1
|
Kan L, Yu Y, Wang Y, Shi L, Fan T, Chen H, Ren C. The application of organoids in investigating immune evasion in the microenvironment of gastric cancer and screening novel drug candidates. Mol Cancer 2025; 24:125. [PMID: 40287758 PMCID: PMC12032790 DOI: 10.1186/s12943-025-02328-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Accepted: 04/10/2025] [Indexed: 04/29/2025] Open
Abstract
Gastric cancer (GC) is a prevalent digestive system tumor, the fifth most diagnosed cancer worldwide, and a leading cause of cancer deaths. GC is distinguished by its pronounced heterogeneity and a dynamically evolving tumor microenvironment (TME). The lack of accurate disease models complicates the understanding of its mechanisms and impedes the discovery of novel drugs. A growing body of evidence suggests that GC organoids, developed using organoid culture technology, preserve the genetic, phenotypic, and behavioral characteristics. GC organoids hold significant potential for predicting treatment responses in individual patients. This review provides a comprehensive overview of the current clinical treatment strategies for GC, as well as the history, construction and clinical applications of organoids. The focus is on the role of organoids in simulating the TME to explore mechanisms of immune evasion and intratumoral microbiota in GC, as well as their applications in guiding clinical drug therapy and facilitating novel drug screening. Furthermore, we summarize the limitations of GC organoid models and underscore the need for continued technological advancements to benefit both basic and translational oncological research.
Collapse
Affiliation(s)
- Liuyue Kan
- Department of Laboratory Medicine, Medical College, Yangzhou University, Yangzhou, China
| | - Ying Yu
- Department of Laboratory Medicine, Medical College, Yangzhou University, Yangzhou, China
| | - Yaxue Wang
- Department of Laboratory Medicine, Medical College, Yangzhou University, Yangzhou, China
| | - Lei Shi
- Department of General Surgery, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, No. 98 Western Nantong Road, Yangzhou, 225001, China
| | - Tingyuan Fan
- Department of Laboratory Medicine, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, China
| | - Hui Chen
- Department of Geriatrics, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, No. 98 Western Nantong Road, Yangzhou, 225001, China.
- Northern Jiangsu People's Hospital Affiliated to Yangzhou University, No. 98, Western Nantong Road, Yangzhou, 225001, China.
| | - Chuanli Ren
- Department of Laboratory Medicine, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, China.
- Department of Laboratory Medicine, The Yangzhou Clinical Medical College of Xuzhou Medical University, Yangzhou, China.
- The Yangzhou Clinical Medical College of Xuzhou Medical University, No. 98, Western Nantong Road, Yangzhou, 225001, China.
| |
Collapse
|
2
|
Guan X, Ning J, Fu W, Wang Y, Zhang J, Ding S. Helicobacter pylori with trx1 high expression promotes gastric diseases via upregulating the IL23A/NF-κB/IL8 pathway. Helicobacter 2024; 29:e13072. [PMID: 38686467 DOI: 10.1111/hel.13072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 03/19/2024] [Accepted: 03/28/2024] [Indexed: 05/02/2024]
Abstract
BACKGROUND Helicobacter pylori infection is one of the main causes of gastric cancer. thioredoxin-1 (Trx1) and arginase (RocF) expressed by H. pylori were found to be closely related to its pathogenicity. However, whether Trx1 and RocF can be used in clinical screening of highly pathogenic H. pylori and the pathogenesis of trx1 high expressing H. pylori remain still unknown. MATERIALS AND METHODS We investigated the expression level of H. pylori trx1 and H. pylori rocF in human gastric antrum tissues using reverse transcription and quantitative real-time PCR (RT-qPCR) and clarified the clinical application value of trx1 and rocF for screening highly pathogenic H. pylori. The pathogenic mechanism of Trx1 were further explored by RNA-seq of GES-1 cells co-cultured with trx1 high or low expressing H. pylori. Differentially expressed genes and signaling pathways were validated by RT-qPCR, Enzyme-linked immunosorbent assay (ELISA), western blot, immunohistochemistry and immunofluorescence. We also assessed the adherence of trx1 high and low expressing H. pylori to GES-1 cells. RESULTS We found that H. pylori trx1 and H. pylori rocF were more significantly expressed in the gastric cancer and peptic ulcer group than that in the gastritis group and the parallel diagnosis of H. pylori trx1 and H. pylori rocF had high sensitivity. The trx1 high expressing H. pylori had stronger adhesion ability to GES-1 cells and upregulated the interleukin (IL) 23A/nuclear factor κappaB (NF-κB)/IL17A, IL6, IL8 pathway. CONCLUSIONS H. pylori trx1 and H. pylori rocF can be used in clinical screening of highly pathogenic H. pylori and predicting the outcome of H. pylori infection. The trx1 high expressing H. pylori has stronger adhesion capacity and promotes the development of gastric diseases by upregulating the activation of NF-κB signaling pathway.
