1
|
Zhao N, Wang H, Zhang M, Tian W, Liu Y, Tian D, Yao J, Liu M. Characterization of NK Cells Using Single-Cell RNA Sequencing in Patients With Acute-On-Chronic Liver Failure. J Gastroenterol Hepatol 2025; 40:917-929. [PMID: 39800654 DOI: 10.1111/jgh.16870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 12/11/2024] [Accepted: 12/26/2024] [Indexed: 04/05/2025]
Abstract
BACKGROUND AND AIM Acute-on-chronic liver failure (ACLF) is characterized by fast progression and high mortality, with systemic inflammation and immune paralysis as its key events. While natural killer (NK) cells are key innate immune cells, their unique function and subpopulation heterogeneity in ACLF have not been fully elucidated. This study aimed to investigate the characteristics of NK cell subsets in the peripheral blood of patients with ACLF and determine their roles in the inflammatory responses. METHODS Circulating NK cells (14 751 cells) from patients with ACLF and healthy controls (HCs) were subjected to single-cell RNA sequencing (scRNA-seq). Clustering and annotation were used to identify the features of NK cell subsets and the characteristics of disease progression in ACLF. RESULTS Four NK cell subsets were obtained, including adaptive NK cells, mature NK cells, inflamed NK cells, and CD56bright NK cells. Compared with the HCs, the patients with ACLF had a significantly lower proportion of Mature NK cells and a higher proportion of Inflamed NK cells. Quasi-temporal analysis showed that Inflamed NK cells were highly enriched in the late quasi-temporal sequence, and genes related to pro-inflammatory were significantly up-regulated in Inflamed NK cells. In addition, scRNA-seq and flow cytometry confirmed that the expression level of cell migration inducing hyaluronidase 2 (CEMIP2) in NK cells progressively increased from the HC group to the ACLF survival group and then to the ACLF death group. CONCLUSIONS scRNA-seq reveals that Inflamed NK cell subsets are associated with ACLF progression and poor prognosis. CEMIP2 may be a molecular marker for ACLF progression.
Collapse
Affiliation(s)
- Ninghui Zhao
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Gastroenterology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
| | - Han Wang
- Department of Gastroenterology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
| | - Miaoxin Zhang
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Tian
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yulong Liu
- Shanxi Bethune Hospital, Tongji Shanxi Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, Taiyuan, China
| | - Dean Tian
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Gastroenterology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
| | - Jia Yao
- Department of Gastroenterology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
| | - Mei Liu
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
2
|
Zhao Y, He W, Wang C, Cui N, Yang C, You Z, Shi B, Xia L, Chen X. Characterization of intrahepatic B cells in acute-on-chronic liver failure. Front Immunol 2022; 13:1041176. [PMID: 36505417 PMCID: PMC9732531 DOI: 10.3389/fimmu.2022.1041176] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 11/04/2022] [Indexed: 11/27/2022] Open
Abstract
Background and objectives Acute on chronic liver failure (ACLF) is characterized by the immunologic dissonance during the prolonged pathogenic development. Both abnormal innate immune response and adaptive T-cell response have been reported in patients with ACLF; however, less is known regarding B cells in ACLF pathogenesis. Previous reports were only based on immunophenotyping of peripheral blood samples. Here, we aim to dissect liver-infiltrating B-cell subpopulation in ACLF. Methods Paired liver perfusate and peripheral blood were freshly collected from healthy living donors and recipients during liver transplantation. Liver tissues were obtained from patients with ACLF, cirrhosis, and healthy controls. Flow cytometry was used to characterize the phenotypic and functional alterations in intrahepatic and circulating B-cell populations from ACLF, cirrhosis, and healthy controls. The expression of CD19+ and CD138+ on liver tissues was examined by immunohistochemistry staining. Results In this study, we first deciphered the intrahepatic B cells subsets of patients with ACLF. We found that the ACLF liver harbored reduced fraction of naïve B cells and elevated percentage of CD27+CD21- activated memory B cells (AM), CD27-CD21- atypical memory B cells (atMBC), CD27+IgD-IgM+(IgM+ memory B cells), and CD27+CD38++ plasma cells than cirrhosis and healthy controls. Moreover, these B subpopulations demonstrated enhanced activation and altered effector functions. Specifically, the ACLF liver was abundant in atMBC expressing higher CD11c and lower CD80 molecule, which was significantly correlated to alanine aminotransferase and aspartate aminotransferase. In addition, we found that intrahepatic CD27+CD38++plasma cells were preferentially accumulated in ACLF, which expressed more CD273 (PD-L2) and secreted higher granzyme B and IL-10. Finally, the enriched hepatic plasma B cells were in positive association with disease severity indices including alkaline phosphatase and gamma-glutamyl transferase. Conclusions In this pilot study, we showed an intrahepatic B-cell landscape shaped by the ACLF liver environment, which was distinct from paired circulating B-cell subsets. The phenotypic and functional perturbation in atMBC and plasma cells highlighted the unique properties of infiltrating B cells during ACLF progression, thereby denoting the potential of B-cell intervention in ACLF therapy.
