1
|
Zhuang D, Yu N, Han S, Zhang X, Ju C. The Kv7 channel opener Retigabine reduces neuropathology and alleviates behavioral deficits in APP/PS1 transgenic mice. Behav Brain Res 2024; 471:115137. [PMID: 38971432 DOI: 10.1016/j.bbr.2024.115137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 06/19/2024] [Accepted: 07/01/2024] [Indexed: 07/08/2024]
Abstract
Hyperexcitability of neuronal networks is central to the pathogenesis of Alzheimer's disease (AD). Pharmacological activation of Kv7 channels is an effective way to reduce neuronal firing. Our results showed that that pharmacologically activating the Kv7 channel with Retigabine (RTG) can alleviate cognitive impairment in mice without affecting spontaneous activity. RTG could also ameliorate damage to the Nissl bodies in cortex and hippocampal CA and DG regions in 9-month-old APP/PS1 mice. Additionally, RTG could reduce the Aβ plaque number in the hippocampus and cortex of both 6-month-old and 9-month-old mice. By recordings of electroencephalogram, we showed that a decrease in the number of abnormal discharges in the brains of the AD model mice when the Kv7 channel was opened. Moreover, Western blot analysis revealed a reduction in the expression of the p-Tau protein in both the hippocampus and cortex upon Kv7 channel opening. These findings suggest that Kv7 channel opener RTG may ameliorate cognitive impairment in AD, most likely by reducing brain excitability.
Collapse
Affiliation(s)
- Dongpei Zhuang
- Department of Pharmacology, School of Pharmacy, Qingdao University Qingdao Medical College, China.
| | - Nan Yu
- Department of Pharmacy, Qingdao Eighth People's Hospital, China.
| | - Shuo Han
- Department of Pharmacology, School of Pharmacy, Qingdao University Qingdao Medical College, China.
| | - Xinyao Zhang
- Department of Pharmacology, School of Pharmacy, Qingdao University Qingdao Medical College, China.
| | - Chuanxia Ju
- Department of Pharmacology, School of Pharmacy, Qingdao University Qingdao Medical College, China.
| |
Collapse
|
2
|
Citak A, Kilinc E, Torun IE, Ankarali S, Dagistan Y, Yoldas H. The effects of certain TRP channels and voltage-gated KCNQ/Kv7 channel opener retigabine on calcitonin gene-related peptide release in the trigeminovascular system. Cephalalgia 2022; 42:1375-1386. [PMID: 35861239 DOI: 10.1177/03331024221114773] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND Calcitonin gene-related peptide release in trigeminovascular system is a pivotal component of neurogenic inflammation underlying migraine pathophysiology. Transient receptor potential channels and voltage-gated KCNQ/Kv7 potassium channels expressed throughout trigeminovascular system are important targets for modulation of calcitonin gene-related peptide release. We investigated the effects of certain transient receptor potential (TRP) channels the vanilloid 1 and 4 (TRPV1 and TRPV4), the ankyrin 1 (TRPA1), and metastatin type 8 (TRPM8), and voltage-gated potassium channel (Kv7) opener retigabine on calcitonin gene-related peptide release from peripheral (dura mater and trigeminal ganglion) and central (trigeminal nucleus caudalis) trigeminal components of rats. METHODS The experiments were carried out using well-established in-vitro preparations (hemiskull, trigeminal ganglion and trigeminal nucleus caudalis) from male Wistar rats. Agonists and antagonists of TRPV1, TRPV4, TRPA1 and TRPM8 channels, and also retigabine were tested on the in-vitro release of calcitonin gene-related peptide. Calcitonin gene-related peptide concentrations were measured using enzyme-linked immunosorbent assay. RESULTS Agonists of these transient receptor potential channels induced calcitonin gene-related peptide release from hemiskull, trigeminal ganglion and trigeminal nucleus caudalis, respectively. The transient receptor potential channels-induced calcitonin gene-related peptide releases were blocked by their specific antagonists and reduced by retigabine. Retigabine also decreased basal calcitonin gene-related peptide releases in all preparations. CONCLUSION Our findings suggest that favorable antagonists of these transient receptor potential channels, or Kv7 channel opener retigabine may be effective in migraine therapy by inhibiting neurogenic inflammation that requires calcitonin gene-related peptide release.
