1
|
Tao Y, Zhou W, Chen C, Zhang Q, Liu Z, Xia P, Ye Z, Li C. O-sialoglycoprotein Endopeptidase (OSGEP) Suppresses Hepatic Ischemia-Reperfusion Injury-Induced Ferroptosis Through Modulating the MEK/ERK Signaling Pathway. Mol Biotechnol 2025; 67:689-704. [PMID: 38456959 PMCID: PMC11711258 DOI: 10.1007/s12033-024-01084-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 01/16/2024] [Indexed: 03/09/2024]
Abstract
Hepatic ischemia-reperfusion injury (HIRI) was widely accepted as a critical complication of liver resection and transplantation. A growing body of evidence suggested that O-sialoglycoprotein endopeptidase (OSGEP) was involved in cell proliferation and mitochondrial metabolism. However, whether OSGEP could mediate the pathogenesis of HIRI has still remained unclarified. This study investigated whether OSGEP could be protective against HIRI and elucidated the potential mechanisms. The OSGEP expression level was detected in cases undergoing ischemia-related hepatectomy and a stable oxygen-glucose deprivation/reoxygenation (OGD/R) condition in hepG2 cells. Additionally, it was attempted to establish a mouse model of HIRI, thus, the function and mechanism of OSGEP could be analyzed. At one day after hepatectomy, the negative association of OSGEP expression level with the elevated serum levels of aspartate aminotransferase (AST) and alanine aminotransferase (ALT) was noted. Moreover, it was attempted to carry out gain- and loss-of-function analyses of OSGEP in hepG2 cells to reveal its influences on OGD/R-induced injury and relevant signaling pathways. The findings suggested that OSGEP overexpression significantly protected hepG2 cells against ferroptotic cell death, while OSGEP consumption had opposite effects. Consistent with in vitro studies, OSGEP deficiency exacerbated liver functions and ferroptotic cell death in a mouse model of HIRI. The results also revealed that OSGEP mediated the progression of HIRI by regulating the MEK/ERK signaling pathway. Rescue experiments indicated that ERK1/2 knockdown or overexpression reversed the effects of OSGEP overexpression or knockdown on hepG2 cells under OGD/R condition. Taken together, the findings demonstrated that OSGEP could contribute to alleviate HIRI by mediating the MEK-ERK signaling pathway, which may serve as a potential prognostic marker and a therapeutic target for HIRI.
Collapse
Affiliation(s)
- Yuanyuan Tao
- Department of Anesthesiology, Xiangya Hospital of Central South University, Hunan Province, Changsha, 410008, China
| | - Wanqing Zhou
- Department of Anesthesiology, Xiangya Hospital of Central South University, Hunan Province, Changsha, 410008, China
| | - Cheng Chen
- Department of Anesthesiology, Xiangya Hospital of Central South University, Hunan Province, Changsha, 410008, China
| | - Qian Zhang
- Department of Anesthesiology, Xiangya Hospital of Central South University, Hunan Province, Changsha, 410008, China
| | - Zhuoyi Liu
- Department of Anesthesiology, Xiangya Hospital of Central South University, Hunan Province, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Central South University, Hunan Province, Changsha, China
| | - Pingping Xia
- Department of Anesthesiology, Xiangya Hospital of Central South University, Hunan Province, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Central South University, Hunan Province, Changsha, China
| | - Zhi Ye
- Department of Anesthesiology, Xiangya Hospital of Central South University, Hunan Province, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Central South University, Hunan Province, Changsha, China
| | - Chunling Li
- Department of Anesthesiology, Xiangya Hospital of Central South University, Hunan Province, Changsha, 410008, China.
- National Clinical Research Center for Geriatric Disorders, Central South University, Hunan Province, Changsha, China.
| |
Collapse
|
2
|
Yao S, Kasargod A, Chiu R, Torgerson TR, Kupiec-Weglinski JW, Dery KJ. The Coming Age of Antisense Oligos for the Treatment of Hepatic Ischemia/Reperfusion (IRI) and Other Liver Disorders: Role of Oxidative Stress and Potential Antioxidant Effect. Antioxidants (Basel) 2024; 13:678. [PMID: 38929116 PMCID: PMC11200799 DOI: 10.3390/antiox13060678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 05/21/2024] [Accepted: 05/27/2024] [Indexed: 06/28/2024] Open
Abstract
Imbalances in the redox state of the liver arise during metabolic processes, inflammatory injuries, and proliferative liver disorders. Acute exposure to intracellular reactive oxygen species (ROS) results from high levels of oxidative stress (OxS) that occur in response to hepatic ischemia/reperfusion injury (IRI) and metabolic diseases of the liver. Antisense oligonucleotides (ASOs) are an emerging class of gene expression modulators that target RNA molecules by Watson-Crick binding specificity, leading to RNA degradation, splicing modulation, and/or translation interference. Here, we review ASO inhibitor/activator strategies to modulate transcription and translation that control the expression of enzymes, transcription factors, and intracellular sensors of DNA damage. Several small-interfering RNA (siRNA) drugs with N-acetyl galactosamine moieties for the liver have recently been approved. Preclinical studies using short-activating RNAs (saRNAs), phosphorodiamidate morpholino oligomers (PMOs), and locked nucleic acids (LNAs) are at the forefront of proof-in-concept therapeutics. Future research targeting intracellular OxS-related pathways in the liver may help realize the promise of precision medicine, revolutionizing the customary approach to caring for and treating individuals afflicted with liver-specific conditions.