Collapse
Affiliation(s)
- Yudong Zhao
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Wei He
- Division of Gastroenterology and Hepatology , Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, National Health Council (NHC) Key Laboratory of Digestive Diseases, Renji Hospital, School of Medicine, Shanghai Institute of Digestive Disease, Shanghai Jiao Tong University, Shanghai, China
| | - Chenchen Wang
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Nana Cui
- Division of Gastroenterology and Hepatology , Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, National Health Council (NHC) Key Laboratory of Digestive Diseases, Renji Hospital, School of Medicine, Shanghai Institute of Digestive Disease, Shanghai Jiao Tong University, Shanghai, China
| | - Changjie Yang
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Zhengrui You
- Division of Gastroenterology and Hepatology , Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, National Health Council (NHC) Key Laboratory of Digestive Diseases, Renji Hospital, School of Medicine, Shanghai Institute of Digestive Disease, Shanghai Jiao Tong University, Shanghai, China
| | - Bisheng Shi
- Department of Laboratory Medicine, Renji Hospital, School of Medicine, Shanghai Jiao tong University, Shanghai, China,*Correspondence: Xiaosong Chen, ; Lei Xia, ; Bisheng Shi,
| | - Lei Xia
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China,*Correspondence: Xiaosong Chen, ; Lei Xia, ; Bisheng Shi,
| | - Xiaosong Chen
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China,*Correspondence: Xiaosong Chen, ; Lei Xia, ; Bisheng Shi,
| |
Collapse
|
3
|
The Mechanisms of Systemic Inflammatory and Immunosuppressive Acute-on-Chronic Liver Failure and Application Prospect of Single-Cell Sequencing. J Immunol Res 2022; 2022:5091275. [PMID: 36387424 PMCID: PMC9646330 DOI: 10.1155/2022/5091275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 09/14/2022] [Accepted: 10/11/2022] [Indexed: 01/24/2023] Open
Abstract
Acute-on-chronic liver failure (ACLF) is a complex clinical syndrome, and patients often have high short-term mortality. It occurs with intense systemic inflammation, often accompanied by a proinflammatory event (such as infection or alcoholic hepatitis), and is closely related to single or multiple organ failure. Liver inflammation begins when innate immune cells (such as Kupffer cells (KCs)) are activated by binding of pathogen-associated molecular patterns (PAMPs) from pathogenic microorganisms or damage-associated molecular patterns (DAMPs) of host origin to their pattern recognition receptors (PRRs). Activated KCs can secrete inflammatory factors as well as chemokines and recruit bone marrow-derived cells such as neutrophils and monocytes to the liver to enhance the inflammatory process. Bacterial translocation may contribute to ACLF when there are no obvious precipitating events. Immunometabolism plays an important role in the process (including mitochondrial dysfunction, amino acid metabolism, and lipid metabolism). The late stage of ACLF is mainly characterized by immunosuppression. In this process, the dysfunction of monocyte and macrophage is reflected in the downregulation of HLA-DR and upregulation of MER tyrosine kinase (MERTK), which weakens the antigen presentation function and reduces the secretion of inflammatory cytokines. We also describe the specific function of bacterial translocation and the gut-liver axis in the process of ACLF. Finally, we also describe the transcriptomics in HBV-ACLF and the recent progress of single-cell RNA sequencing as well as its potential application in the study of ACLF in the future, in order to gain a deeper understanding of ACLF in terms of single-cell gene expression.
Collapse
|
4
|
Single-Cell RNA Transcriptomics Reveals the State of Hepatic Lymphatic Endothelial Cells in Hepatitis B Virus-Related Acute-on-Chronic Liver Failure. J Clin Med 2022; 11:jcm11102910. [PMID: 35629036 PMCID: PMC9143330 DOI: 10.3390/jcm11102910] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 05/18/2022] [Accepted: 05/19/2022] [Indexed: 12/02/2022] Open
Abstract
Acute-on-chronic liver failure (ACLF) is an acutely decompensated cirrhosis syndrome with high short-term mortality. Very little is known about the relationship between the lymphatic system and ACLF. We explored the role of hepatic lymphatic vessels (LVs) and lymphatic endothelial cells (LyECs) in ACLF using human liver samples with the help of single-cell RNA-sequencing (scRNA-seq) technology. Here, ACLF exhibited more severe liver injury and inflammation than cirrhosis, as indicated by significant increases in plasma levels of alanine/aspartate aminotransferases and total bilirubin. Compared with cirrhosis cases, the number of intrahepatic LVs was decreased significantly in ACLF patients. ScRNA-seq revealed that many monocyte/macrophages infiltrated into the liver of ACLF cases. Meanwhile, scRNA-seq revealed a group of apoptotic and dysfunctional LyECs, which were the result of secreted phosphoprotein 1 (SPP1) released from infiltrating monocyte/macrophages. In vitro, SPP1 increased the proportion of dead LyECs significantly and impaired the ability of tube formation of LyECs in a dose- and time-dependent manner. In conclusion, ACLF is associated with less LV and LyEC dysfunction, at least in part mediated by SPP1 released from infiltrating monocyte/macrophages. Hepatic LVs and LyECs can be a novel therapeutic strategy for ACLF.