Collapse
Affiliation(s)
- Arzu Citak
- Department of Physiology, Faculty of Medicine, Bolu Abant Izzet Baysal University, Bolu, Turkey
| | - Erkan Kilinc
- Department of Physiology, Faculty of Medicine, Bolu Abant Izzet Baysal University, Bolu, Turkey
| | - Ibrahim Ethem Torun
- Department of Physiology, Faculty of Medicine, Bolu Abant Izzet Baysal University, Bolu, Turkey
| | - Seyit Ankarali
- Department of Physiology, Faculty of Medicine, Istanbul Medeniyet University, Istanbul, Turkey
| | - Yasar Dagistan
- Department of Neurosurgery, Faculty of Medicine, Bolu Abant Izzet Baysal University, Bolu, Turkey
| | - Hamit Yoldas
- Department of Anesthesiology and Reanimation, Faculty of Medicine, Bolu Abant Izzet Baysal University, Bolu, Turkey
| |
Collapse
|
3
|
Larsson JE, Karlsson U, Wu X, Liin SI. Combining endocannabinoids with retigabine for enhanced M-channel effect and improved KV7 subtype selectivity. J Gen Physiol 2021; 152:151732. [PMID: 32365171 PMCID: PMC7398146 DOI: 10.1085/jgp.202012576] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 03/25/2020] [Indexed: 12/22/2022] Open
Abstract
Retigabine is unique among anticonvulsant drugs by targeting the neuronal M-channel, which is composed of KV7.2/KV7.3 and contributes to the negative neuronal resting membrane potential. Unfortunately, retigabine causes adverse effects, which limits its clinical use. Adverse effects may be reduced by developing M-channel activators with improved KV7 subtype selectivity. The aim of this study was to evaluate the prospect of endocannabinoids as M-channel activators, either in isolation or combined with retigabine. Human KV7 channels were expressed in Xenopus laevis oocytes. The effect of extracellular application of compounds with different properties was studied using two-electrode voltage clamp electrophysiology. Site-directed mutagenesis was used to construct channels with mutated residues to aid in the mechanistic understanding of these effects. We find that arachidonoyl-L-serine (ARA-S), a weak endocannabinoid, potently activates the human M-channel expressed in Xenopus oocytes. Importantly, we show that ARA-S activates the M-channel via a different mechanism and displays a different KV7 subtype selectivity compared with retigabine. We demonstrate that coapplication of ARA-S and retigabine at low concentrations retains the effect on the M-channel while limiting effects on other KV7 subtypes. Our findings suggest that improved KV7 subtype selectivity of M-channel activators can be achieved through strategically combining compounds with different subtype selectivity.
Collapse
Affiliation(s)
- Johan E Larsson
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Urban Karlsson
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Xiongyu Wu
- Department of Physics, Chemistry and Biology, Linköping University, Linköping, Sweden
| | - Sara I Liin
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| |
Collapse
|
4
|
Five-Membered Cyclic Carbonates: Versatility for Applications in Organic Synthesis, Pharmaceutical, and Materials Sciences. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11115024] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
This review presents the recent advances involving several applications of five-membered cyclic carbonates and derivatives. With more than 150 references, it covers the period from 2012 to 2020, with special emphasis on the use of five-membered cyclic carbonates as building blocks for organic synthesis and material elaboration. We demonstrate the application of cyclic carbonates in several important chemical transformations, such as decarboxylation, hydrogenation, and transesterification reactions, among others. The presence of cyclic carbonates in molecules with high biological potential is also displayed, together with the importance of these compounds in the preparation of materials such as urethanes, polyurethanes, and flame retardants.