Collapse
Affiliation(s)
- Xin Guan
- Beijing Key Laboratory for Helicobacter pylori Infection and Upper Gastrointestinal Diseases, Department of Gastroenterology, Peking University Third Hospital, Beijing, China
| | - Jing Ning
- Beijing Key Laboratory for Helicobacter pylori Infection and Upper Gastrointestinal Diseases, Department of Gastroenterology, Peking University Third Hospital, Beijing, China
| | - Weiwei Fu
- Beijing Key Laboratory for Helicobacter pylori Infection and Upper Gastrointestinal Diseases, Department of Gastroenterology, Peking University Third Hospital, Beijing, China
| | - Ye Wang
- Beijing Key Laboratory for Helicobacter pylori Infection and Upper Gastrointestinal Diseases, Department of Gastroenterology, Peking University Third Hospital, Beijing, China
| | - Jing Zhang
- Beijing Key Laboratory for Helicobacter pylori Infection and Upper Gastrointestinal Diseases, Department of Gastroenterology, Peking University Third Hospital, Beijing, China
| | - Shigang Ding
- Beijing Key Laboratory for Helicobacter pylori Infection and Upper Gastrointestinal Diseases, Department of Gastroenterology, Peking University Third Hospital, Beijing, China
| |
Collapse
|
3
|
Wu S, Chen Y, Chen Z, Wei F, Zhou Q, Li P, Gu Q. Reactive oxygen species and gastric carcinogenesis: The complex interaction between Helicobacter pylori and host. Helicobacter 2023; 28:e13024. [PMID: 37798959 DOI: 10.1111/hel.13024] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 09/10/2023] [Accepted: 09/21/2023] [Indexed: 10/07/2023]
Abstract
Helicobacter pylori (H. pylori) is a highly successful human pathogen that colonizes stomach in around 50% of the global population. The colonization of bacterium induces an inflammatory response and a substantial rise in the production of reactive oxygen species (ROS) and reactive nitrogen species (RNS), mostly derived from host neutrophils and gastric epithelial cells, which play a crucial role in combating bacterial infections. However, H. pylori has developed various strategies to quench the deleterious effects of ROS, including the production of antioxidant enzymes, antioxidant proteins as well as blocking the generation of oxidants. The host's inability to eliminate H. pylori infection results in persistent ROS production. Notably, excessive ROS can disrupt the intracellular signal transduction and biological processes of the host, incurring chronic inflammation and cellular damage, such as DNA damage, lipid peroxidation, and protein oxidation. Markedly, the sustained inflammatory response and oxidative stress during H. pylori infection are major risk factor for gastric carcinogenesis. In this context, we summarize the literature on H. pylori infection-induced ROS production, the strategies used by H. pylori to counteract the host response, and subsequent host damage and gastric carcinogenesis.
Collapse
Affiliation(s)
- Shiying Wu
- Key Laboratory for Food Microbial Technology of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Yongqiang Chen
- Key Laboratory for Food Microbial Technology of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Ziqi Chen
- Key Laboratory for Food Microbial Technology of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Fangtong Wei
- Key Laboratory for Food Microbial Technology of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Qingqing Zhou
- Key Laboratory for Food Microbial Technology of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Ping Li
- Key Laboratory for Food Microbial Technology of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Qing Gu
- Key Laboratory for Food Microbial Technology of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| |
Collapse
|
4
|
Amalia R, Panenggak NSR, Doohan D, Rezkitha YAA, Waskito LA, Syam AF, Lubis M, Yamaoka Y, Miftahussurur M. A comprehensive evaluation of an animal model for Helicobacter pylori-associated stomach cancer: Fact and controversy. Helicobacter 2023; 28:e12943. [PMID: 36627714 DOI: 10.1111/hel.12943] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 11/22/2022] [Accepted: 11/22/2022] [Indexed: 01/12/2023]
Abstract
Even though Helicobacter pylori infection was the most causative factor of gastric cancer, numerous in vivo studies failed to induce gastric cancer using H. pylori infection only. The utilization of established animal studies in cancer research is crucial as they aim to investigate the coincidental association between suspected oncogenes and pathogenesis as well as generate models for the development and testing of potential treatments. The methods to establish gastric cancer using infected animal models remain limited, diverse in methods, and showed different results. This study investigates the differences in animal models, which highlight different pathological results in gaster by literature research. Electronic databases searched were performed in PubMed, Science Direct, and Cochrane, without a period filter. A total of 135 articles were used in this study after a full-text assessment was conducted. The most frequent animal models used for gastric cancer were Mice, while Mongolian gerbils and Transgenic mice were the most susceptible model for gastric cancer associated with H. pylori infection. Additionally, transgenic mice showed that the susceptibility to gastric cancer progression was due to genetic and epigenetic factors. These studies showed that in Mongolian gerbil models, H. pylori could function as a single agent to trigger stomach cancer. However, most gastric cancer susceptibilities were not solely relying on H. pylori infection, and numerous factors are involved in cancer progression. Further study using Mongolian gerbils and Transgenic mice is crucial to conduct and establish the best models for gastric cancer associated H. pylori.