Collapse
Affiliation(s)
| | | | | | | | | | - Kenneth J. Dery
- The Dumont-UCLA Transplantation Center, Department of Surgery, Division of Liver and Pancreas Transplantation, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| |
Collapse
|
3
|
Li X, Xie Z, Zhou Q, Tan X, Meng W, Pang Y, Huang L, Ding Z, Hu Y, Li R, Huang G, Li H. TGN-020 Alleviate Inflammation and Apoptosis After Cerebral Ischemia-Reperfusion Injury in Mice Through Glymphatic and ERK1/2 Signaling Pathway. Mol Neurobiol 2024; 61:1175-1186. [PMID: 37695472 PMCID: PMC10861636 DOI: 10.1007/s12035-023-03636-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 08/30/2023] [Indexed: 09/12/2023]
Abstract
Post-stroke acute inhibition of aquaporin 4 (AQP4) is known to exacerbate inflammation and apoptosis, yet the underlying mechanisms are not fully understood. The objective of this study was to investigate the specific mechanism of inflammation and apoptosis following cerebral ischemia-reperfusion (I/R) injury using the AQP4-specific inhibitor, N-(1,3,4-thiadiazol-2-yl) pyridine-3-carboxamide dihydrochloride (TGN-020). Ischemic stroke was induced in mice using the middle cerebral artery occlusion (MCAO) model. The C57/BL6 mice were randomly divided into three groups as follows: sham operation, I/R 48 h, and TGN-020 + I/R 48 h treatment. All mice were subjected to a series of procedures. These procedures encompassed 2,3,5-triphenyltetrazolium chloride (TTC) staining, neurological scoring, fluorescence tracing, western blotting, immunofluorescence staining, and RNA sequencing (RNA-seq). The glymphatic function in the cortex surrounding cerebral infarction was determined using tracer, glial fibrillary acid protein (GFAP), AQP4 co-staining, and beta-amyloid precursor protein (APP) staining; differential genes were detected using RNA-seq. The influence of TGN-020 on the extracellular signal-regulated kinase 1/2 (ERK) 1/2 pathway was confirmed using the ERK1/2 pathway agonists Ro 67-7467. Additionally, we examined the expression of inflammation associated with microglia and astrocytes after TGN-020 and Ro 67-7467 treatment. Compared with I/R group, TGN-020 alleviated glymphatic dysfunction by inhibiting astrocyte proliferation and reducing tracer accumulation in the peri-infarct area. RNA-seq showed that the differentially expressed genes were mainly involved in the activation of astrocytes and microglia and in the ERK1/2 pathway. Western blot and immunofluorescence further verified the expression of associated inflammation. The inflammation and cell apoptosis induced by I/R are mitigated by TGN-020. This mitigation occurs through the improvement of glymphatic function and the inhibition of the ERK1/2 pathway.
Collapse
Affiliation(s)
- Xiaohong Li
- Department of Neurology, Affiliated Hospital of Guilin Medical University, Guilin, 541001, China
| | - Zhuoxi Xie
- Department of Neurology, Affiliated Hospital of Guilin Medical University, Guilin, 541001, China
| | - Qian Zhou
- Department of Neurology, the Second Affiliated Hospital of Guilin Medical University, Guilin, 541199, China
| | - Xiaoli Tan
- Department of Neurology, Affiliated Hospital of Guilin Medical University, Guilin, 541001, China
| | - Weiting Meng
- Department of Neurology, Affiliated Hospital of Guilin Medical University, Guilin, 541001, China
| | - Yeyu Pang
- Department of Neurology, Affiliated Hospital of Guilin Medical University, Guilin, 541001, China
| | - Lizhen Huang
- Department of Neurology, Affiliated Hospital of Guilin Medical University, Guilin, 541001, China
| | - Zhihao Ding
- Department of Neurology, Affiliated Hospital of Guilin Medical University, Guilin, 541001, China
| | - Yuanhong Hu
- Department of Neurology, Affiliated Hospital of Guilin Medical University, Guilin, 541001, China
| | - Ruhua Li
- Department of Neurology, Affiliated Hospital of Guilin Medical University, Guilin, 541001, China
| | - Guilan Huang
- Department of Neurology, Affiliated Hospital of Guilin Medical University, Guilin, 541001, China
| | - Hao Li
- Department of Neurology, Affiliated Hospital of Guilin Medical University, Guilin, 541001, China.