Collapse
|
5
|
Wang L, Fan Y. Current Advances of Innate and Adaptive Immunity in Acute-on-Chronic Hepatitis B Liver Failure. INFECTIOUS DISEASES & IMMUNITY 2022; 2:113-121. [DOI: 10.1097/id9.0000000000000051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Indexed: 01/03/2025]
Abstract
Abstract
Acute-on-chronic hepatitis B liver failure (ACHBLF) is a term used to define the acute deterioration of liver function that occurs in patients with chronic hepatitis B virus infection or hepatitis B virus-related liver cirrhosis. The specific pathogenesis of ACHBLF is still not completely understood. Current research has shown that an intense systemic inflammation is involved in the development of acute-on-chronic liver failure (ACLF). Meanwhile, a subsequent immune paresis over the course of ACLF favors the development of infection and sepsis. Deregulation in both the innate and adaptive immunity is the notable feature of ACLF. The dysregulated immune responses play a crucial role in disease progression and potentially drive organ failure and mortality in ACHBLF. In this review, we highlight the current knowledge of innate and adaptive immune cells in ACHBLF.
Collapse
Affiliation(s)
- Liyuan Wang
- Department of Hepatology, Qilu Hospital of Shandong University, Jinan 250012, China
| | - Yuchen Fan
- Department of Hepatology, Qilu Hospital of Shandong University, Jinan 250012, China
- Department of Immunology, School of Basic Medical Science, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| |
Collapse
|
6
|
Pan Z, Zhao R, Shen Y, Liu K, Xue W, Liang C, Peng M, Hu P, Chen M, Xu H. Low-frequency, exhausted immune status of CD56 dim NK cells and disordered inflammatory cytokine secretion of CD56 bright NK cells associated with progression of severe HFMD, especially in EV71-infected patients. Int Immunopharmacol 2021; 101:108369. [PMID: 34844872 DOI: 10.1016/j.intimp.2021.108369] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 10/29/2021] [Accepted: 11/09/2021] [Indexed: 10/19/2022]
Abstract
BACKGROUND The roles of CD56bright and CD56dim natural killer (NK) subsets in the viral clearance and inflammatory processes of hand, foot, and mouth disease (HFMD) remain undefined. METHODS A total of 39 HCs and 55 patients were enrolled to analyze peripheral CD56bright and CD56dim NK cells according to cell number, surface receptors, cytotoxic activities, and cytokine production. The plasma concentrations of IL-2, IL-6, IL-10, IFN-γ, TNF-α,and MCP-1 were detected using ELSA. RESULTS Peripheral blood NK cells was significantly lower in severe patients than in HCs due to the dramatic loss of CD56dim NK cells with no changes in the cell count of CD56bright NK cells. For mild patients, decreased NKp46 expression coincided with enhanced cytolysis (CD107a, GNLY, and GrB) in CD56dim NK cells and decreased NKG2A expression with enhanced IL-10 production in CD56bright NK cells. In contrast, severe patients showed the dominant expression of NKG2A and decreased expression of NKG2D accompanied by cytotoxic dysfunction in CD56dim NK cells. Imbalanced receptor expression coincided with the increased concentrations of TNF-α in CD56bright NK cells. Moreover, EV71+ patients showed significantly decreased counts of CD56dim NK cells with cytolysis dysfunction, displayed cytokine hypersecretion in CD56bright NK cells, while the EV71- patients displayed significantly higher plasma cytokine concentrations. The changes in the immune function of NK subsets and their subpopulations were closely related to clinical inflammatory parameters. CONCLUSIONS Low-frequency, exhausted immune status of CD56dim NK cells and disordered inflammatory cytokine secretion of CD56bright NK cells were associated with the progression of severe HFMD, especially in EV71-infected patients. This promoted the severity of inflammatory disorders, leading to enhanced disease pathogenesis.
Collapse
Affiliation(s)
- Zhaojun Pan
- Department of Infection, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Developmental and Diseases, China International Science and Technology Cooperation Base of Child Development and Critical Diseases, Chongqing Key Laboratory of Pediatrics, No. 136 Zhongshan Road, Yuzhong District, 400014 Chongqing, PR China
| | - Ruiqiu Zhao
- Department of Infection, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Developmental and Diseases, China International Science and Technology Cooperation Base of Child Development and Critical Diseases, Chongqing Key Laboratory of Pediatrics, No. 136 Zhongshan Road, Yuzhong District, 400014 Chongqing, PR China
| | - Yanxi Shen
- Department of Infectious Diseases, Institute for Viral Hepatitis, Key Laboratory of Molecular Biology for Infectious Diseases, Ministry of Education, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400016, PR China
| | - Kai Liu
- Department of Infectious Diseases, Institute for Viral Hepatitis, Key Laboratory of Molecular Biology for Infectious Diseases, Ministry of Education, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400016, PR China
| | - Wei Xue
- Department of Infectious Diseases, Institute for Viral Hepatitis, Key Laboratory of Molecular Biology for Infectious Diseases, Ministry of Education, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400016, PR China
| | - Chengfei Liang
- Department of Infection, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Developmental and Diseases, China International Science and Technology Cooperation Base of Child Development and Critical Diseases, Chongqing Key Laboratory of Pediatrics, No. 136 Zhongshan Road, Yuzhong District, 400014 Chongqing, PR China
| | - Mingli Peng
- Department of Infectious Diseases, Institute for Viral Hepatitis, Key Laboratory of Molecular Biology for Infectious Diseases, Ministry of Education, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400016, PR China
| | - Peng Hu
- Department of Infectious Diseases, Institute for Viral Hepatitis, Key Laboratory of Molecular Biology for Infectious Diseases, Ministry of Education, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400016, PR China
| | - Min Chen
- Department of Infectious Diseases, Institute for Viral Hepatitis, Key Laboratory of Molecular Biology for Infectious Diseases, Ministry of Education, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400016, PR China.
