: 06/17/2023]
Abstract
Alcoholic liver disease (ALD) is a chronic liver disease caused by long-term heavy consumption of alcohol. The pathogenesis of ALD is complex, and there is no effective clinical treatment at present. Ursolic acid (UA), a general triterpenoid with multiple biological roles, is widely distributed in plants. This study aims to explore the therapeutic effect and potential mechanisms of UA that protect against liver injury and hepatic steatosis in an ALD mouse model. In this study, we analyzed the lipid accumulation and the effect of UA treatment in a mouse model of ALD; AML12 and HepG2 cells were used to study the biological effect and potential mechanisms of UA on ethanol-induced hepatotoxicity. The morphologic and histological detections showed that UA significantly reduced alcohol-induced liver injury and hepatic steatosis. In addition, UA dramatically ameliorated alcohol-induced metabolic disorders, oxidative stress, and inflammation. Furthermore, UA treatment activated autophagy via the AMPK-ACC pathway to protect hepatocytes from lipotoxicity. Thus, these findings demonstrate that UA treatment alleviates alcoholic-induced liver injury by activating autophagy through the AMPK-ACC pathway. Therefore, UA may represent a promising candidate for the treatment of ALD.
Collapse
Affiliation(s)
- Yue Ma
- Zhejiang
Provincial Laboratory of Experimental Animal’s & Nonclinical
Laboratory Studies, Hangzhou Medical College, Hangzhou, Zhejiang 310053, PR China
| | - Qinchao Ding
- School
of Public Health, Zhejiang Chinese Medical
University, Hangzhou, Zhejiang 310053, PR China
- Institute
of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, PR China
| | - Qianyu Qian
- School
of Life Science, Zhejiang Chinese Medical
University, Hangzhou, Zhejiang 310053, PR China
| | - Luyan Feng
- School
of Life Science, Zhejiang Chinese Medical
University, Hangzhou, Zhejiang 310053, PR China
| | - Qin Zhu
- Department
of Clinical Nutrition, Zhejiang Hospital, Hangzhou, Zhejiang 310013, PR China
| | - Caijuan Si
- Department
of Clinical Nutrition, Zhejiang Hospital, Hangzhou, Zhejiang 310013, PR China
| | - Xiaobing Dou
- School
of Life Science, Zhejiang Chinese Medical
University, Hangzhou, Zhejiang 310053, PR China
| | - Songtao Li
- School
of Public Health, Zhejiang Chinese Medical
University, Hangzhou, Zhejiang 310053, PR China
- Department
of Clinical Nutrition, Zhejiang Hospital, Hangzhou, Zhejiang 310013, PR China
| |
Collapse
|
8
|
Ma S, Yang B, Shi Y, Du Y, Lv Y, Liu J, Liu E, Xu H, Deng L, Chen XY. Adlay (Coix lacryma-jobi L.) Polyphenol Improves Hepatic Glucose and Lipid Homeostasis through Regulating Intestinal Flora via AMPK Pathway. Mol Nutr Food Res 2022; 66:e2200447. [PMID: 36214059 DOI: 10.1002/mnfr.202200447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 09/06/2022] [Indexed: 01/18/2023]
Abstract
SCOPE Non-alcoholic fatty liver disease (NAFLD) is a type of metabolic syndrome characterized of abnormal lipid deposition in the liver. Adlay polyphenol (AP), an effective component extracted from Coix lacryma-jobi L., has been reported that it can be used as a dietary supplement to prevent NAFLD. In this study, the mechanism and action of AP on lipid metabolism and regulation of intestinal flora are investigated. METHODS AND RESULTS AP significantly decreases the lipid accumulation in free fatty acid-treated HepG2 cells. Western blot results indicate that AP improves lipid metabolism via activating the p-AMPK/p-ACC pathway. In vivo experiments show AP treatment significantly decreases the body weight, liver weight, hepatic triglyceride, and total cholesterol contents, as well as the serum glucose levels in high fat diet-fed mice, which may affect lipid accumulation by activating AMPK pathway and changing intestinal bacterial communities and intestinal microbiome metabolism. CONCLUSION AP can be used as a food supplement for improving lipid metabolic dysfunction and reducing the incidence of metabolic diseases.
Collapse
Affiliation(s)
- Shengsuo Ma
- School of Traditional Chinese Medicine, Jinan University, Guangzhou, Guangdong, 510632, China
| | - Bing Yang
- School of Traditional Chinese Medicine, Jinan University, Guangzhou, Guangdong, 510632, China
- Department of Traditional Chinese Medicine, Yuebei People's Hospital, Shaoguan, Guangdong, 512026, China
| | - Yucong Shi
- School of Traditional Chinese Medicine, Jinan University, Guangzhou, Guangdong, 510632, China
| | - Yang Du
- School of Traditional Chinese Medicine, Jinan University, Guangzhou, Guangdong, 510632, China
| | - Yiwen Lv
- School of Traditional Chinese Medicine, Jinan University, Guangzhou, Guangdong, 510632, China
| | - Jiarong Liu
- School of Traditional Chinese Medicine, Jinan University, Guangzhou, Guangdong, 510632, China
| | - Enyan Liu
- School of Traditional Chinese Medicine, Jinan University, Guangzhou, Guangdong, 510632, China
| | - Huachong Xu
- School of Traditional Chinese Medicine, Jinan University, Guangzhou, Guangdong, 510632, China
| | - Li Deng
- School of Traditional Chinese Medicine, Jinan University, Guangzhou, Guangdong, 510632, China
- Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou, University of Chinese Medicine, Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangdong Provincial Key Laboratory of Research on Emergency in CM" "Guangdong Provincial Key Laboratory of Chinese Medicine for Prevention and Treatment of Refractory Chronic Diseases, AMI Key Lab of Chinese Medicine in Guangzhou, Guangzhou Key Laboratory of Chirality Research on Active Components of Traditional Chinese Medicine, Guangzhou, Guangdong, 510632, China
| | - Xiao-Yin Chen
- School of Traditional Chinese Medicine, Jinan University, Guangzhou, Guangdong, 510632, China
| |
Collapse
|
9
|
[Dihydromyricetin reduces lipid accumulation in LO2 cells via AMPK/mTOR-mediated lipophagy pathway and inhibits HepG2 cell proliferation in vitro]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2022; 42:518-527. [PMID: 35527487 PMCID: PMC9085583 DOI: 10.12122/j.issn.1673-4254.2022.04.07] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
OBJECTIVE To explore the mechanism underlying the hepatoprotective effect of dihydromyricetin (DMY) against lipid accumulation in light of the lipophagy pathway and the inhibitory effect of DMY on HepG2 cell proliferation. METHODS LO2 cells were cultured in the presence of 10% FBS for 24 h and treated with 100 μg/mL DMY, or exposed to 50% FBS for 24 h followed by treatment with 50, 100, or 200 μg/mL DMY; the cells in recovery group were cultured in 50% FBS for 24 h and then in 10% FBS for another 24 h. Oil red O staining was used to observe the accumulation of lipid droplets in the cells, and the levels of TC, TG, and LDL and activities of AST, ALT and LDH were measured. The expression of LC3 protein was detected using Western blotting. AO staining and transmission electron microscopy were used to determine the numbers of autophagolysosomes and autophagosomes, respectively. The formation of autophagosomes was observed with MDC staining, and the mRNA expression levels of LC3, ATG7, AMPK, mTOR, p62 and Beclin1 were determined with q-PCR. Flow cytometry was performed to analyze the effect of 50, 100, and 200 μg/mL DMY on cell cycle and apoptosis of HepG2 cells; DNA integrity in the treated cells was examined with cell DNA fragmentation test. RESULTS DMY treatment and pretreatment obviously inhibited lipid accumulation and reduced the levels of TC, TG, LDL and enzyme activities of AST, ALT and LDH in LO2 cells (P < 0.05). In routinely cultured LO2 cells, DMY significantly promoted the formation of autophagosomes and autophagolysosomes and upregulated the expression of LC3 protein. DMY obviously attenuated high FBS-induced inhibition of autophagosome formation in LO2 cells, up- regulated the mRNA levels of LC3, ATG7, Beclin1 and AMPK, and downregulated p62 and mTOR mRNA levels (P < 0.05 or 0.01). In HepG2 cells, DMY caused obvious cell cycle arrest, inhibited cell proliferation, and induced late apoptosis and DNA fragmentation. CONCLUSION DMY reduces lipid accumulation in LO2 cells by regulating the AMPK/ mTOR-mediated lipophagy pathway and inhibits the proliferation of HepG2 by causing cell cycle arrest and promoting apoptosis.