Collapse
|
5
|
Elkady EF, Aboelwafa AA, Fouad MA. Study of gender-related pharmacokinetics of ezogabine in Egyptian volunteers by a validated LC-MS/MS bioanalytical method. J Adv Res 2020; 22:99-104. [PMID: 31956446 PMCID: PMC6961218 DOI: 10.1016/j.jare.2019.11.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 11/17/2019] [Accepted: 11/18/2019] [Indexed: 11/25/2022] Open
Abstract
Gender-based pharmacokinetics and/or pharmacodynamics differences can result in differences in treatment which can accordingly affect the drug safety and/or efficacy. A new validated bio-analytical LC-MS/MS method was developed for the estimation of ezogabine, a third-generation antiepileptic drug, in human plasma using oxcarbazepine as an internal standard (IS) and to study the gender effect on the pharmacokinetic parameters in Egyptian human subjects. Liquid-liquid extraction of plasma samples was performed with diethyl ether: dichloromethane. The separation was accomplished in an isocratic mode with a mobile phase of a mixture of 5 mM ammonium acetate: methanol: acetonitrile pumped on a reversed phase C18 INERTSIL ODS-3 (5 µm, 150 × 4.6 mm). Multiple reaction monitoring was applied and operated by positive mode electrospray ionization. Male and female Cmax (p = 0.0308; CL = 95) and t1/2 (p = 0.0301; CL = 95) were found to be significantly different using Mann-Whitney U test. These findings highlight the difference of ezogabine pharmacokinetics among populations. Further, gender-based ezogabine dose adjustment may be considered.
Collapse
Affiliation(s)
- Ehab F Elkady
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Cairo University, Kasr El-Aini 11562, Cairo, Egypt
| | - Ahmed A Aboelwafa
- Pharmaceutics and Industrial Pharmacy Department, Faculty of Pharmacy, Cairo University, Kasr El-Aini 11562, Cairo, Egypt
| | - Marwa A Fouad
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Cairo University, Kasr El-Aini 11562, Cairo, Egypt
| |
Collapse
|
6
|
|
7
|
Ling J, Erol F, Viatchenko-Karpinski V, Kanda H, Gu JG. Orofacial neuropathic pain induced by oxaliplatin: downregulation of KCNQ2 channels in V2 trigeminal ganglion neurons and treatment by the KCNQ2 channel potentiator retigabine. Mol Pain 2018; 13:1744806917724715. [PMID: 28741430 PMCID: PMC5549876 DOI: 10.1177/1744806917724715] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Neuropathic pain induced by chemotherapy drugs such as oxaliplatin is a dose-limiting side effect in cancer treatment. The mechanisms underlying chemotherapy-induced neuropathic pain are not fully understood. KCNQ2 channels are low-threshold voltage-gated K+ channels that play a role in controlling neuronal excitability. Downregulation of KCNQ2 channels has been proposed to be an underlying mechanism of sensory hypersensitivity that leads to neuropathic pain. However, it is currently unknown whether KCNQ channels may be downregulated by chemotherapy drugs in trigeminal ganglion neurons to contribute to the pathogenesis of chemotherapy-induced orofacial neuropathic pain. In the present study, mechanical sensitivity in orofacial regions is measured using the operant behavioral test in rats treated with oxaliplatin. Operant behaviors in these animals show the gradual development of orofacial neuropathic pain that manifests with orofacial mechanical allodynia. Immunostaining shows strong KCNQ2 immunoreactivity in small-sized V2 trigeminal ganglion neurons in controls, and the numbers of KCNQ2 immunoreactivity positive V2 trigeminal ganglion neurons are significantly reduced in oxaliplatin-treated animals. Immunostaining is also performed in brainstem and shows strong KCNQ2 immunoreactivity at the trigeminal afferent central terminals innervating the caudal spinal trigeminal nucleus (Vc) in controls, but the KCNQ2 immunoreactivity intensity is significantly reduced in oxaliplatin-treated animals. We further show with the operant behavioral test that oxaliplatin-induced orofacial mechanical allodynia can be alleviated by the KCNQ2 potentiator retigabine. Taken together, these findings suggest that KCNQ2 downregulation may be a cause of oxaliplatin-induced orofacial neuropathic pain and KCNQ2 potentiators may be useful for alleviating the neuropathic pain.