| | - Hongmei Xu
- Department of Infection, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Developmental and Diseases, China International Science and Technology Cooperation Base of Child Development and Critical Diseases, Chongqing Key Laboratory of Pediatrics, No. 136 Zhongshan Road, Yuzhong District, 400014 Chongqing, PR China.
| |
Collapse
|
7
|
Computed Tomography Image Features under Convolutional Neural Network Algorithm in Analysis of Inflammatory Factor Level and Prognosis of Patients with Hepatitis B Virus-Associated Acute-on-Chronic Liver Failure. JOURNAL OF HEALTHCARE ENGINEERING 2021; 2021:2110612. [PMID: 34790343 PMCID: PMC8592768 DOI: 10.1155/2021/2110612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/18/2021] [Accepted: 10/20/2021] [Indexed: 11/25/2022]
Abstract
This study aimed to explore the application value of three-dimensional (3D) convolutional neural networks (3D-CNN)-based computed tomography (CT) image intelligent segmentation model in the identification of lesions of patients with hepatitis B virus-associated acute-on-chronic liver failure (HBV-ACLF). A total of 30 patients with HBV-ACLF, 30 patients with chronic HBV hospitalized in hospital, and 30 healthy volunteers were selected as subjects. Liver function and serum inflammatory factors were measured in each group, and the 3D-CNN algorithm model was applied to CT imaging. The results showed that the levels of interleukin (IL)-6, IL-26, and IL-37 in the HBV-ACLF group were the highest, which were 128.43 ± 45.16 pg/mL, 1237.47 ± 536.22 pg/mL, and 50.83 ± 7.62 pg/mL, respectively. Total bilirubin (TBIL) (P=0.035) and IL-26 (P=0.013) were independent predictors that affected the prognosis of HBV-ACLF patients. The results of lesion segmentation showed that the Dice coefficient of 3D-CNN low-density focus and enhanced focus segmentation was the highest (0.821 ± 0.07 and 0.773 ± 0.071), and the marked area was close to the area manually drawn by the doctor. 3D CNN was superior to other algorithms in the number of nodular lesions detected (533), sensitivity (97.5%), and missed detection rate (0.52%) (P < 0.05). In short, IL-26 may become a useful biomarker in the treatment of HBV-ACLF. The 3D-CNN model improved the segmentation performance of lesions in CT images of HBV-ACLF patients, which provided a reference for the diagnosis and prognosis of HBV-ACLF.
Collapse
|
8
|
De Pasquale C, Campana S, Barberi C, Sidoti Migliore G, Oliveri D, Lanza M, Musolino C, Raimondo G, Ferrone S, Pollicino T, Ferlazzo G. Human Hepatitis B Virus Negatively Impacts the Protective Immune Crosstalk Between Natural Killer and Dendritic Cells. Hepatology 2021; 74:550-565. [PMID: 33482027 PMCID: PMC8295401 DOI: 10.1002/hep.31725] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 12/16/2020] [Accepted: 01/05/2021] [Indexed: 12/22/2022]
Abstract
BACKGROUND AND AIMS Natural killer (NK) cells play a crucial role in the clearance of human viruses but their activity is significantly impaired in patients infected with chronic hepatitis B (CHB). Cooperation with dendritic cells (DCs) is pivotal for obtaining optimal NK cell antiviral function; thus, we investigated whether HBV might impact the ability of DCs to sustain NK cell functions. APPROACH AND RESULTS Human DCs were poor stimulators of interferon-gamma (IFN-γ) production by NK cells when exposed to HBV, while maintaining the capability to trigger NK cell cytotoxicity. HBV prevented DC maturation but did not affect their expression of human leukocyte antigen class I, thus allowing DCs to evade NK cell lysis. Tolerogenic features of DCs exposed to HBV were further supported by their increased expression of IL-10 and the immunosuppressive enzyme indoleamine 2,3-dioxygenase, which contributed to the impairment of DC-mediated NK cell IFN-γ production and proliferation, respectively. HBV could also inhibit the expression of inducible immunoproteasome (iP) subunits on DCs. In fact, NK cells could induce iP subunit expression on DCs, but they failed in the presence of HBV. Remarkably, circulating blood DC antigen1 (BDCA1)+ DCs isolated from patients with CHB were functionally compromised, hence altering, in turn, NK cell responses. CONCLUSIONS The abnormal NK-DC interplay caused by HBV may significantly impair the efficacy of antiviral immune response in patients with CHB.