Collapse
Affiliation(s)
- Rizki Amalia
- Helicobacter pylori and Microbiota Study Group, Institute of Tropical Disease, Universitas Airlangga, Surabaya, Indonesia
| | - Nur Syahadati Retno Panenggak
- Helicobacter pylori and Microbiota Study Group, Institute of Tropical Disease, Universitas Airlangga, Surabaya, Indonesia
| | - Dalla Doohan
- Helicobacter pylori and Microbiota Study Group, Institute of Tropical Disease, Universitas Airlangga, Surabaya, Indonesia.,Department of Anatomy, Histology and Pharmacology, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Yudith Annisa Ayu Rezkitha
- Helicobacter pylori and Microbiota Study Group, Institute of Tropical Disease, Universitas Airlangga, Surabaya, Indonesia.,Department of Internal Medicine, Faculty of Medicine, Universitas Muhammadiyah Surabaya, Surabaya, Indonesia
| | - Langgeng Agung Waskito
- Helicobacter pylori and Microbiota Study Group, Institute of Tropical Disease, Universitas Airlangga, Surabaya, Indonesia.,Department of Physiology and Medical Biochemistry, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Ari Fahrial Syam
- Division of Gastroenterology, Department of Internal Medicine, Faculty of Medicine, University of Indonesia, Jakarta, Indonesia
| | - Masrul Lubis
- Department of Internal Medicine, Faculty of Medicine, Universitas Sumatera Utara, Medan, Indonesia
| | - Yoshio Yamaoka
- Department of Environmental and Preventive Medicine, Oita University Faculty of Medicine, Yufu, Japan.,Department of Medicine, Gastroenterology and Hepatology Section, Baylor College of Medicine, Texas, Houston, USA
| | - Muhammad Miftahussurur
- Helicobacter pylori and Microbiota Study Group, Institute of Tropical Disease, Universitas Airlangga, Surabaya, Indonesia.,Division of Gastroentero-Hepatology, Department of Internal Medicine, Faculty of Medicine-Dr. Soetomo Teaching Hospital, Universitas Airlangga, Surabaya, Indonesia
| |
Collapse
|
5
|
Wang G, He X, Wang Q. Intratumoral bacteria are an important "accomplice" in tumor development and metastasis. Biochim Biophys Acta Rev Cancer 2023; 1878:188846. [PMID: 36496095 DOI: 10.1016/j.bbcan.2022.188846] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 11/09/2022] [Accepted: 12/03/2022] [Indexed: 12/13/2022]
Abstract
As emerging tumor components, intratumoral bacteria have been found in many solid tumors. Several studies have demonstrated that different cancer subtypes have distinct microbial compositions, and mechanistic studies have shown that intratumoral bacteria may promote cancer initiation and progression through DNA damage, epigenetic modification, inflammatory responses, modulation of host immunity and activation of oncogenes or oncogenic pathways. Moreover, intratumoral bacteria have been shown to modulate tumor metastasis and chemotherapy response. A better understanding of the tumor microenvironment and its associated microbiota will facilitate the design of new metabolically engineered species, opening up a new era of intratumoral bacteria-based cancer therapy. However, many questions remain to be resolved, such as where intratumoral bacteria originate and whether there is a direct causal relationship between intratumoral bacteria and tumor susceptibility. In addition, suitable preclinical models and more advanced detection techniques are crucial for studying the biological functions of intratumoral bacteria. In this review, we summarize the complicated role of intratumoral bacteria in the regulation of cancer development and metastasis and discuss their carcinogenic mechanisms and potential therapeutic aspects.