Collapse
Affiliation(s)
- Jennifer Ling
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Ferhat Erol
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | | | - Hirosato Kanda
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | | |
Collapse
|
8
|
Abstract
Given the distinctive characteristics of both epilepsy and antiepileptic drugs (AEDs), therapeutic drug monitoring (TDM) can make a significant contribution to the field of epilepsy. The measurement and interpretation of serum drug concentrations can be of benefit in the treatment of uncontrollable seizures and in cases of clinical toxicity; it can aid in the individualization of therapy and in adjusting for variable or nonlinear pharmacokinetics; and can be useful in special populations such as pregnancy. This review examines the potential for TDM of newer AEDs such as eslicarbazepine acetate, felbamate, gabapentin, lacosamide, lamotrigine, levetiracetam, perampanel, pregabalin, rufinamide, retigabine, stiripentol, tiagabine, topiramate, vigabatrin, and zonisamide. We describe the relationships between serum drug concentration, clinical effect, and adverse drug reactions for each AED as well as the different analytical methods used for serum drug quantification. We discuss retrospective studies and prospective data on the serum drug concentration-efficacy of these drugs and present the pharmacokinetic parameters, oral bioavailability, reference concentration range, and active metabolites of newer AEDs. Limited data are available for recent AEDs, and we discuss the connection between drug concentrations in terms of clinical efficacy and nonresponse. Although we do not propose routine TDM, serum drug measurement can play a beneficial role in patient management and treatment individualization. Standardized studies designed to assess, in particular, concentration-efficacy-toxicity relationships for recent AEDs are urgently required.
Collapse
Affiliation(s)
- Shery Jacob
- Department of Pharmaceutics, College of Pharmacy, Gulf Medical University, University Street, P.O.Box No.4184, Ajman, UAE.
| | - Anroop B Nair
- Department of Pharmaceutics, College of Clinical Pharmacy, King Faisal University, Al-Ahsa, Saudi Arabia
| |
Collapse
|
9
|
Martínez-Lizana E, Gil-Lopez F, Donaire A, Aparicio J, Brandt A, Carreño M. Outcome of treatment changes in patients with drug-resistant chronic epilepsy: A tertiary center experience. Epilepsy Res 2017; 136:97-102. [DOI: 10.1016/j.eplepsyres.2017.07.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 07/04/2017] [Accepted: 07/18/2017] [Indexed: 01/25/2023]
|
10
|
Groth A, Wilke T, Borghs S, Gille P, Joeres L. Real life pharmaceutical treatment patterns for adult patients with focal epilepsy in Germany: a longitudinal and cross-sectional analysis of recently approved anti-epileptic drugs. GERMAN MEDICAL SCIENCE : GMS E-JOURNAL 2017. [PMID: 28638313 PMCID: PMC5469246 DOI: 10.3205/000250] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Objectives: The aim of this study was to investigate the antiepileptic drug (AED) treatment of adults suffering from focal epilepsies (FE) in Germany. Of special interest was the number and percentage of the patients 16 years and older receiving no treatment with an AED, treatment with one AED (monotherapy), treatment with more than one AED, and treatment with a novel AED. The definition for “novel” was newly approved at the time of market entry since 2006 (last 10 years): eslicarbazepine (ESL), lacosamide (LCM), perampanel (PER), and retigabine (RTG). Methods: The analysis was based on a claims data set covering the years 2007 to 2014, provided by AOK PLUS, a German statutory health insurance. Two patient samples were defined: (1) prevalent patients suffering from FE (at least one in- or outpatient diagnosis of FE and at least one prescription of an AED), and (2) incident FE patients (first in- or outpatient diagnosis of FE without any previous diagnoses/AED prescriptions in the preceding 6 months). Patient observation started at date of first observed inpatient or outpatient focal epilepsy diagnosis within the analyzed period. Each patient was classified