Collapse
Affiliation(s)
- Claudia De Pasquale
- Laboratory of Immunology and BiotherapyUniversity of MessinaMessinaItaly.,Department of Human PathologyUniversity of MessinaMessinaItaly
| | - Stefania Campana
- Laboratory of Immunology and BiotherapyUniversity of MessinaMessinaItaly.,Department of Human PathologyUniversity of MessinaMessinaItaly
| | - Chiara Barberi
- Department of Experimental Medicine (DIMES)University of GenoaGenoaItaly
| | | | - Daniela Oliveri
- Cell Factory Center and Division of Clinical PathologyUniversity Hospital G. MartinoMessinaItaly
| | - Marika Lanza
- Department of Clinical and Experimental MedicineUniversity of MessinaMessinaItaly
| | - Cristina Musolino
- Department of Clinical and Experimental MedicineUniversity of MessinaMessinaItaly.,Division of Clinical and Molecular HepatologyUniversity Hospital G. MartinoMessinaItaly
| | - Giovanni Raimondo
- Department of Clinical and Experimental MedicineUniversity of MessinaMessinaItaly.,Division of Clinical and Molecular HepatologyUniversity Hospital G. MartinoMessinaItaly
| | - Soldano Ferrone
- Department of SurgeryMassachusetts General HospitalHarvard Medical SchoolBostonMA
| | - Teresa Pollicino
- Department of Human PathologyUniversity of MessinaMessinaItaly.,Division of Clinical and Molecular HepatologyUniversity Hospital G. MartinoMessinaItaly
| | - Guido Ferlazzo
- Laboratory of Immunology and BiotherapyUniversity of MessinaMessinaItaly.,Department of Human PathologyUniversity of MessinaMessinaItaly.,Cell Factory Center and Division of Clinical PathologyUniversity Hospital G. MartinoMessinaItaly
| |
Collapse
|
9
|
The effects of stereotactic body radiotherapy on peripheral natural killer and CD3 +CD56 + NKT-like cells in patients with hepatocellular carcinoma. Hepatobiliary Pancreat Dis Int 2021; 20:240-250. [PMID: 33454220 DOI: 10.1016/j.hbpd.2020.12.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 12/15/2020] [Indexed: 02/05/2023]
Abstract
BACKGROUND Both natural killer (NK) and CD3+CD56+natural killer T (NKT)-like cells play critical roles in the antitumor response. This study aimed to explore the effects of stereotactic body radiotherapy (SBRT) on peripheral NK and NKT-like cells in patients with hepatocellular carcinoma (HCC), and to identify possible surface markers on these cells that correlate with the prognosis. METHODS Twenty-five HCC patients were prospectively enrolled in our study, and 10 healthy individuals were served as healthy controls. Flow cytometry was used to determine the counts and the percentages of peripheral NK and NKT-like cells, cells with certain receptors, and cells with intracellular interferon-γ and TNF-α secretion at different time points, including time points of prior to SBRT, at post-SBRT, and 3-month and 6-month after treatment. The Kaplan-Meier method with the log-rank test was applied for survival analysis. RESULTS The peripheral NKT-like cells was increased at post-SBRT. Meanwhile, elevated levels of inhibitory receptors and reduced levels of activating receptors of NK cells were also observed in NK cells at post-SBRT, but the levels was not significantly different at 3-month and 6-month as compared with the baseline levels. Lower percentage of NKp30+NK cells before SBRT and higher percentage of CD158b+NK cells after SBRT were associated with poor progression-free survival. In addition, higher percentage of CD3+CD56+ NKT-like cells was associated with a higher overall survival rate in HCC patients. CONCLUSIONS SBRT has an apparent effect on both peripheral NK and CD3+CD56+NKT-like cells. Lower percentage of NKp30+NK cells before SBRT and higher percentage of CD158b+NK cells after SBRT are correlated with poor patients' PFS. Higher percentage of CD3+CD56+ NKT-like cells is associated with higher OS in HCC patients.
Collapse
|
10
|
Casulleras M, Zhang IW, López-Vicario C, Clària J. Leukocytes, Systemic Inflammation and Immunopathology in Acute-on-Chronic Liver Failure. Cells 2020; 9:E2632. [PMID: 33302342 PMCID: PMC7762372 DOI: 10.3390/cells9122632] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 11/20/2020] [Accepted: 12/01/2020] [Indexed: 02/06/2023] Open
Abstract
Acute-on-chronic liver failure (ACLF) is a complex syndrome that develops in patients with cirrhosis and is characterized by acute decompensation, organ failure(s) and high short-term mortality. ACLF frequently occurs in close temporal relationship to a precipitating event, such as acute alcoholic, drug-induced or viral hepatitis or bacterial infection and, in cases without precipitating events, probably related to intestinal translocation of bacterial products. Dysbalanced immune function is central to its pathogenesis and outcome with an initial excessive systemic inflammatory response that drives organ failure and mortality. This hyperinflammatory state ultimately impairs the host defensive mechanisms of immune cells, rendering ACLF patients immunocompromised and more vulnerable to secondary infections, and therefore to higher organ dysfunction and mortality. In this review, we describe the prevailing characteristics of the hyperinflammatory state in patients with acutely decompensated cirrhosis developing ACLF, with special emphasis on cells of the innate immune system (i.e., monocytes and neutrophils), their triggers (pathogen- and damage-associated molecular patterns [PAMPs and DAMPs]), their effector molecules (cytokines, chemokines, growth factors and bioactive lipid mediators) and the consequences on tissue immunopathology. In addition, this review includes a chapter discussing new emerging therapies based on the modulation of leukocyte function by the administration of pleiotropic proteins such as albumin, Toll-like receptor 4 antagonists, interleukin-22 or stem cell therapy. Finally, the importance of finding an appropriate intervention that reduces inflammation without inducing immunosuppression is highlighted as one of the main therapeutic challenges in cirrhosis.