Collapse
|
10
|
Lang Y, Zhang X, Li X, Xu Y. The mitophagosome, a novel ultrastructure of mitophagy in the alcoholic steatohepatitis mouse model: a transmission electron microscope study. Ultrastruct Pathol 2022; 46:251-258. [PMID: 35348040 DOI: 10.1080/01913123.2022.2059041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Acute alcohol feeding can activate autophagy and promotes the selection of autophagic vacuoles in the mitochondria, which is a key process regulating the occurrence and progression of alcohol steatohepatitis (ASH). In this study, ASH mice expressed more autophagy-associated proteins than healthy controls, as revealed by immunohistochemistry. In addition, transmission electron microscopy (TEM) detected a unique autophagy ultrastructure in ASH mouse liver cells, consisting of a large vesicle fused directly with mitochondria, which differed from the classical pattern. This novel type of mitophagy may provide a new avenue for a protective mechanism targeting mitophagy, which would benefit patients with ASH.Abbreviations: ASH: alcoholic steatohepatitis; ALD: Alcoholic liver disease; ALT: alanine aminotransferase; AST: aspartate aminotransferase; HE: hematoxylin and eosin; TEM: transmission electron microscope; LC3: microtubule-associated protein 1 light chain 3; SQSTM1/p62: sequestosome 1; UQCRC2: ubiquinol-cytochrome c reductase core protein 2; PINK1: PTEN induced kinase 1; AMPK: AMP-activated protein kinase.
Collapse
Affiliation(s)
- Yanfei Lang
- Department of Gastroenterology, Beijing Tiantan Hospital, Capital Medical University, Beijing, P.R. China
| | - Xiaxia Zhang
- Department of Gastroenterology, Beijing Tiantan Hospital, Capital Medical University, Beijing, P.R. China
| | - Xin Li
- Department of Gastroenterology, Beijing Tiantan Hospital, Capital Medical University, Beijing, P.R. China
| | - Youqing Xu
- Department of Gastroenterology, Beijing Tiantan Hospital, Capital Medical University, Beijing, P.R. China
| |
Collapse
|
11
|
Gao L, Chen X, Fu Z, Yin J, Wang Y, Sun W, Ren H, Zhang Y. Kinsenoside Alleviates Alcoholic Liver Injury by Reducing Oxidative Stress, Inhibiting Endoplasmic Reticulum Stress, and Regulating AMPK-Dependent Autophagy. Front Pharmacol 2022; 12:747325. [PMID: 35115920 PMCID: PMC8804359 DOI: 10.3389/fphar.2021.747325] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 12/21/2021] [Indexed: 12/12/2022] Open
Abstract
Background:Anoectochilus roxburghii (Orchidaceae) is a traditional Chinese medicinal herb with anti-inflammatory, antilipemic, liver protective, immunomodulatory, and other pharmacological activities. Kinsenoside (KD), which shows protective effects against a variety types of liver damage, is an active ingredient extracted from A. roxburghii. However, the liver protective effects and potential mechanisms of KD in alcoholic liver disease (ALD) remain unclear. This study aimed to investigate the liver protective activity and potential mechanisms of KD in ALD. Methods: AML12 normal mouse hepatocyte cells were used to detect the protective effect of KD against ethanol-induced cell damage. An alcoholic liver injury model was induced by feeding male C57BL/6J mice with an ethanol-containing liquid diet, in combination with intraperitoneal administration of 5% carbon tetrachloride (CCl4) in olive oil. Mice were divided into control, model, silymarin (positive control), and two KD groups, treated with different doses. After treatment, hematoxylin–eosin and Masson’s trichrome staining of liver tissues was performed, and serum alanine aminotransferase (ALT) and aspartate transaminase (AST) levels were determined to assess the protective effect of KD against alcoholic liver injury. Moreover, proteomics techniques were used to explore the potential mechanism of KD action, and ELISA assay, immunohistochemistry, TUNEL assay, and western blotting were used to verify the mechanism. Results: The results showed that KD concentration-dependently reduced ethanol-induced lipid accumulation in AML12 cells. In ALD mice model, the histological examination of liver tissues, combined with the determination of ALT and AST serum levels, demonstrated a protective effect of KD in the alcoholic liver injury mice. In addition, KD treatment markedly enhanced the antioxidant capacity and reduced the endoplasmic reticulum (ER) stress, inflammation, and apoptosis compared with those in the model group. Furthermore, KD increased the phosphorylation level of AMP-activated protein kinase (AMPK), inhibited the mechanistic target of rapamycin, promoted the phosphorylation of ULK1 (Ser555), increased the level of the autophagy marker LC3A/B, and restored ethanol-suppressed autophagic flux, thus activating AMPK-dependent autophagy. Conclusion: This study indicates that KD alleviates alcoholic liver injury by reducing oxidative stress and ER stress, while activating AMPK-dependent autophagy. All results suggested that KD may be a potential therapeutic agent for ALD.
