1
|
Ke TM, Lophatananon A, Muir KR. An Integrative Pancreatic Cancer Risk Prediction Model in the UK Biobank. Biomedicines 2023; 11:3206. [PMID: 38137427 PMCID: PMC10740416 DOI: 10.3390/biomedicines11123206] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 11/20/2023] [Accepted: 11/26/2023] [Indexed: 12/24/2023] Open
Abstract
Pancreatic cancer (PaCa) is a lethal cancer with an increasing incidence, highlighting the need for early prevention strategies. There is a lack of a comprehensive PaCa predictive model derived from large prospective cohorts. Therefore, we have developed an integrated PaCa risk prediction model for PaCa using data from the UK Biobank, incorporating lifestyle-related, genetic-related, and medical history-related variables for application in healthcare settings. We used a machine learning-based random forest approach and a traditional multivariable logistic regression method to develop a PaCa predictive model for different purposes. Additionally, we employed dynamic nomograms to visualize the probability of PaCa risk in the prediction model. The top five influential features in the random forest model were age, PRS, pancreatitis, DM, and smoking. The significant risk variables in the logistic regression model included male gender (OR = 1.17), age (OR = 1.10), non-O blood type (OR = 1.29), higher polygenic score (PRS) (Q5 vs. Q1, OR = 2.03), smoking (OR = 1.82), alcohol consumption (OR = 1.27), pancreatitis (OR = 3.99), diabetes (DM) (OR = 2.57), and gallbladder-related disease (OR = 2.07). The area under the receiver operating curve (AUC) of the logistic regression model is 0.78. Internal validation and calibration performed well in both models. Our integrative PaCa risk prediction model with the PRS effectively stratifies individuals at future risk of PaCa, aiding targeted prevention efforts and supporting community-based cancer prevention initiatives.
Collapse
Affiliation(s)
| | | | - Kenneth R. Muir
- Division of Population Health, Health Services Research and Primary Care, School of Health Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PT, UK; (T.-M.K.); (A.L.)
| |
Collapse
|
2
|
Ashkenazi Jewish and Other White APC I1307K Carriers Are at Higher Risk for Multiple Cancers. Cancers (Basel) 2022; 14:cancers14235875. [PMID: 36497357 PMCID: PMC9740723 DOI: 10.3390/cancers14235875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/25/2022] [Accepted: 11/25/2022] [Indexed: 12/02/2022] Open
Abstract
Purpose: APC I1307K has a higher prevalence among Ashkenazi Jews (AJ), and a two-fold increased risk for colorectal cancer (CRC) compared to non-Jewish populations. We assessed CRC and extracolonic malignancies among I1307K carriers from AJ and non-AJ whites (NAW). Methods: We compared the rate of I1307K in cancer patients who underwent germline genetic testing via a multi-gene panel with healthy subjects retrieved from the gnomAD database. Cases undergoing testing were not selected and testing was undertaken through a commercial laboratory. Results: Overall, 586/7624 (7.6%) AJ with cancer carried I1307K compared to 342/4918 (6.9%) in the AJ control group (p = NS). In the NAW, 318/141,673 (0.2%) cancer patients and 73/58,918 (0.1%) controls carried the variant [OR = 1.8, (95% CI 1.41−2.35), p < 0.001]. I1307K in NAW was associated with an increased risk of CRC [OR = 1.95, (95% CI 1.39−2.73), p < 0.01], melanoma [OR = 2.54, (95% CI 1.57−3.98)], breast [females, OR = 1.73, (95% CI 1.18−2.65), p < 0.01], and prostate cancer [males, OR = 2.42, (95% CI 1.45−3.94), p < 0.01]. Among AJ, the variant increased the risk for CRC [OR = 1.67, (95% CI 1.36−2.05), p < 0.001] and renal cancer [OR = 1.64, (95% CI 1.04−2.47)]. AJ men had a higher risk for any cancer [OR = 1.32, (95% CI 1.05−1.66), p < 0.05] and melanoma [OR = 2.04, (95% CI 1.24−3.22); p < 0.05]. Conclusions: This is the most extensive study to date conducted on I1307K carriers, although it is amenable to selection bias. NAW carrying I1307K had a higher risk of any cancer and several specific cancer types, whereas AJ carrying the variant had a risk for only a few select cancers. Our data add to the research base on I1307 carriers concerning future risk management.