Collapse
Affiliation(s)
- Mireia Casulleras
- Biochemistry and Molecular Genetics Service, Hospital Clínic-IDIBAPS, 08036 Barcelona, Spain; (M.C.); (I.W.Z.)
- European Foundation for the Study of Chronic Liver Failure (EF Clif) and Grifols Chair, 08021 Barcelona, Spain
| | - Ingrid W. Zhang
- Biochemistry and Molecular Genetics Service, Hospital Clínic-IDIBAPS, 08036 Barcelona, Spain; (M.C.); (I.W.Z.)
- European Foundation for the Study of Chronic Liver Failure (EF Clif) and Grifols Chair, 08021 Barcelona, Spain
| | - Cristina López-Vicario
- Biochemistry and Molecular Genetics Service, Hospital Clínic-IDIBAPS, 08036 Barcelona, Spain; (M.C.); (I.W.Z.)
- European Foundation for the Study of Chronic Liver Failure (EF Clif) and Grifols Chair, 08021 Barcelona, Spain
| | - Joan Clària
- Biochemistry and Molecular Genetics Service, Hospital Clínic-IDIBAPS, 08036 Barcelona, Spain; (M.C.); (I.W.Z.)
- European Foundation for the Study of Chronic Liver Failure (EF Clif) and Grifols Chair, 08021 Barcelona, Spain
- Department of Biomedical Sciences, School of Medicine and Health Sciences, Universitat de Barcelona, 08036 Barcelona, Spain
| |
Collapse
|
11
|
Li Q, Wang J, Lu M, Qiu Y, Lu H. Acute-on-Chronic Liver Failure From Chronic-Hepatitis-B, Who Is the Behind Scenes. Front Microbiol 2020; 11:583423. [PMID: 33365018 PMCID: PMC7750191 DOI: 10.3389/fmicb.2020.583423] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 11/13/2020] [Indexed: 12/12/2022] Open
Abstract
Acute-on-chronic liver failure (ACLF) is an acute syndrome accompanied with decompensation of cirrhosis, organ failure with high 28-day mortality rate. Systemic inflammation is the main feature of ACLF, and poor outcome is closely related with exacerbated systemic inflammatory responses. It is well known that severe systemic inflammation is an important event in chronic hepatitis B (CHB)-ACLF, which eventually leads to liver injury. However, the initial CHB-ACLF events are unclear; moreover, the effect of these events on host immunity as well as that of immune imbalance on CHB-ACLF progression are unknown. Here, we investigate the initial events of ACLF progression, discuss possible mechanisms underlying ACLF progression, and provide a new model for ACLF prediction and treatment. We review the characteristics of ACLF, and consider its plausible immune predictors and alternative treatment strategies.
Collapse
Affiliation(s)
- Qian Li
- Department of Infectious Diseases, Shanghai Public Health Clinical Center, Shanghai, China
| | - Jun Wang
- Center of Clinical Laboratory, The Fifth People's Hospital of Wuxi, Jiangnan University, Wuxi, China
| | - Mengji Lu
- Institute of Virology, University Hospital of Essen, University of Duisburg-Essen, Essen, Germany
| | - Yuanwang Qiu
- Department of Hepatology, The Fifth People's Hospital of Wuxi, Jiangnan University, Wuxi, China
| | - Hongzhou Lu
- Department of Infectious Diseases, Shanghai Public Health Clinical Center, Shanghai, China
| |
Collapse
|
12
|
Copy number gain of pro-inflammatory genes in patients with HBV-related acute-on-chronic liver failure. BMC Med Genomics 2020; 13:180. [PMID: 33261607 PMCID: PMC7709420 DOI: 10.1186/s12920-020-00835-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Accepted: 11/24/2020] [Indexed: 12/11/2022] Open
Abstract
Background Host genetic factors such as single nucleotide variations may play a crucial role in the onset and progression of HBV-related acute-on-chronic liver failure (ACLF). However, the underlying genomic copy number variations (CNVs) involved in the pathology are currently unclear. Methods We genotyped two cohorts with 389 HBV-related ACLF patients and 391 asymptomatic HBV carriers (AsCs), and then carried out CNV-based global burden analysis and a genome-wide association study (GWAS). Results For 1874 rare CNVs, HBV-related ACLF patients exhibited a high burden of deletion segments with a size of 100–200 kb (P value = 0.04), and the related genes were significantly enriched in leukocyte transendothelial migration pathway (P value = 4.68 × 10–3). For 352 common CNVs, GWAS predicted 17 significant association signals, and the peak one was a duplication segment located on 1p36.13 (~ 38 Kb, P value = 1.99 × 10–4, OR = 2.66). The associated CNVs resulted in more copy number of pro-inflammatory genes (MST1L, DEFB, and HCG4B) in HBV-related ACLF patients than in AsC controls. Conclusions Our results suggested that the impact of host CNV on HBV-related ACLF may be through decreasing natural immunity and enhancing host inflammatory response during HBV infection. The findings highlighted the potential importance of gene dosage on excessive hepatic inflammation of this disease.