Collapse
Affiliation(s)
- Limin Gao
- Biobank, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xingyu Chen
- Department of Clinical Laboratory, the Central Hospital of Wuhan, Wuhan, China
| | - Zeyu Fu
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jie Yin
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yafen Wang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Weiguang Sun
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Weiguang Sun, ; Hong Ren, ; Yonghui Zhang,
| | - Hong Ren
- Biobank, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Weiguang Sun, ; Hong Ren, ; Yonghui Zhang,
| | - Yonghui Zhang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Weiguang Sun, ; Hong Ren, ; Yonghui Zhang,
| |
Collapse
|
12
|
Chen C, Wang S, Yu L, Mueller J, Fortunato F, Rausch V, Mueller S. H 2O 2-mediated autophagy during ethanol metabolism. Redox Biol 2021; 46:102081. [PMID: 34343907 PMCID: PMC8350071 DOI: 10.1016/j.redox.2021.102081] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/15/2021] [Accepted: 07/22/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Alcoholic liver disease (ALD) is the most common liver disease worldwide and its underlying molecular mechanisms are still poorly understood. Moreover, conflicting data have been reported on potentially protective autophagy, the exact role of ethanol-metabolizing enzymes and ROS. METHODS Expression of LC3B, CYP2E1, and NOX4 was studied in a mouse model of acute ethanol exposure by immunoblotting and immunohistochemistry. Autophagy was further studied in primary mouse hepatocytes and huh7 cells in response to ethanol and its major intermediator acetaldehyde. Experiments were carried out in cells overexpressing CYP2E1 and knock down of NOX4 using siRNA. The response to external H2O2 was studied by using the GOX/CAT system. Autophagic flux was monitored using the mRFP-GFP-LC3 plasmid, while rapamycin and chloroquine served as positive and negative controls. RESULTS Acute ethanol exposure of mice over 24 h significantly induced autophagy as measured by LC3B expression but also induced the ROS-generating CYP2E1 and NOX4 enzymes. Notably, ethanol but not its downstream metabolite acetaldehyde induced autophagy in primary mouse hepatocytes. In contrast, autophagy could only be induced in huh7 cells in the presence of overexpressed CYP2E1. In addition, overexpression of NOX4 also significantly increased autophagy, which could be blocked by siRNA mediated knock down. The antioxidant N-acetylcysteine (NAC) also efficiently blocked CYP2E1-and NOX4-mediated induction of autophagy. Finally, specific and non-toxic production of H2O2 by the GOX/CAT system as evidenced by elevated peroxiredoxin (Prx-2) also induced LC3B which was efficiently blocked by NAC. H2O2 strongly increased the autophagic flux as measured by mRFP-GFP-LC3 plasmid. CONCLUSION We here provide evidence that short-term ethanol exposure induces autophagy in hepatocytes both in vivo and in vitro through the generation of ROS. These data suggest that suppression of autophagy by ethanol is most likely due to longer alcohol exposure during chronic alcohol consumption with the accumulation of e.g. misfolded proteins.
Collapse
Affiliation(s)
- Cheng Chen
- Center for Alcohol Research and Salem Medical Center, University of Heidelberg, Heidelberg, Germany
| | - Shijin Wang
- Center for Alcohol Research and Salem Medical Center, University of Heidelberg, Heidelberg, Germany
| | - Linna Yu
- Center for Alcohol Research and Salem Medical Center, University of Heidelberg, Heidelberg, Germany
| | - Johannes Mueller
- Center for Alcohol Research and Salem Medical Center, University of Heidelberg, Heidelberg, Germany
| | - Franco Fortunato
- Department of Surgery, University of Heidelberg, Heidelberg, Germany
| | - Vanessa Rausch
- Center for Alcohol Research and Salem Medical Center, University of Heidelberg, Heidelberg, Germany
| | - Sebastian Mueller
- Center for Alcohol Research and Salem Medical Center, University of Heidelberg, Heidelberg, Germany.
| |
Collapse
|
13
|
Kouroumalis E, Voumvouraki A, Augoustaki A, Samonakis DN. Autophagy in liver diseases. World J Hepatol 2021; 13:6-65. [PMID: 33584986 PMCID: PMC7856864 DOI: 10.4254/wjh.v13.i1.6] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 12/10/2020] [Accepted: 12/26/2020] [Indexed: 02/06/2023] Open
Abstract
Autophagy is the liver cell energy recycling system regulating a variety of homeostatic mechanisms. Damaged organelles, lipids and proteins are degraded in the lysosomes and their elements are re-used by the cell. Investigations on autophagy have led to the award of two Nobel Prizes and a health of important reports. In this review we describe the fundamental functions of autophagy in the liver including new data on the regulation of autophagy. Moreover we emphasize the fact that autophagy acts like a two edge sword in many occasions with the most prominent paradigm being its involvement in the initiation and progress of hepatocellular carcinoma. We also focused to the implication of autophagy and its specialized forms of lipophagy and mitophagy in the pathogenesis of various liver diseases. We analyzed autophagy not only in well studied diseases, like alcoholic and nonalcoholic fatty liver and liver fibrosis but also in viral hepatitis, biliary diseases, autoimmune hepatitis and rare diseases including inherited metabolic diseases and also acetaminophene hepatotoxicity. We also stressed the different consequences that activation or impairment of autophagy may have in hepatocytes as opposed to Kupffer cells, sinusoidal endothelial cells or hepatic stellate cells. Finally, we analyzed the limited clinical data compared to the extensive experimental evidence and the possible future therapeutic interventions based on autophagy manipulation.
Collapse
Affiliation(s)
- Elias Kouroumalis
- Liver Research Laboratory, University of Crete Medical School, Heraklion 71110, Greece
| | - Argryro Voumvouraki
- 1 Department of Internal Medicine, AHEPA University Hospital, Thessaloniki 54636, Greece
| | - Aikaterini Augoustaki
- Department of Gastroenterology and Hepatology, University Hospital of Crete, Heraklion 71110, Greece
| | - Dimitrios N Samonakis
- Department of Gastroenterology and Hepatology, University Hospital of Crete, Heraklion 71110, Greece.
| |
Collapse
|
14
|
Shin DW. Lipophagy: Molecular Mechanisms and Implications in Metabolic Disorders. Mol Cells 2020; 43:686-693. [PMID: 32624503 PMCID: PMC7468585 DOI: 10.14348/molcells.2020.0046] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 06/01/2020] [Accepted: 06/03/2020] [Indexed: 02/07/2023] Open
Abstract
Autophagy is an intracellular degradation system that breaks down damaged organelles or damaged proteins using intracellular lysosomes. Recent studies have also revealed that various forms of selective autophagy play specific physiological roles under different cellular conditions. Lipid droplets, which are mainly found in adipocytes and hepatocytes, are dynamic organelles that store triglycerides and are critical to health. Lipophagy is a type of selective autophagy that targets lipid droplets and is an essential mechanism for maintaining homeostasis of lipid droplets. However, while processes that regulate lipid droplets such as lipolysis and lipogenesis are relatively well known, the major factors that control lipophagy remain largely unknown. This review introduces the underlying mechanism by which lipophagy is induced and regulated, and the current findings on the major roles of lipophagy in physiological and pathological status. These studies will provide basic insights into the function of lipophagy and may be useful for the development of new therapies for lipophagy dysfunction-related diseases.