Collapse
|
3
|
Lamprell K, Fajardo Pulido D, Tran Y, Nic Giolla Easpaig B, Liauw W, Arnolda G, Braithwaite J. Personal Accounts of Young-Onset Colorectal Cancer Organized as Patient-Reported Data: Protocol for a Mixed Methods Study. JMIR Res Protoc 2021; 10:e25056. [PMID: 33635274 PMCID: PMC7954655 DOI: 10.2196/25056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 01/12/2021] [Accepted: 01/21/2021] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Young-onset colorectal cancer is a contemporary issue in need of substantial research input. The incidence of colorectal cancer in adults younger than 50 years is rising in contrast to the decreasing incidence of this cancer in older adults. People with young-onset colorectal cancer may be at that stage of life in which they are establishing their careers, building relationships with long-term partners, raising children, and assembling a financial base for the future. A qualitative study designed to facilitate triangulation with extant quantitative patient-reported data would contribute the first comprehensive resource for understanding how this distinct patient population experiences health services and the outcomes of care throughout the patient pathway. OBJECTIVE The aim of this study was to undertake a mixed-methods study of qualitative patient-reported data on young-onset colorectal cancer experiences and outcomes. METHODS This is a study of web-based unsolicited patient stories recounting experiences of health services and clinical outcomes related to young-onset colorectal cancer. Personal Recollections Organized as Data (PROD) is a novel methodology for understanding patients' health experiences in order to improve care. PROD pivots qualitative data collection and analysis around the validated domains and dimensions measured in patient-reported outcome and patient-reported experience questionnaires. PROD involves 4 processes: (1) classifying attributes of the contributing patients, their disease states, their routes to diagnosis, and the clinical features of their treatment and posttreatment; (2) coding texts into the patient-reported experience and patient-reported outcome domains and dimensions, defined a priori, according to phases of the patient pathway; (3) thematic analysis of content within and across each domain; and (4) quantitative text analysis of the narrative content. RESULTS Relevant patient stories have been identified, and permission has been obtained for use of the texts in primary research. The approval for this study was granted by the Macquarie University Human Research Ethics Committee in June 2020. The analytical framework was established in September 2020, and data collection commenced in October 2020. We will complete the analysis in March 2021 and we aim to publish the results in mid-2021. CONCLUSIONS The findings of this study will identify areas for improvement in the PROD methodology and inform the development of a large-scale study of young-onset colorectal cancer patient narratives. We believe that this will be the first qualitative study to identify and describe the patient pathway from symptom self-identification to help-seeking through to diagnosis, treatment, and to survivorship or palliation for people with young-onset colorectal cancer. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID) DERR1-10.2196/25056.
Collapse
Affiliation(s)
- Klay Lamprell
- Australian Institute of Health Innovation, Macquarie University, Sydney, Australia
| | - Diana Fajardo Pulido
- Australian Institute of Health Innovation, Macquarie University, Sydney, Australia
| | - Yvonne Tran
- Australian Institute of Health Innovation, Macquarie University, Sydney, Australia
| | | | - Winston Liauw
- St. George Cancer Care Centre, St. George Hospital, Sydney, Australia
| | - Gaston Arnolda
- Australian Institute of Health Innovation, Macquarie University, Sydney, Australia
| | - Jeffrey Braithwaite
- Australian Institute of Health Innovation, Macquarie University, Sydney, Australia
| |
Collapse
|
4
|
King M, Hurley H, Davidson KR, Dempsey EC, Barron MA, Chan ED, Frey A. The Link between Fusobacteria and Colon Cancer: a Fulminant Example and Review of the Evidence. Immune Netw 2020; 20:e30. [PMID: 32895617 PMCID: PMC7458797 DOI: 10.4110/in.2020.20.e30] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 07/21/2020] [Accepted: 07/23/2020] [Indexed: 02/07/2023] Open
Abstract
Systemic infections due to Fusobacterium may originate in the tonsillar/internal jugular veins or from the abdomen. We encountered a patient who presented with bacteremia, fulminant septic shock, and extensive soft tissue pyogenic infection due to Fusobacterium necrophorum. In addition, there was widespread metastatic colon cancer with the unique finding of pre-mortem co-localization of F. necrophorum and cancer cells at a site distant from the colon. We reviewed the literature of the association of F. necrophorum and colon cancer, and discuss the evidence of how each of these 2 distinct entities may mutually augment the development or progression of the other.