Collapse
Affiliation(s)
- Gang Wang
- Department of General Surgery, The First Affiliated Hospital, Zhengzhou University, Zhengzhou 450052, China; Department of General Surgery, The 74th Group Army Hospital, Guangzhou 510318, China
| | - Xianli He
- Department of General Surgery, Tangdu Hospital, Air Force Military Medical University, Xi'an 710032, Shaanxi, China.
| | - Qian Wang
- Department of General Surgery, The First Affiliated Hospital, Zhengzhou University, Zhengzhou 450052, China.
| |
Collapse
|
6
|
Helicobacter pylori Thioredoxin1 May Play a Highly Pathogenic Role via the IL6/STAT3 Pathway. Gastroenterol Res Pract 2022; 2022:3175935. [PMID: 35958524 PMCID: PMC9359846 DOI: 10.1155/2022/3175935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 06/27/2022] [Accepted: 07/06/2022] [Indexed: 01/10/2023] Open
Abstract
Background Recent studies have shown that CagA is considered highly pathogenic to helicobacter pylori (HP) in Western populations. However, in East Asia, CagA positive HP can be up to 90%, but not all patients will lead to gastric cancer. Our research group has found that HP thioredoxin1 (Trx1) may be a marker of high pathogenicity. Here, we investigate whether HP Trx1 exerts high pathogenicity and its internal molecular mechanism. Materials and Methods We constructed the coculture system of high-Trx1 HP and low-Trx1 HP strains with gastric epithelial cell lines separately and detected the influence of HP strains. The cells were stained by AM/PI, and the cell's mortality was assessed by fluorescence microscope. The cell's supernatants or precipitates were collected to detect the expression of IL6. In addition, the cell's precipitates were collected, and the expression of p-STAT3 was detected by western blot. Furthermore, the cell's supernatants were collected for detecting the expression of 8-OHDG to investigate the extent of DNA damage. Results The high-Trx1 HP can cause higher mortality of GES-1 cells compared with the low-Trx1 HP group (high-Trx1 HP (4.53 ± 0.56) %, low-Trx1 HP (0.39 ± 0.10) %, P < 0.001). The mRNA and protein level of IL-6 in AGS and GES-1 cells were increased during HP infection, and the expression of IL-6 in the High-Trx1 HP group was much higher than the low-Trx1 HP group. Besides, the expression of p-STAT3 was higher in the HP-positive gastric mucosa. And the expression of p-STAT3 in the high-Trx1 HP group was significantly upregulated compared with the low-Trx1 HP group. Furthermore, the expression of 8-OHDG in the high-Trx1 group was much higher than the low-Trx1 group (high-Trx1 HP (5.47 ± 1.73) ng/ml, low-Trx1 HP (2.89 ± 1.72) ng/ml, P < 0.05). Conclusion HP Trx1 may play as a marker of high pathogenicity, and the high-Trx1 HP could mediate the pathogenic process of HP infection via the IL6/STAT3 pathway.
Collapse
|
7
|
Ansari S, Yamaoka Y. Animal Models and Helicobacter pylori Infection. J Clin Med 2022; 11:jcm11113141. [PMID: 35683528 PMCID: PMC9181647 DOI: 10.3390/jcm11113141] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 05/25/2022] [Accepted: 05/25/2022] [Indexed: 02/06/2023] Open
Abstract
Helicobacter pylori colonize the gastric mucosa of at least half of the world’s population. Persistent infection is associated with the development of gastritis, peptic ulcer disease, and an increased risk of gastric cancer and gastric-mucosa-associated lymphoid tissue (MALT) lymphoma. In vivo studies using several animal models have provided crucial evidence for understanding the pathophysiology of H. pylori-associated complications. Numerous animal models, such as Mongolian gerbils, transgenic mouse models, guinea pigs, and other animals, including non-human primates, are being widely used due to their persistent association in causing gastric complications. However, finding suitable animal models for in vivo experimentation to understand the pathophysiology of gastric cancer and MALT lymphoma is a complicated task. In this review, we summarized the most appropriate and latest information in the scientific literature to understand the role and importance of H. pylori infection animal models.