Collapse
Affiliation(s)
- Dong Wook Shin
- College of Biomedical & Health Science, Konkuk University, Chungju 27478, Korea
| |
Collapse
|
15
|
Li C, Li J, Xu G, Sun H. Influence of Chronic Ethanol Consumption on Apoptosis and Autophagy Following Transient Focal Cerebral Ischemia in Male Mice. Sci Rep 2020; 10:6164. [PMID: 32273547 PMCID: PMC7145844 DOI: 10.1038/s41598-020-63213-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 03/24/2020] [Indexed: 12/18/2022] Open
Abstract
Stroke remains one of the leading causes of permanent disability and death worldwide. Apoptosis and autophagy are two key elements involved in ischemic brain damage. Ethanol is a commonly used and abused chemical substance that affects the prognosis of ischemic stroke. We determined the influence of chronic ethanol consumption on apoptosis and autophagy following transient focal cerebral ischemia. Male C57BL/6 J mice were randomly divided into three groups and gavage fed with 0.7 and 2.8 g/kg/day ethanol or volume-matched water daily for 8 weeks. DNA fragmentation, TUNEL-positive neurons, cleaved caspase-3-positive neurons, translocation of mitochondrial cytochrome C and apoptosis inducing factor (AIF), LC3B-positive neurons, and expression of LC3B, Beclin-1 and Bcl-2 in peri-infarct cortex were evaluated at 24 hours of reperfusion after a 90-minute unilateral middle cerebral artery occlusion (MCAO). Cerebral ischemia/reperfusion (I/R) injury was significantly improved in the 0.7 g/kg/d ethanol group but worsened in the 2.8 g/kg/d ethanol group. DNA fragmentation was significantly increased at 24 hours of reperfusion in all groups. However, the magnitude of the increase was significantly less in the 0.7 g/kg/d ethanol group. In addition, both cleaved caspase-3-positive neurons and TUNEL-positive neurons were significantly less in 0.7 g/kg/d ethanol group. Furthermore, translocation of mitochondrial cytochrome C and AIF was significantly alleviated in the 0.7 g/kg/d ethanol group. On the other hand, baseline expression of LC3B was significantly reduced in the 2.8 g/kg/d ethanol group. Post-ischemic expression of LC3B and LC3B-positive neurons were significantly attenuated in both 0.7 and 2.8 g/kg/d ethanol groups. Moreover, although post-ischemic expression of Beclin-1 was not altered in the ethanol groups, post-ischemic expression of Bcl-2 was significantly greater in both 0.7 and 2.8 g/kg/d ethanol groups. Our findings suggest that light ethanol consumption may protect against cerebral I/R injury by suppressing post-ischemic apoptosis, whereas heavy ethanol consumption may exacerbate cerebral I/R injury by suppressing autophagy.
Collapse
Affiliation(s)
- Chun Li
- Department of Cellular Biology & Anatomy, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, USA
| | - Jiyu Li
- Department of Cellular Biology & Anatomy, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, USA
| | - Guodong Xu
- Department of Cellular Biology & Anatomy, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, USA
| | - Hong Sun
- Department of Cellular Biology & Anatomy, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, USA.
| |
Collapse
|
16
|
Yan S, Khambu B, Hong H, Liu G, Huda N, Yin XM. Autophagy, Metabolism, and Alcohol-Related Liver Disease: Novel Modulators and Functions. Int J Mol Sci 2019; 20:ijms20205029. [PMID: 31614437 PMCID: PMC6834312 DOI: 10.3390/ijms20205029] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 10/02/2019] [Accepted: 10/09/2019] [Indexed: 02/06/2023] Open
Abstract
Alcohol-related liver disease (ALD) is caused by over-consumption of alcohol. ALD can develop a spectrum of pathological changes in the liver, including steatosis, inflammation, cirrhosis, and complications. Autophagy is critical to maintain liver homeostasis, but dysfunction of autophagy has been observed in ALD. Generally, autophagy is considered to protect the liver from alcohol-induced injury and steatosis. In this review, we will summarize novel modulators of autophagy in hepatic metabolism and ALD, including autophagy-mediating non-coding RNAs (ncRNAs), and crosstalk of autophagy machinery and nuclear factors. We will also discuss novel functions of autophagy in hepatocytes and non-parenchymal hepatic cells during the pathogenesis of ALD and other liver diseases.
Collapse
Affiliation(s)
- Shengmin Yan
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| | - Bilon Khambu
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| | - Honghai Hong
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| | - Gang Liu
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| | - Nazmul Huda
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| | - Xiao-Ming Yin
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| |
Collapse
|
17
|
Ma Y, Chai H, Ding Q, Qian Q, Yan Z, Ding B, Dou X, Li S. Hepatic SIRT3 Upregulation in Response to Chronic Alcohol Consumption Contributes to Alcoholic Liver Disease in Mice. Front Physiol 2019; 10:1042. [PMID: 31474877 PMCID: PMC6707764 DOI: 10.3389/fphys.2019.01042] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 07/30/2019] [Indexed: 12/20/2022] Open
Abstract
Background Alcoholic liver disease (ALD) is a type of chronic liver disease caused by chronic ethanol overconsumption. The pathogenesis of ALD is complex and there is no effective clinical treatment thus far. SIRT3 is an NAD+-dependent deacetylase primarily located inside mitochondria, and reports on the effect of chronic alcohol exposure on liver SIRT3 expression are scarce. This study aims to investigate the effect of chronic alcohol consumption on hepatic SIRT3 expression and its role in alcoholic-induced liver injury. Methods Using the Lieber-DeCarli mouse model of ALD, we analyzed the regulation of SIRT3 and the effect of liver-specific knocking-down of SIRT3 on alcohol-induced liver injury. HepG2 and AML12 hepatocytes were employed to detect the biological function of SIRT3 on alcohol-induced hepatic cytotoxicity and its potential mechanism. Results Chronic alcohol exposure led to hepatic SIRT3 upregulation and liver-specific SIRT3 knockdown alleviated alcoholic feeding-induced liver injury and lipid accumulation, which is associated with improved autophagy induction. In addition, autophagy induction contributed to the cytoprotective effect of SIRT3 knockdown on ethanol-induced hepatocyte cell death. Conclusion In summary, our data suggest that hepatic SIRT3 upregulation in response to chronic alcohol exposure and liver-specific SIRT3 knockdown, induced autophagy activation further alleviating alcoholic-induced liver injury, which represents a novel mechanism in this process.
Collapse
Affiliation(s)
- Yue Ma
- College of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, China.,Laboratory Animal Center, Zhejiang Academy of Medical Sciences, Hangzhou, China
| | - Hui Chai
- College of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, China.,Molecular Medicine Institute, Zhejiang Chinese Medical University, Hangzhou, China
| | - Qinchao Ding
- College of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Qianyu Qian
- College of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Zhaoyuan Yan
- College of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Bin Ding
- College of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, China.,Molecular Medicine Institute, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xiaobing Dou
- College of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, China.,Molecular Medicine Institute, Zhejiang Chinese Medical University, Hangzhou, China
| | - Songtao Li
- Molecular Medicine Institute, Zhejiang Chinese Medical University, Hangzhou, China.,College of Basic Medicine and Public Health, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
18
|
Yan S, Zhou J, Chen X, Dong Z, Yin XM. Diverse Consequences in Liver Injury in Mice with Different Autophagy Functional Status Treated with Alcohol. THE AMERICAN JOURNAL OF PATHOLOGY 2019; 189:1744-1762. [PMID: 31199920 DOI: 10.1016/j.ajpath.2019.05.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 05/01/2019] [Accepted: 05/07/2019] [Indexed: 02/07/2023]
Abstract
Alcoholic fatty liver disease is often complicated by other pathologic insults, such as viral infection or high-fat diet. Autophagy plays a homeostatic role in the liver but can be compromised by alcohol, high-fat diet, or viral infection, which in turn affects the disease process caused by these etiologies. To understand the full impact of autophagy modulation on alcohol-induced liver injury, several genetic models of autophagy deficiency, which have different levels of functional alterations, were examined after acute binge or chronic-plus-binge treatment. Mice given alcohol with either mode and induced with deficiency in liver-specific Atg7 shortly after the induction of Atg7 deletion had elevated liver injury, indicating the protective role of autophagy. Constitutive hepatic Atg7-deficient mice, in which Atg7 was deleted in embryos, were more susceptible with chronic-plus-binge but not with acute alcohol treatment. Constitutive hepatic Atg5-deficient mice, in which Atg5 was deleted in embryos, were more susceptible with acute alcohol treatment, but liver injury was unexpectedly improved with the chronic-plus-binge regimen. A prolonged autophagy deficiency may complicate the hepatic response to alcohol treatment, likely in part due to endogenous liver injury. The complexity of the relationship between autophagy deficiency and alcohol-induced liver injury can thus be affected by the timing of autophagy dysfunction, the exact autophagy gene being affected, and the alcohol treatment regimen.