as a “no AED therapy”, “AED monotherapy” or “more than one AED therapy”. Patients were analyzed by number and type of concomitantly prescribed AEDs in yearly tranches (no, one, two, three, four, more than four AEDs; novel versus non-novel AEDs). Results: A total of 34,422 patients diagnosed with FE aged 16 year or older (mean age 59.6 years, 48.7% female) were identified. The mean follow-up period was 1,891 days (5.2 years) since first confirmed diagnosis. The percentage of prevalent patients diagnosed with FE who received one AED (monotherapy) was stable overall and ranged between a minimum of 66.2% (2007) and a maximum of 68.9% (2010). The percentage of patients who received two AEDs ranged from 23.6% (2012) to 25.8% (2007). The remaining patients received therapies with three (6.0% in 2010 to 6.7% in 2007), four (1.0% in 2010 to 1.2% in 2009) or more than four AEDs (0.1% in 2014 to 0.3% in 2013). Between 8.1%–16.6% (2007; 2014) of the patients received no AED therapy in the observed period. In the first year after the diagnosis of FE (incident patients), 9.7% of patients didn’t receive any AED therapy. Of those treated with at least one AED, 80.0% received one AED (monotherapy) only, 17.0% received therapy with two AEDs, 2.6% with three AEDs, 0.3% with four AEDs, and 0.1% with >4 AEDs during the respective observation time window and remained stable throughout the four-year follow-up period. Of prevalent patients with a diagnosis of FE, 1,889 (5.5%) received at least one prescription of a novel AED during the observation period; 98.6% of these patients received the novel AED in combination with at least one other AED. Of those patients, 269 (14.2%) received >1 novel AED. The analysis of the patients receiving novel AEDs by the time from the first confirmed diagnosis of FE until the prescription of a novel AED resulted in a mean duration of 4.0 years (SD 2.0) for ESL, 3.6 years (SD 2.2) for LCM, 5.7 years (SD 1.2) for PER, and 4.6 years (SD 0.8 years) for RTG. The mean number of AEDs prescribed before the novel AEDs were 3.2 for ESL, 2.4 for LCM, 5.0 for PER and 5.2 for RTG. Conclusions: Most patients aged 16 years or older, suffering from focal seizures, received AED monotherapy. Novel AEDs were prescribed in a small proportion of patients (<6%) and relatively late in the treatment course. These results are consistent with the recommendations of the German Society for Epileptology (Deutsche Gesellschaft für Epileptologie, DGfE) which suggests a number of monotherapy options – these options do not include the novel AEDs described in this study.
Collapse
|
11
|
Abstract
There are more than 12 new antiepileptic drugs approved in the last 2 decades. Even with these newer agents, seizure remission is still unachievable in around 30% of patients with partial-onset seizures (POS). Brivaracetam (BRV) is chemically related to levetiracetam (LEV) and possesses a strong binding affinity for the synaptic vesicle protein 2A tenfold above that of LEV, and other possible modes of antiepileptic actions. BRV is now under Phase III development for POS, but data from one Phase III trial also suggested its potential efficacy for primary generalized seizures. The purpose of this review is to provide updated information on the mechanisms of action of the available antiepileptic drugs, with a focus on BRV to assess its pharmacology, pharmacokinetics, clinical efficacy, safety, and tolerability in patients with uncontrolled POS. To date, six Phase IIb and III clinical trials have been performed to investigate the efficacy, safety, and tolerability of BRV as an adjunctive treatment for patients with POS. Generally, BRV was well tolerated and did not show significant difference in safety profile, compared to placebo. The efficacy outcomes of BRV, although not consistent across trials, did indicate that BRV was a promising add-on therapy for patients with POS. In conclusion, the many favorable attributes of BRV, like its high oral efficacy, good tolerability, dosing regimen, and minimal drug interaction, make it a promising antiepileptic therapy for patients with uncontrolled partial-onset epilepsy.