Collapse
Affiliation(s)
- Shamshul Ansari
- Department of Environmental and Preventive Medicine, Oita University Faculty of Medicine, Yufu 879-5593, Oita, Japan;
| | - Yoshio Yamaoka
- Department of Environmental and Preventive Medicine, Oita University Faculty of Medicine, Yufu 879-5593, Oita, Japan;
- Department of Medicine, Gastroenterology and Hepatology Section, Baylor College of Medicine, Houston, TX 77030, USA
- Institute of Tropical Disease, Universitas Airlangga, Surabaya 60115, Indonesia
- Correspondence: ; Tel.: +81-97-586-5740
| |
Collapse
|
8
|
Wande Y, Jie L, Aikai Z, Yaguo Z, Linlin Z, Yue G, Hang Z. Berberine alleviates pulmonary hypertension through Trx1 and β-catenin signaling pathways in pulmonary artery smooth muscle cells. Exp Cell Res 2020; 390:111910. [PMID: 32147507 DOI: 10.1016/j.yexcr.2020.111910] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 02/08/2020] [Accepted: 02/11/2020] [Indexed: 12/22/2022]
Abstract
Pulmonary arterial hypertension (PAH) is closely associated with profound vascular remodeling, especially pulmonary arterial medial hypertrophy and muscularization, due to aberrant proliferation of pulmonary artery smooth muscle cells (PASMCs). Berberine, a drug commonly used to treat inflammation, may be a novel therapeutic option for PAH by improving pulmonary artery remodeling. The present study investigated whether berberine affected Trx1/β-catenin expression and/or activity and whether it could reduce the development of pulmonary hypertension in an experimental rat model and proliferation in human PASMCs (HPASMCs). The results showed that increased proliferation in hypoxia-induced healthy PASMCs or PAH PASMCs was associated with a significant increase in Trx1 and β-catenin expression. Treatment with the Trx1-specific inhibitor PX-12 significantly reduced pulmonary arterial pressure and vascular remodeling, as well as improved in vivo cardiac function and right ventricular hypertrophy, in Su/Hox-induced PAH rats. Berberine reversed right ventricular systolic pressure and right ventricular hypertrophy and decreased pulmonary vascular remodeling in the rats. Furthermore, berberine had an antiproliferative effect on hypoxia-induced HPASMC proliferation in a manner likely mediated by inhibiting Trx1 and its target gene β-catenin expression. Our work will help elucidate novel strategies for PAH treatment involving the traditional Chinese medicine berberine, and Trx1/β-catenin may be a promising therapeutic target.
Collapse
Affiliation(s)
- Yu Wande
- Division of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Luo Jie
- Division of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Zhang Aikai
- 3rd College, Nanjing Medical University, Nanjing, China
| | - Zheng Yaguo
- Division of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Zhu Linlin
- Division of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Gu Yue
- Division of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Zhang Hang
- Division of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
9
|
Liu X, Zheng X, Liu Y, Du X, Chen Z. Effects of adaptation to handling on the circadian rhythmicity of blood solutes in Mongolian gerbils. Animal Model Exp Med 2019; 2:127-131. [PMID: 31392306 PMCID: PMC6600653 DOI: 10.1002/ame2.12068] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 03/20/2019] [Accepted: 04/02/2019] [Indexed: 01/12/2023] Open
Abstract
The Mongolian gerbil has been widely used in many research fields and has been reported to be a diurnal laboratory animal. The circadian rhythmicity of these gerbils was investigated in the present study by measuring two hormones that show daily oscillations, cortisol and ACTH, in serum using ELISA kits. The levels of the two hormones were highest at 8:00 am and their rhythmic changes were similar to those in humans. In addition, the influence of stress of handling and blood collection on the physiological parameters of the gerbils was examined. After adaptation to handling for 1 week, some serum parameters in the animals changed. Handling and blood collection did not impact significantly on the following parameters: creatine kinase (CK), lactate dehydrogenase (LD), alanine aminotransferase (ALT), aspartate transaminase (AST), blood urea nitrogen (BUN), and albumin (ALB). However, blood glucose (GLU), total protein (TP) and globulin (GLB) significantly increased while creatinine (CRE) and albumin/globulin (A/G) significantly decreased after adaptation. This work further confirms that the Mongolian gerbil is a diurnal animal and also indicates that a suitable adaptation procedure is necessary for getting reliable results when performing experiments using these animals.
Collapse
Affiliation(s)
- Xingchen Liu
- School of Basic Medical ScienceCapital Medical UniversityBeijingChina
| | - Xiang Zheng
- School of Basic Medical ScienceCapital Medical UniversityBeijingChina
| | - Yihan Liu
- School of Basic Medical ScienceCapital Medical UniversityBeijingChina
| | - Xiaoyan Du
- School of Basic Medical ScienceCapital Medical UniversityBeijingChina
- Department of Laboratory AnimalCapital Medical UniversityBeijingChina
| | - Zhenwen Chen
- School of Basic Medical ScienceCapital Medical UniversityBeijingChina
| |
Collapse
|
10
|
Shi Y, Wang P, Guo Y, Liang X, Li Y, Ding S. Helicobacter pylori-Induced DNA Damage Is a Potential Driver for Human Gastric Cancer AGS Cells. DNA Cell Biol 2019; 38:272-280. [PMID: 30657337 PMCID: PMC6434597 DOI: 10.1089/dna.2018.4487] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Helicobacter pylori is a major cause of gastric cancer. This study was aimed to explore the characteristic of DNA damage induced by H. pylori infection in gastric cancer AGS cells. After infection with H. pylori, the reactive oxygen species (ROS) levels in AGS cells were significantly higher than those in the uninfected cells. Cells with longer comet tails were detected after infection with H. pylori. The number of apurinic/apyrimidinic endonuclease 1- and phosphorylated H2AX-positive cells was significantly increased compared with the number of negative control cells. The expression of pChk1 and pChk2 was significantly upregulated by H. pylori infection. Cell growth was inhibited after H. pylori infection. All these results were dose dependent. The cell alterations were more significant upon infection with H. pylori at a multiplicity of infection (MOI) of 100:1 than at an MOI of 50:1. H. pylori infection can induce DNA single-strand breaks, DNA double-strand breaks, and cell cycle checkpoint activation after ROS generation in the gastric cancer cell line AGS, which is a potential driver for gastric cancer.