Collapse
Affiliation(s)
- Shengmin Yan
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Jun Zhou
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, Indiana; Department of Minimal Invasive Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Xiaoyun Chen
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Zheng Dong
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, China; Department of Cell Biology and Anatomy, Medical College of Georgia and Charlie Norwood Veterans Affairs Medical Center, Augusta, Georgia
| | - Xiao-Ming Yin
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, Indiana; Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
19
|
Xu S, Sui S, Zhang X, Pang B, Wan L, Pang D. Modulation of autophagy in human diseases strategies to foster strengths and circumvent weaknesses. Med Res Rev 2019; 39:1953-1999. [PMID: 30820989 DOI: 10.1002/med.21571] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 01/20/2019] [Accepted: 02/05/2019] [Indexed: 12/19/2022]
Abstract
Autophagy is central to the maintenance of intracellular homeostasis across species. Accordingly, autophagy disorders are linked to a variety of diseases from the embryonic stage until death, and the role of autophagy as a therapeutic target has been widely recognized. However, autophagy-associated therapy for human diseases is still in its infancy and is supported by limited evidence. In this review, we summarize the landscape of autophagy-associated diseases and current autophagy modulators. Furthermore, we investigate the existing autophagy-associated clinical trials, analyze the obstacles that limit their progress, offer tactics that may allow barriers to be overcome along the way and then discuss the therapeutic potential of autophagy modulators in clinical applications.
Collapse
Affiliation(s)
- Shouping Xu
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
| | - Shiyao Sui
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
| | - Xianyu Zhang
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
| | - Boran Pang
- Department of Surgery, Rui Jin Hospital, Shanghai Key Laboratory of Gastric Neoplasm, Shanghai Institute of Digestive Surgery, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lin Wan
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
| | - Da Pang
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
- Heilongjiang Academy of Medical Sciences, Harbin, Heilongjcontrary, induction of autophagy elongiang, China
| |
Collapse
|
20
|
Shi C, Xue W, Han B, Yang F, Yin Y, Hu C. Acetaminophen aggravates fat accumulation in NAFLD by inhibiting autophagy via the AMPK/mTOR pathway. Eur J Pharmacol 2019; 850:15-22. [PMID: 30753863 DOI: 10.1016/j.ejphar.2019.02.005] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 02/02/2019] [Accepted: 02/08/2019] [Indexed: 12/24/2022]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the most common chronic liver disease which affects millions of people worldwide. Acetaminophen (APAP) overdose is the leading cause of acute liver failure. In this study, APAP (50, 100, 200 mg/kg) were employed on mice fed with a high-fat diet, and APAP (2, 4, 8 mM) were cultured with L02 cells in the presence of alcohol and oleic acid. APAP treatment significantly aggravated hepatic lipid accumulation, increased the serum levels of triglyceride (TG), alanine aminotransferase (ALT) and aspartate aminotransferase (AST), and increased hepatic lipid accumulation in H&E and Oil red O staining results. Transmission electron microscopy (TEM) found fewer number of autophagosomes in APAP (100 mg/kg) treated group. Immunohistochemistry analysis showed the intensity of hepatic mTOR was increased and AMPK was decreased in 200 mg/kg APAP treated group. Western blot analysis showed APAP treatment decreased the levels of LC3-Ⅱ, Beclin1 and AMPK, while increased the levels of mTOR and SREBP-1c, respectively. In vitro study showed APAP treatment obviously increased TG activities in cell supernatant, and Oil red O staining had the same results. Western blot analysis demonstrated APAP treatment decreased the levels of LC3-Ⅱ, Beclin1 and AMPK, increased the levels of mTOR and SREBP-1c, but rapamycin treatment significantly reversed these effects of APAP. In conclusion, therapeutic dosages of APAP aggravates fat accumulation in NAFLD, the potential mechanism might be involved in inhibiting autophagy associated with the AMPK/mTOR pathway, and patients with NAFLD should use a lower dose of APAP.
Collapse
Affiliation(s)
- Congjian Shi
- Institute for Liver Diseases of Anhui Medical University, School of Pharmacy, Anhui Medical University, Hefei 230032, China; Key Laboratory of anti-inflammatory and Immune Medicine, Ministry of Education, Hefei 230032, China
| | - Weiju Xue
- Institute for Liver Diseases of Anhui Medical University, School of Pharmacy, Anhui Medical University, Hefei 230032, China; Key Laboratory of anti-inflammatory and Immune Medicine, Ministry of Education, Hefei 230032, China
| | - Bowen Han
- Institute for Liver Diseases of Anhui Medical University, School of Pharmacy, Anhui Medical University, Hefei 230032, China; Key Laboratory of anti-inflammatory and Immune Medicine, Ministry of Education, Hefei 230032, China
| | - Fengli Yang
- Institute for Liver Diseases of Anhui Medical University, School of Pharmacy, Anhui Medical University, Hefei 230032, China; Key Laboratory of anti-inflammatory and Immune Medicine, Ministry of Education, Hefei 230032, China
| | - Yaping Yin
- Institute for Liver Diseases of Anhui Medical University, School of Pharmacy, Anhui Medical University, Hefei 230032, China; Key Laboratory of anti-inflammatory and Immune Medicine, Ministry of Education, Hefei 230032, China
| | - Chengmu Hu
- Institute for Liver Diseases of Anhui Medical University, School of Pharmacy, Anhui Medical University, Hefei 230032, China; Key Laboratory of anti-inflammatory and Immune Medicine, Ministry of Education, Hefei 230032, China.
| |
Collapse
|
21
|
Abstract
Hepatic lipid metabolism is a series of complex processes that control influx and efflux of not only hepatic lipid pools, but also organismal pools. Lipid homeostasis is usually tightly controlled by expression, substrate supply, oxidation and secretion that keep hepatic lipid pools relatively constant. However, perturbations of any of these processes can lead to lipid accumulation in the liver. Although it is thought that these responses are hepatic arms of the 'thrifty genome', they are maladaptive in the context of chronic fatty liver diseases. Ethanol is likely unique among toxins, in that it perturbs almost all aspects of hepatic lipid metabolism. This complex response is due in part to the large metabolic demand placed on the organ by alcohol metabolism, but also appears to involve more nuanced changes in expression and substrate supply. The net effect is that steatosis is a rapid response to alcohol abuse. Although transient steatosis is largely an inert pathology, the chronicity of alcohol-related liver disease seems to require steatosis. Better and more specific understanding of the mechanisms by which alcohol causes steatosis may therefore translate into targeted therapies to treat alcohol-related liver disease and/or prevent its progression.