Collapse
Affiliation(s)
- Lan Gao
- Deakin Population Health SRC, Faculty of Health, Deakin University, Burwood, Victoria, Australia
| | - Shuchuen Li
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW, Australia
| |
Collapse
|
12
|
|
13
|
Lattanzi S, Cagnetti C, Foschi N, Provinciali L, Silvestrini M. Brivaracetam add-on for refractory focal epilepsy. Neurology 2016; 86:1344-1352. [DOI: 10.1212/wnl.0000000000002545] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2015] [Accepted: 12/23/2015] [Indexed: 01/01/2023] Open
|
14
|
Abstract
Supplemental Digital Content is Available in the Text. Combining electrophysiology and in vivo pain models, the concept that activation of peripheral KCNQ channels relieves the gout pain is demonstrated. Intense inflammatory pain caused by urate crystals in joints and other tissues is a major symptom of gout. Among therapy drugs that lower urate, benzbromarone (BBR), an inhibitor of urate transporters, is widely used because it is well tolerated and highly effective. We demonstrate that BBR is also an activator of voltage-gated KCNQ potassium channels. In cultured recombinant cells, BBR exhibited significant potentiation effects on KCNQ channels comparable to previously reported classical activators. In native dorsal root ganglion neurons, BBR effectively overcame the suppression of KCNQ currents, and the resultant neuronal hyperexcitability caused by inflammatory mediators, such as bradykinin (BK). Benzbromarone consistently attenuates BK-, formalin-, or monosodium urate–induced inflammatory pain in rat and mouse models. Notably, the analgesic effects of BBR are largely mediated through peripheral and not through central KCNQ channels, an observation supported both by pharmacokinetic studies and in vivo experiments. Moreover, multiple residues in the superficial part of the voltage sensing domain of KCNQ channels were identified critical for the potentiation activity of BBR by a molecular determinant investigation. Our data indicate that activation of peripheral KCNQ channels mediates the pain relief effects of BBR, potentially providing a new strategy for the development of more effective therapies for gout.
Collapse
|
15
|
Zagorchev P, Apostolova E, Kokova V, Peychev L. Activation of KCNQ channels located on the skeletal muscle membrane by retigabine and its influence on the maximal muscle force in rat muscle strips. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2016; 389:439-46. [PMID: 26815201 DOI: 10.1007/s00210-016-1211-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 01/14/2016] [Indexed: 10/22/2022]
Abstract
Retigabine is a new antiepileptic drug with the main mechanism of action: activation of voltage-gated potassium channels (Kv7) represented in many tissues including the excitable cells-neuronal and muscular. The aim of this article is to determine the role of potassium channels located on the skeletal muscle membrane in the in vivo and in vitro reduction of muscle contractile activity induced by retigabine. We studied the effects of retigabine on the motor function in vivo using a bar holding test and exploratory activity using open field test in rats. Electrical field stimulation (EFS) was applied to skeletal muscle strips in vitro in order to evaluate muscular activity. We registered a significant decrease in the muscle tone and exploratory activity of rats, treated orally with 60 mg/kg bw retigabine. In vitro experiments showed decrease in the maximal muscle force of strips in the presence of retigabine in the medium after both indirect (nerve-like) and direct (muscle-like) stimulation. The effects were fully antagonized by XE-991 (Kv7 channel blocker), which supports our hypothesis about the relation between these types of potassium channels and the observed change in the muscle force. Based on these results, we can conclude that skeletal muscle Kv7 channels play a significant role in the myorelaxation and reduced muscle force registered after treatment with Kv7 channels openers (e.g., retigabine). The hyperpolarization of skeletal muscle membrane caused by accelerated K(+) efflux may be the underlying cause for the effect of retigabine on the muscle tone.