Collapse
|
13
|
Khanam A, Kottilil S. Abnormal Innate Immunity in Acute-on-Chronic Liver Failure: Immunotargets for Therapeutics. Front Immunol 2020; 11:2013. [PMID: 33117329 PMCID: PMC7578249 DOI: 10.3389/fimmu.2020.02013] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 07/24/2020] [Indexed: 12/12/2022] Open
Abstract
Acute-on-chronic liver failure (ACLF) is a severe life-threatening condition with high risk of multiorgan failure, sepsis, and mortality. ACLF activates a multifaceted interplay of both innate and adaptive immune response in the host which governs the overall outcome. Innate immune cells recognize the conserved elements of microbial and viral origin, both to extort instant defense by transforming into diverse modules of effector responses and to generate long-lasting immunity but can also trigger a massive intrahepatic immune inflammatory response. Acute insult results in the activation of innate immune cells which provokes cytokine and chemokine cascade and subsequently initiates aggressive systemic inflammatory response syndrome, hepatic damage, and high mortality in ACLF. Dysregulated innate immune response not only plays a critical role in disease progression but also potentially correlates with clinical disease severity indices including Child-Turcotte-Pugh, a model for end-stage liver disease, and sequential organ failure assessment score. A better understanding of the pathophysiological basis of the disease and precise immune mechanisms associated with liver injury offers a novel approach for the development of new and efficient therapies to treat this severely ill entity. Immunotherapies could be helpful in targeting immune-mediated organ damage which may constrain progression toward liver failure and eventually reduce the requirement for liver transplantation. Here, in this review we discuss the defects of different innate immune cells in ACLF which updates the current knowledge of innate immune response and provide potential targets for new therapeutic interventions.
Collapse
Affiliation(s)
- Arshi Khanam
- Division of Clinical Care and Research, Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Shyam Kottilil
- Division of Clinical Care and Research, Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, United States
| |
Collapse
|
14
|
Chen P, Wang YY, Chen C, Guan J, Zhu HH, Chen Z. The immunological roles in acute-on-chronic liver failure: An update. Hepatobiliary Pancreat Dis Int 2019; 18:403-411. [PMID: 31303562 DOI: 10.1016/j.hbpd.2019.07.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Accepted: 06/10/2019] [Indexed: 02/05/2023]
Abstract
BACKGROUND Acute-on-chronic liver failure (ACLF) refers to the acute deterioration of liver function that occurs in patients with chronic liver disease. ACLF is characterized by acute decompensation, organ failure and high short-term mortality. Numerous studies have been conducted and remarkable progress has been made regarding the pathophysiology and pathogenesis of this disease in the last decade. The present review was to summarize the advances in this field. DATA SOURCES A comprehensive search in PubMed and EMBASE was conducted using the medical subject words "acute-on-chronic liver failure", "ACLF", "pathogenesis", "predictors", and "immunotherapy" combined with free text terms such as "systemic inflammation" and "immune paralysis". Relevant papers published before October 31, 2018, were included. RESULTS ACLF has two marked pathophysiological features, namely, excessive systemic inflammation and susceptibility to infection. The systemic inflammation is mainly manifested by a significant increase in the levels of plasma pro-inflammatory factors, leukocyte count and C-reactive protein. The underlying mechanisms are unclear and may be associated with decreased immune inhibitory cells, abnormal expression of cell surface molecules and intracellular regulatory pathways in immune cells and increased damage-associated molecular patterns in circulation. However, the main cause of susceptibility to infection is immune paralysis. Immunological paralysis is characterized by an attenuated activity of immune cells. The mechanisms are related to elevations of immune inhibitory cells and the concentration of plasma anti-inflammatory molecules. Some immune biological indicators, such as soluble CD163, are used to explore the pathogenesis and prognosis of the disease, and some immunotherapies, such as glucocorticoids and granulocyte colony-stimulating factor, are effective on ACLF. CONCLUSIONS Overwhelming systemic inflammation and susceptibility to infection are two key features of ACLF. A better understanding of the state of a patient's immune system will help to guide immunotherapy for ACLF.
Collapse
Affiliation(s)
- Ping Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou 310003, China
| | - Yun-Yun Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou 310003, China
| | - Chao Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou 310003, China
| | - Jun Guan
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou 310003, China
| | - Hai-Hong Zhu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou 310003, China
| | - Zhi Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou 310003, China.