Collapse
|
22
|
Quercetin ameliorates autophagy in alcohol liver disease associated with lysosome through mTOR-TFEB pathway. J Funct Foods 2019. [DOI: 10.1016/j.jff.2018.10.033] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
23
|
Liu L, Xie P, Li W, Wu Y, An W. Augmenter of Liver Regeneration Protects against Ethanol-Induced Acute Liver Injury by Promoting Autophagy. THE AMERICAN JOURNAL OF PATHOLOGY 2018; 189:552-567. [PMID: 30553838 DOI: 10.1016/j.ajpath.2018.11.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 11/02/2018] [Accepted: 11/13/2018] [Indexed: 02/07/2023]
Abstract
Alcoholic liver disease is associated with high morbidity and mortality, and treatment options are limited to date. Augmenter of liver regeneration (ALR) may protect against hepatic injury from chemical poisons, including ethanol. Autophagy appears to positively influence survival in cases of liver dysfunction, although the mechanisms are poorly understood. Herein, we investigated effects of ALR-induced autophagy in vitro and in vivo in an ethanol-induced model of acute liver injury. Decreased serum levels of alanine aminotransferase and aspartate aminotransferase and reduced histologic lesions revealed that mice overexpressing ALR experienced less liver damage than wild-type. ALR-knockdown mice experienced more severe liver damage than wild-type. ALR-transfected HepG2 cells showed increased survival rates, improved maintenance of mitochondrial membrane potential, and increased ATP levels after ethanol treatment. The observed protection was associated with up-regulation of autophagy-markers, including light chain 3II, beclin-1, and autophagy-related gene 5, and down-regulation of p62 by ALR. Autophagy was inhibited in ALR-knockdown mice and HepG2 cells, and autophagy inhibitor bafilomycin A1 attenuated the protective effects of ALR. Results showed phosphorylated mammalian target of rapamycin (mTOR) was down-regulated when ALR was overexpressed and up-regulated when ALR was knocked down. These data show that ALR is protective against ethanol-induced acute liver injury by promoting autophagy, probably via repressing the mTOR pathway. These results have potential implications for the clinical treatment of alcoholic liver disease patients.
Collapse
Affiliation(s)
- Limin Liu
- Department of Cell Biology, Capital Medical University and the Municipal Key Laboratory for Liver Protection and Regulation of Regeneration, Beijing, People's Republic of China
| | - Ping Xie
- Department of Cell Biology, Capital Medical University and the Municipal Key Laboratory for Liver Protection and Regulation of Regeneration, Beijing, People's Republic of China
| | - Wen Li
- Department of Cell Biology, Capital Medical University and the Municipal Key Laboratory for Liver Protection and Regulation of Regeneration, Beijing, People's Republic of China
| | - Yuan Wu
- Department of Cell Biology, Capital Medical University and the Municipal Key Laboratory for Liver Protection and Regulation of Regeneration, Beijing, People's Republic of China
| | - Wei An
- Department of Cell Biology, Capital Medical University and the Municipal Key Laboratory for Liver Protection and Regulation of Regeneration, Beijing, People's Republic of China.
| |
Collapse
|
24
|
Zhao N, Guo FF, Xie KQ, Zeng T. Targeting Nrf-2 is a promising intervention approach for the prevention of ethanol-induced liver disease. Cell Mol Life Sci 2018; 75:3143-3157. [PMID: 29947925 PMCID: PMC11105722 DOI: 10.1007/s00018-018-2852-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 05/18/2018] [Accepted: 06/06/2018] [Indexed: 02/07/2023]
Abstract
Alcoholic liver disease (ALD) remains to be a worldwide health problem. It is generally accepted that oxidative stress plays critical roles in the pathogenesis of ALD, and antioxidant therapy represents a logical strategy for the prevention and treatment of ALD. Nuclear factor erythroid-derived 2-like 2 (NFE2L2 or Nrf-2) is essential for the antioxidant responsive element (ARE)-mediated induction of endogenous antioxidant enzymes such as heme oxygenase 1 (HO-1) and glutamate-cysteine ligase [GCL, the rate-limiting enzyme in the synthesis of glutathione (GSH)]. Activation of Nrf-2 pathway by genetic manipulation or pharmacological agents has been demonstrated to provide protection against ALD, which suggests that targeting Nrf-2 may be a promising approach for the prevention and treatment of ALD. Herein, we review the relevant literature about the potential hepatoprotective roles of Nrf-2 activation against ALD.
Collapse
Affiliation(s)
- Ning Zhao
- Institute of Toxicology, School of Public Health, Shandong University, 44 Wenhua West Road, Jinan, 250012, Shandong, China
| | - Fang-Fang Guo
- Department of Pharmacy, Qilu Hospital of Shandong University, 107 Wenhua West Road, Jinan, 250012, Shandong, China
| | - Ke-Qin Xie
- Institute of Toxicology, School of Public Health, Shandong University, 44 Wenhua West Road, Jinan, 250012, Shandong, China
| | - Tao Zeng
- Institute of Toxicology, School of Public Health, Shandong University, 44 Wenhua West Road, Jinan, 250012, Shandong, China.
| |
Collapse
|
25
|
Kim EH, Park PH. Globular adiponectin protects rat hepatocytes against acetaminophen-induced cell death via modulation of the inflammasome activation and ER stress: Critical role of autophagy induction. Biochem Pharmacol 2018; 154:278-292. [DOI: 10.1016/j.bcp.2018.05.014] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 05/22/2018] [Indexed: 12/12/2022]
|
26
|
Satishchandran A, Szabo G. Reply. Gastroenterology 2018; 154:2277-2278. [PMID: 29750907 DOI: 10.1053/j.gastro.2018.05.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Affiliation(s)
| | - Gyongyi Szabo
- University of Massachusetts Medical School, Worcester, Massachusetts
| |
Collapse
|
27
|
Menk M, Graw JA, Poyraz D, Möbius N, Spies CD, von Haefen C. Chronic Alcohol Consumption Inhibits Autophagy and Promotes Apoptosis in the Liver. Int J Med Sci 2018; 15:682-688. [PMID: 29910672 PMCID: PMC6001414 DOI: 10.7150/ijms.25393] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 03/25/2018] [Indexed: 01/27/2023] Open
Abstract
Background: Chronic alcohol consumption is a major cause of liver injury. However, the molecular mechanisms by which alcohol impairs hepatocellular function and induces cell death remain unclear. Macroautophagy (hereafter called 'autophagy') is a degradation pathway involved in the survival or death of cells during conditions of cellular stress. This study examines the effect of chronic alcohol consumption on hepatocellular autophagy in an animal model. Methods: During a 12-week period male Wistar rats were fed a Lieber-DeCarli diet containing 5% alcohol (EtOH group; n=10), or an isocaloric diet (control group; n=10). Hepatic expression of key regulatory autophagy proteins (e.g. Beclin-1, ATG-3, ATG-5, p62/SQSTM1 and LC3) were detected by real-time polymerase chain reaction and Western blot analysis. Markers of cellular stress and apoptotic cell death (e.g. HO-1, caspase-3, PARP-1 and Bcl-2) were determined, and levels of reduced and oxidized glutathione were measured. Results: Chronic alcohol consumption caused cellular and oxidative stress in the liver. Transcriptional and translational expression of Beclin-1 and ATG-5 was significantly impaired. The protein expression of LC3-I and LC3-II was significantly increased, while the ratio of LC3I/II remained unchanged in the EtOH group compared with controls. Hepatocellular expression of p62/SQSTM1 and markers of apoptotic cell death (such as cleaved caspase-3 and cleaved PARP-1) were significantly increased in the EtOH group indicating a disrupted autophagic flux and increased rate of apoptosis in the liver. Conclusions: In this model, chronic alcohol consumption impaired hepatocellular autophagy and induced apoptotic cell death. It appears that changes in autophagy might contribute to alcohol-induced structural and functional hepatocellular injury.