| |
Collapse
|
4
|
Blackberry-Loaded AgNPs Attenuate Hepatic Ischemia/Reperfusion Injury via PI3K/Akt/mTOR Pathway. Metabolites 2023; 13:metabo13030419. [PMID: 36984859 PMCID: PMC10051224 DOI: 10.3390/metabo13030419] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/03/2023] [Accepted: 03/07/2023] [Indexed: 03/14/2023] Open
Abstract
Liver ischemia-reperfusion injury (IRI) is a pathophysiological insult that often occurs during liver surgery. Blackberry leaves are known for their anti-inflammatory and antioxidant activities. Aims: To achieve site-specific delivery of blackberry leaves extract (BBE) loaded AgNPs to the hepatocyte in IRI and to verify possible molecular mechanisms. Methods: IRI was induced in male Wister rats. Liver injury, hepatic histology, oxidative stress markers, hepatic expression of apoptosis-related proteins were evaluated. Non-targeted metabolomics for chemical characterization of blackberry leaves extract was performed. Key findings: Pre-treatment with BBE protected against the deterioration caused by I/R, depicted by a significant improvement of liver functions and structure, as well as reduction of oxidative stress with a concomitant increase in antioxidants. Additionally, BBE promoted phosphorylation of antiapoptotic proteins; PI3K, Akt and mTOR, while apoptotic proteins; Bax, Casp-9 and cleaved Casp-3 expressions were decreased. LC-HRMS-based metabolomics identified a range of metabolites, mainly flavonoids and anthocyanins. Upon comprehensive virtual screening and molecular dynamics simulation, the major annotated anthocyanins, cyanidin and pelargonidin glucosides, were suggested to act as PLA2 inhibitors. Significance: BBE can ameliorate hepatic IRI augmented by BBE-AgNPs nano-formulation via suppressing, oxidative stress and apoptosis as well as stimulation of PI3K/Akt/mTOR signaling pathway.
Collapse
|
5
|
Li W, Gu P, Gao B, Zou L, Zhang A, Huang H, Zhao X, Xu D, Cheng C. Characteristics and transcriptomic analysis of scar tissues on the inner uterine cavity wall in patients with intrauterine adhesions. Front Physiol 2022; 13:990009. [PMID: 36620214 PMCID: PMC9815801 DOI: 10.3389/fphys.2022.990009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 12/08/2022] [Indexed: 12/24/2022] Open
Abstract
Introduction: It has been previously reported that intrauterine adhesions (IUAs) are the main cause of uterine infertility. However, the histological origin of scar tissue present on the inner wall of the uterine cavity with IUAs has not been previously studied, which is particularly necessary for follow-up research and prevention and treatment. Methods: In this study, myometrium with normal uterus were assigned to the control group and scar tissues with IUAs were assigned to the experimental group. And pathological characteristics and transcriptomic were analyzed between the two groups. Results: We founded no difference was noted in the histological morphology and the α-SMA expression between the experimental and control groups. A total of 698 differentially expressed genes were identified between the two groups. Gene Ontology (GO) analyses revealed that the DEGs were significantly enriched in cell proliferation, AP-1 complex formation, and angiogenesis. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses revealed that the target genes were significantly enriched in the AGE-RAGE, FOXO and TNF signaling pathway. Discussion: As far as we know, this is the first study to propose that the scar tissues are mainly derived from the myometrium and the first one to report differentially expressed genes in the scar tissues of IUAs.