| |
Collapse
|
15
|
Zhang J, Chen Q, Feng H. Relationship Between Chronic Hepatitis B Virus Infection and Nature Killer Cells. Viral Immunol 2019; 32:263-268. [PMID: 31158068 DOI: 10.1089/vim.2018.0131] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Jin Zhang
- Gastroenterology, Nanjing Jiangbei People's Hospital, Nanjing, China
| | - Quan Chen
- Infectious Diseases Section, Nanjing Jiangbei People's Hospital, Nanjing, China
| | - Hao Feng
- Infectious Diseases Section, Nanjing Jiangbei People's Hospital, Nanjing, China
- Infectious Diseases Section, Jiangsu Provincial People's Hospital Pukou Branch, Pukou District Central Hospital, Nanjing, China
| |
Collapse
|
16
|
Clària J, Arroyo V, Moreau R. The Acute-on-Chronic Liver Failure Syndrome, or When the Innate Immune System Goes Astray. THE JOURNAL OF IMMUNOLOGY 2017; 197:3755-3761. [PMID: 27815438 DOI: 10.4049/jimmunol.1600818] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 07/24/2016] [Indexed: 12/20/2022]
Abstract
The acute-on-chronic liver failure (ACLF) syndrome is characterized by acute decompensation of cirrhosis, organ failure, and high 28-d mortality. ACLF displays key features of systemic inflammation and its poor outcome is closely associated with exacerbated systemic inflammatory responses. In this review, we describe the prevailing characteristics of systemic inflammation in patients with decompensated cirrhosis and ACLF, with special emphasis on the principal features of the cytokine storm the mechanisms underlying this intense systemic inflammatory response (i.e., presence of circulating pathogen- and damage-associated molecular patterns), and their implication in tissue and organ damage in this condition.
Collapse
Affiliation(s)
- Joan Clària
- Servei de Bioquímica i Genètica Molecular, Hospital Clínic, Institut d'Investigacions Biomèdiques August Pi i Sunyer, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, Barcelona 08036, Spain; .,Department of Biomedical Sciences, University of Barcelona, Barcelona 08036, Spain
| | - Vicente Arroyo
- European Foundation for the Study of Chronic Liver Failure, Barcelona 08021, Spain; and
| | - Richard Moreau
- INSERM, Université Paris Diderot, Centre de Recherche sur l'Inflammation, Paris 75018, France
| |
Collapse
|
17
|
Wang Y, Wang W, Shen C, Wang Y, Jiao M, Yu W, Yin H, Shang X, Liang Q, Zhao C. NKG2D modulates aggravation of liver inflammation by activating NK cells in HBV infection. Sci Rep 2017; 7:88. [PMID: 28273905 PMCID: PMC5427972 DOI: 10.1038/s41598-017-00221-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 02/14/2017] [Indexed: 12/19/2022] Open
Abstract
Hepatitis B virus (HBV) infection is thought to be an immune-mediated liver disease. The mechanisms underlying natural killer (NK) cell group 2D receptor (NKG2D) that activates NK cells and participates in anti-HBV immunity and immunopathology has not been thoroughly elucidated. Peripheral NKG2D+ and IFN-γ+ NK cells frequencies and intrahepatic NKG2D and IFN-γ mRNA and protein expressions were determined in HBV-infected patients. Levels of NKG2D and IFN-γ mRNA and protein in NK cells, co-cultured with HBV-replicating HepG2 cells with or without NKG2D blockade, were analyzed. Serum and supernatant IFN-γ, TNF-α, perforin and granzyme B were measured. In results, peripheral NKG2D+ and IFN-γ+ NK cells frequencies, intrahepatic NKG2D and IFN-γ mRNA and protein levels, and serum IFN-γ, TNF-α, perforin and granzyme B levels were all highest in HBV-related acute-on-chronic liver failure group, followed by chronic hepatitis B and chronic HBV carrier groups. In vitro, NKG2D and IFN-γ mRNA and protein levels were higher in NK cells with IFN-α stimulation than without stimulation. Supernatant IFN-γ, TNF-α, perforin and granzyme B levels were increased under co-culture or IFN-α stimulating conditions, but were partially blocked by NKG2DmAb. In conclusion, NKG2D regulates immune inflammation and anti-viral response partly through activation of NK cells during HBV infection.
Collapse
Affiliation(s)
- Yadong Wang
- Department of Infectious Diseases, The Third Affiliated Hospital of Hebei Medical University, Shijiazhuang, China
| | - Wei Wang
- Department of Infectious Diseases, The Third Affiliated Hospital of Hebei Medical University, Shijiazhuang, China
| | - Chuan Shen
- Department of Infectious Diseases, The Third Affiliated Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yong Wang
- Department of Scientific Research, The Third Affiliated Hospital of Hebei Medical University, Shijiazhuang, China
| | - Mingjing Jiao
- Department of Infectious Diseases, The Third Affiliated Hospital of Hebei Medical University, Shijiazhuang, China
| | - Weiyan Yu
- Department of Infectious Diseases, The Third Affiliated Hospital of Hebei Medical University, Shijiazhuang, China
| | - Hongzhu Yin
- Department of Infectious Diseases, The Third Affiliated Hospital of Hebei Medical University, Shijiazhuang, China
| | - Xiaobo Shang
- Department of Infectious Diseases, The Third Affiliated Hospital of Hebei Medical University, Shijiazhuang, China
| | - Qianfei Liang
- Department of Infectious Diseases, The Third Affiliated Hospital of Hebei Medical University, Shijiazhuang, China
| | - Caiyan Zhao
- Department of Infectious Diseases, The Third Affiliated Hospital of Hebei Medical University, Shijiazhuang, China.
| |
Collapse
|