Collapse
Affiliation(s)
- Mario Menk
- Department of Anesthesiology and Operative Intensive Care Medicine (CCM/CVK), Charité - University Medicine Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health; Campus Virchow-Klinikum; Augustenburger Platz 1, 13353 Berlin, Germany
| | - Jan Adriaan Graw
- Department of Anesthesiology and Operative Intensive Care Medicine (CCM/CVK), Charité - University Medicine Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health; Campus Virchow-Klinikum; Augustenburger Platz 1, 13353 Berlin, Germany
| | - Deniz Poyraz
- Department of Anesthesiology and Operative Intensive Care Medicine (CCM/CVK), Charité - University Medicine Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health; Campus Virchow-Klinikum; Augustenburger Platz 1, 13353 Berlin, Germany
| | - Nadine Möbius
- Department of Anesthesiology and Operative Intensive Care Medicine (CCM/CVK), Charité - University Medicine Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health; Campus Virchow-Klinikum; Augustenburger Platz 1, 13353 Berlin, Germany
| | - Claudia D Spies
- Department of Anesthesiology and Operative Intensive Care Medicine (CCM/CVK), Charité - University Medicine Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health; Campus Virchow-Klinikum; Augustenburger Platz 1, 13353 Berlin, Germany
| | - Clarissa von Haefen
- Department of Anesthesiology and Operative Intensive Care Medicine (CCM/CVK), Charité - University Medicine Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health; Campus Virchow-Klinikum; Augustenburger Platz 1, 13353 Berlin, Germany
| |
Collapse
|
28
|
Zhang Z, Yao Z, Chen Y, Qian L, Jiang S, Zhou J, Shao J, Chen A, Zhang F, Zheng S. Lipophagy and liver disease: New perspectives to better understanding and therapy. Biomed Pharmacother 2017; 97:339-348. [PMID: 29091883 DOI: 10.1016/j.biopha.2017.07.168] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Revised: 07/10/2017] [Accepted: 07/30/2017] [Indexed: 02/07/2023] Open
Abstract
Intracellular lipid droplets (LDs) are remarkably dynamic and complex organelles that enact regulated storage and release of lipids to fulfil their fundamental roles in energy metabolism, membrane synthesis and provision of lipid-derived signaling molecules. The recent finding that LDs can be selectively degraded by the lysosomal pathway of autophagy through a process termed lipophagy has opened up a new understanding of how lipid metabolism regulates cellular physiology and pathophysiology. Many new functions for autophagic lipid metabolism have now been defined in various diseases including liver disease. Lipophagy was originally described in hepatocytes, where it is critical for maintaining cellular energy homeostasis in obesity and metabolic syndrome. In vitro and in vivo studies have demonstrated the selective uptake of LDs by autophagosomes, and inhibition of autophagy has been shown to reduce the β-oxidation of free fatty acids due to the increased accumulation of lipids and LDs. The identification of lipophagy as a new process dedicated to cellular lipid removal has mapped autophagy as an emerging player in cellular lipid metabolism. Pharmacological or genetic modulation of lipophagy might point to possible therapeutic strategies for combating a broad range of liver diseases. This review summarizes recent work focusing on lipophagy and liver disease as well as highlighting challenges and future directions of research. On the other hand, it also offers a glimpse into different strategies that have been used in experimental models to counteract excessive pathological lipophagy in the prevention and treatment of liver disease.
Collapse
Affiliation(s)
- Zili Zhang
- Department of Pharmacology, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Zhen Yao
- Department of Pharmacology, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yifan Chen
- Department of Pharmacology, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Lei Qian
- Department of Pharmacology, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Shuoyi Jiang
- Department of Pharmacology, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Jingyi Zhou
- Department of Pharmacology, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Jiangjuan Shao
- Department of Pharmacology, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Anping Chen
- Department of Pathology, School of Medicine, Saint Louis University, St Louis, MO 63104, USA
| | - Feng Zhang
- Department of Pharmacology, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China; Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China; Jiangsu Key Laboratory of Therapeutic Material of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Shizhong Zheng
- Department of Pharmacology, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China; Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China; Jiangsu Key Laboratory of Therapeutic Material of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| |
Collapse
|
29
|
Kupffer cells activation promoted binge drinking-induced fatty liver by activating lipolysis in white adipose tissues. Toxicology 2017; 390:53-60. [DOI: 10.1016/j.tox.2017.09.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 08/23/2017] [Accepted: 09/01/2017] [Indexed: 02/07/2023]
|
30
|
de Lima TB, Paz AHR, Rados PV, Leonardi R, Bufo P, Pedicillo MC, Santoro A, Cagiano S, Aquino G, Botti G, Pannone G, Visioli F. Autophagy analysis in oral carcinogenesis. Pathol Res Pract 2017; 213:1072-1077. [PMID: 28843750 DOI: 10.1016/j.prp.2017.07.027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 07/04/2017] [Accepted: 07/28/2017] [Indexed: 12/20/2022]
Abstract
OBJECTIVE The aim of this study was to evaluate the levels of autophagy in oral leukoplakia and squamous cell carcinoma and to correlate with clinical pathological features, as well as, the evolution of these lesions. METHODOLOGY 7 Normal oral mucosa, 51 oral leukoplakias, and 120 oral squamous cell carcinomas (OSCC) were included in the study. Histological sections of the mucosa and leukoplakias were evaluated throughout their length, while the carcinomas were evaluated using Tissue Microarray. After the immunohistochemical technique, LC3-II positive cells were quantified in the different epithelial layers of the mucosa and leukoplakias and in the microarrays of the squamous cell carcinomas. The correlation between positive cells with the different clinical-pathological variables and with the evolution of the lesions was tested using the t test, ANOVA, and Kaplan-Meier survival analysis. RESULTS We observed increased levels of autophagy in the oral squamous cell carcinomas (p<0.001) in relation to the other groups, but without any association with poorer evolution or survival of these patients. Among the leukoplakias, we observed a higher percentage of positive cells in the intermediate layer of the dysplastic leukoplakias (p=0.0319) and in the basal layer of lesions with poorer evolution (p=0.0133). CONCLUSION The levels of autophagy increased during the process of oral carcinogenesis and are correlated with poorer behavior of the leukoplakias.