Collapse
Affiliation(s)
- P Zagorchev
- Department of Biophysics, Faculty of Pharmacy, Medical University-Plovdiv, Vasil Aprilov Str. 15A, 4000, Plovdiv, Bulgaria
| | - E Apostolova
- Department of Pharmacology and Drug Toxicology, Faculty of Pharmacy, Medical University-Plovdiv, Vasil Aprilov Str. 15A, 4000, Plovdiv, Bulgaria.
| | - V Kokova
- Department of Pharmacology and Drug Toxicology, Faculty of Pharmacy, Medical University-Plovdiv, Vasil Aprilov Str. 15A, 4000, Plovdiv, Bulgaria
| | - L Peychev
- Department of Pharmacology and Drug Toxicology, Faculty of Pharmacy, Medical University-Plovdiv, Vasil Aprilov Str. 15A, 4000, Plovdiv, Bulgaria
| |
Collapse
|
16
|
Abd-Elsayed AA, Ikeda R, Jia Z, Ling J, Zuo X, Li M, Gu JG. KCNQ channels in nociceptive cold-sensing trigeminal ganglion neurons as therapeutic targets for treating orofacial cold hyperalgesia. Mol Pain 2015; 11:45. [PMID: 26227020 PMCID: PMC4521366 DOI: 10.1186/s12990-015-0048-8] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Accepted: 07/22/2015] [Indexed: 12/03/2022] Open
Abstract
Background Hyperexcitability of nociceptive afferent fibers is an underlying mechanism of neuropathic pain and ion channels involved in neuronal excitability are potentially therapeutic targets. KCNQ channels, a subfamily of voltage-gated K+ channels mediating M-currents, play a key role in neuronal excitability. It is unknown whether KCNQ channels are involved in the excitability of nociceptive cold-sensing trigeminal afferent fibers and if so, whether they are therapeutic targets for orofacial cold hyperalgesia, an intractable trigeminal neuropathic pain. Methods Patch-clamp recording technique was used to study M-currents and neuronal excitability of cold-sensing trigeminal ganglion neurons. Orofacial operant behavioral assessment was performed in animals with trigeminal neuropathic pain induced by oxaliplatin or by infraorbital nerve chronic constrictive injury. Results We showed that KCNQ channels were expressed on and mediated M-currents in rat nociceptive cold-sensing trigeminal ganglion (TG) neurons. The channels were involved in setting both resting membrane potentials and rheobase for firing action potentials in these cold-sensing TG neurons. Inhibition of KCNQ channels by linopirdine significantly decreased resting membrane potentials and the rheobase of these TG neurons. Linopirdine directly induced orofacial cold hyperalgesia when the KCNQ inhibitor was subcutaneously injected into rat orofacial regions. On the other hand, retigabine, a KCNQ channel potentiator, suppressed the excitability of nociceptive cold-sensing TG neurons. We further determined whether KCNQ channel could be a therapeutic target for orofacial cold hyperalgesia. Orofacial cold hyperalgesia was induced in rats either by the administration of oxaliplatin or by infraorbital nerve chronic constrictive injury. Using the orofacial operant test, we showed that retigabine dose-dependently alleviated orofacial cold hyperalgesia in both animal models. Conclusion Taken together, these findings indicate that KCNQ channel plays a significant role in controlling cold sensitivity and is a therapeutic target for alleviating trigeminal neuropathic pain that manifests orofacial cold hyperalgesia.