Collapse
Affiliation(s)
- Yanyan Shi
- 1 Research Center of Clinical Epidemiology, Peking University Third Hospital, Beijing, P.R. China
| | - Pan Wang
- 2 Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, P.R. China
| | - Yanlei Guo
- 3 Department of Gastroenterology, Peking University Third Hospital, Beijing, P.R. China
| | - Xiaoling Liang
- 2 Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, P.R. China
| | - Yuan Li
- 3 Department of Gastroenterology, Peking University Third Hospital, Beijing, P.R. China
| | - Shigang Ding
- 3 Department of Gastroenterology, Peking University Third Hospital, Beijing, P.R. China
| |
Collapse
|
11
|
Wang S, Feng D, Li Y, Wang Y, Sun X, Li X, Li C, Chen Z, Du X. The different baseline characteristics of cognitive behavior test between Mongolian gerbils and rats. Behav Brain Res 2018; 352:28-34. [PMID: 28963044 DOI: 10.1016/j.bbr.2017.09.042] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 09/19/2017] [Accepted: 09/25/2017] [Indexed: 02/07/2023]
Abstract
The Mongolian gerbil is a popular laboratory animal useful across many research fields. In the area of cognitive behavioral research the gerbil have been shown exhibit an anxiety-like profile on the elevated plus-maze, and they could be useful as an animal model for testing anxiolytics and antidepressants. However, there are few reports that thoroughly describe the behavioral characteristics of the gerbils in common cognitive behavior tests. In the present study, we used 7 behavior tests to detect the baseline characteristics of the gerbils and compare them to the Sprague Dawley rats. Collectively, the gerbils showed significantly different behavior characteristics in the open field test, elevated plus maze, grip strength, social interaction and fear conditioning compared to the rats. However, no difference was found between gerbils and rats in sucrose preference or Barnes maze test. The data showed that the Mongolian gerbil exhibited higher social interaction and exploratory activity, but lower conditioning fear and grip strength compared with the rats. These results indicate that the gerbil may be a sensitive animal model in behavioral brain research particularly in the areas of anxiety and fear.
Collapse
Affiliation(s)
- Shiyuan Wang
- School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Dandan Feng
- School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Yinyin Li
- School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Ying Wang
- School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China; Department of Laboratory Animal, Capital Medical University, Beijing, 100069, China
| | - Xiuping Sun
- Institute of Laboratory Animal Sciences, Cams&Pumc, Beijing, 100021, China
| | - Xianglei Li
- Institute of Laboratory Animal Sciences, Cams&Pumc, Beijing, 100021, China
| | - Changlong Li
- School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Zhenwen Chen
- School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Xiaoyan Du
- School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China; Department of Laboratory Animal, Capital Medical University, Beijing, 100069, China.
| |
Collapse
|
12
|
Shi YY, Zhang J, Zhang T, Zhou M, Wang Y, Zhang HJ, Ding SG. Cellular stress and redox activity proteins are involved in gastric carcinogenesis associated with Helicobacter pylori infection expressing high levels of thioredoxin-1. J Zhejiang Univ Sci B 2018; 19:750-763. [PMID: 30269443 PMCID: PMC6194355 DOI: 10.1631/jzus.b1700456] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 02/07/2018] [Indexed: 12/12/2022]
Abstract
Helicobacter pylori infection is related to the development of gastric diseases. Our previous studies showed that high thioredoxin-1 (Trx1) expression in H. pylori can promote gastric carcinogenesis. To explore the underlying molecular mechanisms, we performed an isobaric tags for relative and absolute quantitation (iTRAQ)-based quantitative proteomic analysis of stomach tissues from Mongolian gerbil infected with H. pylori expressing high and low Trx1. Differences in the profiles of the expressed proteins were analyzed by bioinformatics and verified using Western blot analysis. We found three candidate proteins, 14-3-3α/β, glutathione-S-transferase (GST), and heat shock protein 70 (HSP70), in high Trx1 tissues compared with low Trx1 tissues and concluded that cellular stress and redox activity-related proteins were involved in the pathogenesis of gastric cancer associated with H. pylori Trx1.