Collapse
Affiliation(s)
- T B de Lima
- Department of Oral Pathology - Universidade Federal do Rio Grande do Sul, Rio Grande do Sul, Brazil
| | - A H R Paz
- Experimental Research Center, Hospital de Clínicas de Porto Alegre, Rio Grande do Sul, Brazil
| | - P V Rados
- Department of Oral Pathology - Universidade Federal do Rio Grande do Sul, Rio Grande do Sul, Brazil
| | - R Leonardi
- Department of Medical and Surgical Science, II Dental Unit - University of Catania, Catania, Italy
| | - P Bufo
- Department of Clinical and Experimental Medicine, Pathological Anatomy Unit - University of Foggia, Foggia, Italy
| | - M C Pedicillo
- Department of Clinical and Experimental Medicine, Pathological Anatomy Unit - University of Foggia, Foggia, Italy
| | - A Santoro
- Department of Clinical and Experimental Medicine, Pathological Anatomy Unit - University of Foggia, Foggia, Italy
| | - S Cagiano
- Department of Clinical and Experimental Medicine, Pathological Anatomy Unit - University of Foggia, Foggia, Italy
| | - G Aquino
- Pathology Unit, Instituto Nazionale per lo Studio e la Cura dei Tumori, "Fondazione G. Pascale", IRCCS, Naples, Italy
| | - G Botti
- Pathology Unit, Instituto Nazionale per lo Studio e la Cura dei Tumori, "Fondazione G. Pascale", IRCCS, Naples, Italy
| | - G Pannone
- Department of Clinical and Experimental Medicine, Pathological Anatomy Unit - University of Foggia, Foggia, Italy; Pathology Unit, Instituto Nazionale per lo Studio e la Cura dei Tumori, "Fondazione G. Pascale", IRCCS, Naples, Italy
| | - F Visioli
- Department of Oral Pathology - Universidade Federal do Rio Grande do Sul, Rio Grande do Sul, Brazil.
| |
Collapse
|
31
|
Gao B, Xu MJ, Bertola A, Wang H, Zhou Z, Liangpunsakul S. Animal Models of Alcoholic Liver Disease: Pathogenesis and Clinical Relevance. Gene Expr 2017; 17:173-186. [PMID: 28411363 PMCID: PMC5500917 DOI: 10.3727/105221617x695519] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Alcoholic liver disease (ALD), a leading cause of chronic liver injury worldwide, comprises a range of disorders including simple steatosis, steatohepatitis, cirrhosis, and hepatocellular carcinoma. Over the last five decades, many animal models for the study of ALD pathogenesis have been developed. Recently, a chronic-plus-binge ethanol feeding model was reported. This model induces significant steatosis, hepatic neutrophil infiltration, and liver injury. A clinically relevant model of high-fat diet feeding plus binge ethanol was also developed, which highlights the risk of excessive binge drinking in obese/overweight individuals. All of these models recapitulate some features of the different stages of ALD and have been widely used by many investigators to study the pathogenesis of ALD and to test for therapeutic drugs/components. However, these models are somewhat variable, depending on mouse genetic background, ethanol dose, and animal facility environment. This review focuses on these models and discusses these variations and some methods to improve the feeding protocol. The pathogenesis, clinical relevance, and translational studies of these models are also discussed.
Collapse
Affiliation(s)
- Bin Gao
- *Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Ming-Jiang Xu
- *Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Adeline Bertola
- *Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
- †Université Côte d’Azur, INSERM, Centre Méditerranéen de Médecine Moléculaire, Nice, France
| | - Hua Wang
- *Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
- ‡Department of Oncology, The First Affiliated Hospital, Institute for Liver Diseases of Anhui Medical University, Hefei, P.R. China
| | - Zhou Zhou
- *Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Suthat Liangpunsakul
- §Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
- ¶Roudebush Veterans Administration Medical Center, Indianapolis, IN, USA
| |
Collapse
|
32
|
Yan S, Huda N, Khambu B, Yin XM. Relevance of autophagy to fatty liver diseases and potential therapeutic applications. Amino Acids 2017; 49:1965-1979. [PMID: 28478585 DOI: 10.1007/s00726-017-2429-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 04/21/2017] [Indexed: 12/19/2022]
Abstract
Autophagy is an evolutionarily conserved lysosome-mediated cellular degradation program. Accumulating evidence shows that autophagy is important to the maintenance of liver homeostasis. Autophagy involves recycling of cellular nutrients recycling as well as quality control of subcellular organelles. Autophagy deficiency in the liver causes various liver pathologies. Fatty liver disease (FLD) is characterized by the accumulation of lipids in hepatocytes and the dysfunction in energy metabolism. Autophagy is negatively affected by the pathogenesis of FLD and the activation of autophagy could ameliorate steatosis, which suggests a potential therapeutic approach to FLD. In this review, we will discuss autophagy and its relevance to liver diseases, especially FLD. In addition, we will discuss recent findings on potential therapeutic applications of autophagy modulators for FLD.
Collapse
Affiliation(s)
- Shengmin Yan
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Nazmul Huda
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Bilon Khambu
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Xiao-Ming Yin
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
| |
Collapse
|
33
|
Li J, Zhong L, Wang F, Zhu H. Dissecting the role of AMP-activated protein kinase in human diseases. Acta Pharm Sin B 2017; 7:249-259. [PMID: 28540163 PMCID: PMC5430814 DOI: 10.1016/j.apsb.2016.12.003] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 11/12/2016] [Accepted: 11/17/2016] [Indexed: 12/18/2022] Open
Abstract
AMP-activated protein kinase (AMPK), known as a sensor and a master of cellular energy balance, integrates various regulatory signals including anabolic and catabolic metabolic processes. Accompanying the application of genetic methods and a plethora of AMPK agonists, rapid progress has identified AMPK as an attractive therapeutic target for several human diseases, such as cancer, type 2 diabetes, atherosclerosis, myocardial ischemia/reperfusion injury and neurodegenerative disease. The role of AMPK in metabolic and energetic modulation both at the intracellular and whole body levels has been reviewed elsewhere. In the present review, we summarize and update the paradoxical role of AMPK implicated in the diseases mentioned above and put forward the challenge encountered. Thus it will be expected to provide important clues for exploring rational methods of intervention in human diseases.
Collapse
Affiliation(s)
- Jin Li
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China
| | - Liping Zhong
- Life Science College of Tarim University, Xinjiang 843300, China
| | - Fengzhong Wang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China
- Corresponding author. Tel./fax: +86 10 62810295.
| | - Haibo Zhu
- State Key Laboratory for Bioactive Substances and Functions of Natural Medicines, Beijing 100050, China
- Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study, Beijing 100050, China
- Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
- Corresponding author at: Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China. Tel./fax: +86 10 63188106.
| |
Collapse
|