Collapse
Affiliation(s)
- Alaa A Abd-Elsayed
- Department of Anesthesiology and the Graduate Program in Neuroscience, The University of Cincinnati College of Medicine, PO Box 670531, 231 Albert Sabin Way, Cincinnati, OH, 45267-0531, USA. .,Department of Anesthesiology, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA.
| | - Ryo Ikeda
- Department of Anesthesiology and the Graduate Program in Neuroscience, The University of Cincinnati College of Medicine, PO Box 670531, 231 Albert Sabin Way, Cincinnati, OH, 45267-0531, USA. .,Department of Orthopedic Surgery, Jikei University School of Medicine, 3-25-8 Nishi-Shinbashi, Minato-ku, Tokyo, 105-8461, Japan.
| | - Zhanfeng Jia
- Department of Anesthesiology and the Graduate Program in Neuroscience, The University of Cincinnati College of Medicine, PO Box 670531, 231 Albert Sabin Way, Cincinnati, OH, 45267-0531, USA. .,Department of Pharmacology, Hebei Medical University, 361 East Zhongshan Road, Shijiazhuang, 050017, Hebei, China.
| | - Jennifer Ling
- Department of Anesthesiology and Perioperative Medicine, College of Medicine, University of Alabama at Birmingham, 901 19th Street South, BMR II 210, Birmingham, AL, 35294, USA. .,Department of Anesthesiology and the Graduate Program in Neuroscience, The University of Cincinnati College of Medicine, PO Box 670531, 231 Albert Sabin Way, Cincinnati, OH, 45267-0531, USA.
| | - Xiaozhuo Zuo
- Department of Anesthesiology and the Graduate Program in Neuroscience, The University of Cincinnati College of Medicine, PO Box 670531, 231 Albert Sabin Way, Cincinnati, OH, 45267-0531, USA.
| | - Min Li
- Department of Neuroscience and High Throughput Biology Center, Johns Hopkins University School of Medicine, 733 N. Broadway 311 BRB, Baltimore, MD, 21205, USA. .,GlaxoSmithKline, New York, NY, USA.
| | - Jianguo G Gu
- Department of Anesthesiology and Perioperative Medicine, College of Medicine, University of Alabama at Birmingham, 901 19th Street South, BMR II 210, Birmingham, AL, 35294, USA. .,Department of Anesthesiology and the Graduate Program in Neuroscience, The University of Cincinnati College of Medicine, PO Box 670531, 231 Albert Sabin Way, Cincinnati, OH, 45267-0531, USA.
| |
Collapse
|
17
|
Abstract
INTRODUCTION Epilepsy is the most common neurological condition worldwide with significant psychosocial and physical morbidity. Its management requires expertise and good pharmacological knowledge of the available options. AREAS COVERED This review covers the management of focal epilepsy addressing the common questions arising through the patients' journey, including timing of starting initial treatment, monotherapy options, add-on treatment for refractory cases and withdrawal of medication during remission. EXPERT OPINION Initiating anti-epileptic drug (AED) treatment requires assessment of patient preferences and of evidence of benefit and harm. Evidence of benefit will come primarily from randomised controlled trials, although in epilepsy, most trials are undertaken to inform regulatory decision and have important limitations for informing clinical decisions. Evidence about harm may come not only from randomised trials but also from other sources. Most patients will start treatment following a second focal seizure. Carbamazepine and lamotrigine are good initial monotherapy options. Newer AEDs have proof of efficacy as monotherapy but evidence is insufficient to recommend them as first-line treatments. For refractory cases, there are an increasing number of AEDs available, but evidence of efficacy is primarily from placebo-controlled trials, and there is no robust evidence to inform a choice among treatments.
Collapse
Affiliation(s)
- Anand Iyer
- The Walton Centre for Neurology and Neurosurgery NHS Foundation Trust , Liverpool , UK
| | | |
Collapse
|
18
|
Li P, Zhu J, Kong Q, Jiang B, Wan X, Yue J, Li M, Jiang H, Li J, Gao Z. The ethylene bis-dithiocarbamate fungicide Mancozeb activates voltage-gated KCNQ2 potassium channel. Toxicol Lett 2013; 219:211-7. [DOI: 10.1016/j.toxlet.2013.03.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Revised: 03/15/2013] [Accepted: 03/20/2013] [Indexed: 10/27/2022]
|