Collapse
Affiliation(s)
- Yan-yan Shi
- Research Center of Clinical Epidemiology, Peking University Third Hospital, Beijing 100191, China
| | - Jing Zhang
- Department of Gastroenterology, Peking University Third Hospital, Beijing 100191, China
| | - Ting Zhang
- Department of Microbiology, Peking University Health Science Center, Beijing 100191, China
| | - Man Zhou
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing 100871, China
| | - Ye Wang
- Department of Gastroenterology, Peking University Third Hospital, Beijing 100191, China
| | - He-jun Zhang
- Department of Gastroenterology, Peking University Third Hospital, Beijing 100191, China
| | - Shi-gang Ding
- Department of Gastroenterology, Peking University Third Hospital, Beijing 100191, China
| |
Collapse
|
13
|
Du X, Wang D, Li Y, Huo X, Li C, Lu J, Wang Y, Guo M, Chen Z. Newly breeding an inbred strain of ischemia-prone Mongolian gerbils and its reproduction and genetic characteristics. Exp Anim 2018; 67:83-90. [PMID: 29046492 PMCID: PMC5814317 DOI: 10.1538/expanim.17-0071] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 09/09/2017] [Indexed: 12/01/2022] Open
Abstract
The Mongolian gerbil has been a useful laboratory animal in many research fields, especially in ischemia studies. However, due to the variation of the circle of Willis (COW), the ischemic model is unstable and various. To solve this problem, we newly established an inbred strain of gerbils, restricting breeding and keeping to F23. The data on the breeding and growth of the animals are described in the present study. The genetic characteristics of F4 to F20 detected by microsatellite DNA and biochemical markers are also shown here. The results demonstrated that the frequency of ischemic model by unilateral carotid occlusion and the frequency of incomplete COW increased, increasing from 50% and 75% in F1 to 88.89% and 100% in F20, respectively. The ratios of consistent patterns of COW in parents were positively related with the number of inbred generations. A reproductive performance analysis indicated that the average size of litters in the inbred gerbils was less than that of outbred gerbils and that adult body weight was also lower in inbred gerbils; also, the pups in the 2nd litter were the best ones chosen to reproduce. The genetic detection results indicated that 26 out of 28 microsatellite loci and all 26 biochemical markers were homozygous in F20, showing comparably identical genetic composition in inbred gerbils. All the data demonstrated that an inbred strain of ischemia-prone gerbil has been established successfully. This strain can be used in stroke research and can largely reduce the number of animals needed in experiments.
Collapse
Affiliation(s)
- Xiaoyan Du
- School of Basic Medical Sciences, Capital Medical University, No.10 Xitoutiao, Youanmen, Fengtai District, Beijing 100069, P.R. China
- Department of Laboratory Animal, Capital Medical University, No.10 Xitoutiao, Youanmen, Fengtai District, Beijing 100069, P.R. China
| | - Dongping Wang
- Institute of Jingfeng Medical Laboratory Animals, No. 20 Dongdajie, Fengtai District, Beijing 100071, P.R. China
| | - Ying Li
- Institute of Jingfeng Medical Laboratory Animals, No. 20 Dongdajie, Fengtai District, Beijing 100071, P.R. China
- Animal Science and Technology College, Jilin Agricultural University, No. 2888 Xin Cheng Da Jie, Changchun 130118, P.R. China
| | - Xueyun Huo
- School of Basic Medical Sciences, Capital Medical University, No.10 Xitoutiao, Youanmen, Fengtai District, Beijing 100069, P.R. China
| | - Changlong Li
- School of Basic Medical Sciences, Capital Medical University, No.10 Xitoutiao, Youanmen, Fengtai District, Beijing 100069, P.R. China
| | - Jing Lu
- School of Basic Medical Sciences, Capital Medical University, No.10 Xitoutiao, Youanmen, Fengtai District, Beijing 100069, P.R. China
| | - Ying Wang
- School of Basic Medical Sciences, Capital Medical University, No.10 Xitoutiao, Youanmen, Fengtai District, Beijing 100069, P.R. China
- Department of Laboratory Animal, Capital Medical University, No.10 Xitoutiao, Youanmen, Fengtai District, Beijing 100069, P.R. China
| | - Meng Guo
- School of Basic Medical Sciences, Capital Medical University, No.10 Xitoutiao, Youanmen, Fengtai District, Beijing 100069, P.R. China
- Department of Laboratory Animal, Capital Medical University, No.10 Xitoutiao, Youanmen, Fengtai District, Beijing 100069, P.R. China
| | - Zhenwen Chen