Collapse
Affiliation(s)
- Waixing Li
- Department of Obstetrics and Gynecology, The Third Xiangya Hospital of the Central South University, Changsha, Hunan, China
| | - Pan Gu
- Department of Obstetrics and Gynecology, The Third Xiangya Hospital of the Central South University, Changsha, Hunan, China,The Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Bingsi Gao
- The Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Lingxiao Zou
- Department of Obstetrics and Gynecology, The Third Xiangya Hospital of the Central South University, Changsha, Hunan, China
| | - Aiqian Zhang
- Department of Obstetrics and Gynecology, The Third Xiangya Hospital of the Central South University, Changsha, Hunan, China
| | - Huan Huang
- Department of Obstetrics and Gynecology, The Third Xiangya Hospital of the Central South University, Changsha, Hunan, China
| | - Xingping Zhao
- Department of Obstetrics and Gynecology, The Third Xiangya Hospital of the Central South University, Changsha, Hunan, China,*Correspondence: Xingping Zhao, ; Dabao Xu,
| | - Dabao Xu
- Department of Obstetrics and Gynecology, The Third Xiangya Hospital of the Central South University, Changsha, Hunan, China,*Correspondence: Xingping Zhao, ; Dabao Xu,
| | - Chunxia Cheng
- Department of Obstetrics and Gynecology, The Third Xiangya Hospital of the Central South University, Changsha, Hunan, China
| |
Collapse
|
6
|
Dery KJ, Kupiec-Weglinski JW. New insights into ischemia-reperfusion injury signaling pathways in organ transplantation. Curr Opin Organ Transplant 2022; 27:424-433. [PMID: 35857344 DOI: 10.1097/mot.0000000000001005] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
PURPOSE OF REVIEW Ischemia-reperfusion injury (IRI) leading to allograft rejection in solid organ transplant recipients is a devastating event that compromises graft and patient survival. As our clinical knowledge regarding its definition and presentation has significantly improved over the last years, adequate biomarkers translating to important therapeutic intervention remains a challenge. This review will summarize recent findings in this area. RECENT FINDINGS In the past 18 months, our understanding of organ transplantation IRI has improved. IRI involves a positive amplification feedback loop encompassing damaged cells at the graft site, the activity of redox-sensitive damage-associated molecular patterns, and local sequestration of recipient-derived monocytes, lymphocytes and polymorphonuclear leukocytes, like neutrophils, to sustain the immunological cascade and to enhance the destruction of the foreign tissue. Recent studies have identified critical components leading to IRI, including the oxidation state of high mobility group box 1, a classic danger signal, its role in the Toll-like receptor 4-interleukin (IL)-23-IL-17A signaling axis, and the role of neutrophils and CD321, a marker for transmigration of circulating leukocytes into the inflamed tissue. In addition, recent findings imply that the protective functions mediated by autophagy activation counterbalance the detrimental nucleotide-binding domain-like receptor family, pyrin domain containing 3 inflammasome pathway. Finally, clinical studies reveal the posttransplant variables associated with early allograft dysfunction and IRI. SUMMARY The future challenge will be understanding how crosstalk at the molecular and cellular levels integrate prospectively to predict which peri-transplant signals are essential for long-term clinical outcomes.
Collapse
Affiliation(s)
- Kenneth J Dery
- The Dumont-UCLA Transplantation Center, Department of Surgery, Division of Liver and Pancreas Transplantation, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | | |
Collapse
|
7
|
CCN1/Integrin α 5β 1 Instigates Free Fatty Acid-Induced Hepatocyte Lipid Accumulation and Pyroptosis through NLRP3 Inflammasome Activation. Nutrients 2022; 14:nu14183871. [PMID: 36145246 PMCID: PMC9505842 DOI: 10.3390/nu14183871] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 09/13/2022] [Accepted: 09/15/2022] [Indexed: 12/20/2022] Open
Abstract
Hyperlipidemia with high blood levels of free fatty acids (FFA) is the leading cause of non-alcoholic steatohepatitis. CCN1 is a secreted matricellular protein that drives various cellular functions, including proliferation, migration, and differentiation. However, its role in mediating FFA-induced pro-inflammatory cell death and its underlying molecular mechanisms have not been characterized. In this study, we demonstrated that CCN1 was upregulated in the livers of obese mice. The increase in FFA-induced CCN1 was evaluated in vitro by treating hepatocytes with a combination of oleic acid and palmitic acid (2:1). Gene silencing using specific small interfering RNAs (siRNA) revealed that CCN1 participated in FFA-induced intracellular lipid accumulation, caspase-1 activation, and hepatocyte pyroptosis. Next, we identified integrin α5β1 as a potential receptor of CCN1. Co-immunoprecipitation demonstrated that the binding between CCN1 and integrin α5β1 increased in hepatocytes upon FFA stimulation in the livers of obese mice. Similarly, the protein levels of integrin α5 and β1 were increased in vitro and in vivo. Experiments with specific siRNAs confirmed that integrin α5β1 played a part in FFA-induced intracellular lipid accumulation, NLRP3 inflammasome activation, and pyroptosis in hepatocytes. In conclusion, these results provide novel evidence that the CCN1/integrin α5β1 is a novel mediator that drives hepatic lipotoxicity via NLRP3-dependent pyroptosis.
Collapse
|