- School of Basic Medical Sciences, Capital Medical University, No.10 Xitoutiao, Youanmen, Fengtai District, Beijing 100069, P.R. China
| |
Collapse
|
14
|
Guo L, Yang H, Tang F, Yin R, Liu H, Gong X, Wei J, Zhang Y, Xu G, Liu K. Oral Immunization with a Multivalent Epitope-Based Vaccine, Based on NAP, Urease, HSP60, and HpaA, Provides Therapeutic Effect on H. pylori Infection in Mongolian gerbils. Front Cell Infect Microbiol 2017; 7:349. [PMID: 28824883 PMCID: PMC5543039 DOI: 10.3389/fcimb.2017.00349] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 07/21/2017] [Indexed: 12/22/2022] Open
Abstract
Epitope-based vaccine is a promising strategy for therapeutic vaccination against Helicobacter pylori (H. pylori) infection. A multivalent subunit vaccine containing various antigens from H. pylori is superior to a univalent subunit vaccine. However, whether a multivalent epitope-based vaccine is superior to a univalent epitope-based vaccine in therapeutic vaccination against H. pylori, remains unclear. In this study, a multivalent epitope-based vaccine named CWAE against H. pylori urease, neutrophil-activating protein (NAP), heat shock protein 60 (HSP60) and H. pylori adhesin A (HpaA) was constructed based on mucosal adjuvant cholera toxin B subunit (CTB), Th1-type adjuvant NAP, multiple copies of selected B and Th cell epitopes (UreA27–53, UreA183–203, HpaA132–141, and HSP60189–203), and also the epitope-rich regions of urease B subunit (UreB158–251 and UreB321–385) predicted by bioinformatics. Immunological properties of CWAE vaccine were characterized in BALB/c mice model. Its therapeutic effect was evaluated in H. pylori-infected Mongolian gerbil model by comparing with a univalent epitope-based vaccine CTB-UE against H. pylori urease that was constructed in our previous studies. Both CWAE and CTB-UE could induce similar levels of specific antibodies against H. pylori urease, and had similar inhibition effect of H. pylori urease activity. However, only CWAE could induce high levels of specific antibodies to NAP, HSP60, HpaA, and also the synthetic peptides epitopes (UreB158–172, UreB181–195, UreB211–225, UreB349–363, HpaA132–141, and HSP60189–203). In addition, oral therapeutic immunization with CWAE significantly reduced the number of H. pylori colonies in the stomach of Mongolian gerbils, compared with oral immunization using CTB-UE or H. pylori urease. The protection of CWAE was associated with higher levels of mixed CD4+ T cell (Th cell) response, IgG, and secretory IgA (sIgA) antibodies to H. pylori. These results indic ate that a multivalent epitope-based vaccine including Th and B cell epitopes from various H. pylori antigens could be a promising candidate against H. pylori infection.
Collapse
Affiliation(s)
- Le Guo
- Ningxia Key Laboratory of Clinical and Pathogenic Microbiology, General Hospital of Ningxia Medical UniversityYinchuan, China.,Department of Medical Laboratory, School of Clinical Medicine, Ningxia Medical UniversityYinchuan, China.,Ningxia Key Laboratory of Cerebrocranial Diseases, Ningxia Medical UniversityYinchuan, China
| | - Hua Yang
- Department of Medical Laboratory, School of Clinical Medicine, Ningxia Medical UniversityYinchuan, China
| | - Feng Tang
- Research Center for High Altitude Medicine, Qinghai UniversityXining, China
| | - Runting Yin
- Medical School of Nantong University, Nantong UniversityNantong, China
| | - Hongpeng Liu
- Department of Medical Laboratory, School of Clinical Medicine, Ningxia Medical UniversityYinchuan, China
| | - Xiaojuan Gong
- Department of Medical Laboratory, School of Clinical Medicine, Ningxia Medical UniversityYinchuan, China
| | - Jun Wei
- Ningxia Key Laboratory of Clinical and Pathogenic Microbiology, General Hospital of Ningxia Medical UniversityYinchuan, China.,Department of Medical Laboratory, School of Clinical Medicine, Ningxia Medical UniversityYinchuan, China
| | - Ying Zhang
- Department of Molecular Microbiology and Immunology, Johns Hopkins UniversityBaltimore, MD, United States
| | - Guangxian Xu
- Ningxia Key Laboratory of Clinical and Pathogenic Microbiology, General Hospital of Ningxia Medical UniversityYinchuan, China.,Department of Medical Laboratory, School of Clinical Medicine, Ningxia Medical UniversityYinchuan, China
| | - Kunmei Liu
- Department of Medical Laboratory, School of Clinical Medicine, Ningxia Medical UniversityYinchuan, China.,Ningxia Key Laboratory of Cerebrocranial Diseases, Ningxia Medical UniversityYinchuan, China
| |
Collapse
|