Collapse
Affiliation(s)
- Martina King
- Department of Medicine, Denver Health, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Hermione Hurley
- Division of Infectious Diseases, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Kevin R Davidson
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Edward C Dempsey
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA.,Pulmonary Section, Medicine Service, Rocky Mountain Regional Veterans Affairs Medical Center, Aurora, CO 80045, USA
| | - Michelle A Barron
- Division of Infectious Diseases, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Edward D Chan
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA.,Pulmonary Section, Medicine Service, Rocky Mountain Regional Veterans Affairs Medical Center, Aurora, CO 80045, USA.,Department of Medicine and Office of Academic Affairs, National Jewish Health, Denver, CO 80206, USA
| | - Amy Frey
- Department of Pathology, Rocky Mountain Regional Veterans Affairs Medical Center, Aurora, CO 80045, USA
| |
Collapse
|
5
|
Hamada T, Yuan C, Yurgelun MB, Perez K, Khalaf N, Morales-Oyarvide V, Babic A, Nowak JA, Rubinson DA, Giannakis M, Ng K, Kraft P, Stampfer MJ, Giovannucci EL, Fuchs CS, Ogino S, Wolpin BM. Family history of cancer, Ashkenazi Jewish ancestry, and pancreatic cancer risk. Br J Cancer 2019; 120:848-854. [PMID: 30867564 PMCID: PMC6474278 DOI: 10.1038/s41416-019-0426-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 02/25/2019] [Accepted: 02/27/2019] [Indexed: 02/07/2023] Open
Abstract
Background Individuals with a family history of cancer may be at increased risk of pancreatic cancer. Ashkenazi Jewish (AJ) individuals carry increased risk for pancreatic cancer and other cancer types. Methods We examined the association between family history of cancer, AJ heritage, and incident pancreatic cancer in 49 410 male participants of the prospective Health Professionals Follow-up Study. Hazard ratios (HRs) were estimated using multivariable-adjusted Cox proportional hazards models. Results During 1.1 million person-years (1986–2016), 452 participants developed pancreatic cancer. Increased risk of pancreatic cancer was observed in individuals with a family history of pancreatic (HR, 2.79; 95% confidence interval [CI], 1.28–6.07) or breast cancer (HR, 1.40; 95% CI, 1.01–1.94). There was a trend towards higher risk of pancreatic cancer in relation to a family history of colorectal cancer (HR, 1.21; 95% CI, 0.95–1.55) or AJ heritage (HR, 1.29; 95% CI, 0.94–1.77). The risk was highly elevated among AJ men with a family history of breast or colorectal cancer (HR, 2.61 [95% CI, 1.41–4.82] and 1.92 [95% CI, 1.05–3.49], respectively). Conclusion Family history of pancreatic cancer was associated with increased risk of this malignancy. Family history of breast or colorectal cancer was associated with the increased risk among AJ men.
Collapse
Affiliation(s)
- Tsuyoshi Hamada
- Department of Oncologic Pathology, Dana-Farber Cancer Institute and Harvard Medical School, 450 Brookline Avenue, Boston, MA, 02215, USA
| | - Chen Yuan
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, 450 Brookline Avenue, Boston, MA, 02215, USA.,Department of Epidemiology, Harvard T.H. Chan School of Public Health, 677 Huntington Avenue, Boston, MA, 02115, USA
| | - Matthew B Yurgelun
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, 450 Brookline Avenue, Boston, MA, 02215, USA
| | - Kimberly Perez
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, 450 Brookline Avenue, Boston, MA, 02215, USA
| | - Natalia Khalaf
- Division of Gastroenterology, Hepatology, and Endoscopy, Brigham and Women's Hospital and Harvard Medical School, 75 Francis Street, Boston, MA, 02115, USA
| | - Vicente Morales-Oyarvide
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, 450 Brookline Avenue, Boston, MA, 02215, USA
| | - Ana Babic
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, 450 Brookline Avenue, Boston, MA, 02215, USA
| | - Jonathan A Nowak
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, 75 Francis Street, Boston, MA, 02115, USA
| | - Douglas A Rubinson
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, 450 Brookline Avenue, Boston, MA, 02215, USA
| | - Marios Giannakis
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, 450 Brookline Avenue, Boston, MA, 02215, USA.,Broad Institute of Massachusetts Institute of Technology and Harvard, 415 Main Street, Cambridge, MA, 02142, USA.,Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, 75 Francis Street, Boston, MA, 02115, USA
| | - Kimmie Ng
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, 450 Brookline Avenue, Boston, MA, 02215, USA
| | - Peter Kraft
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, 677 Huntington Avenue, Boston, MA, 02115, USA.,Department of Biostatistics, Harvard T.H. Chan School of Public Health, 677 Huntington Avenue, Boston, MA, 02115, USA
| | - Meir J Stampfer
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, 677 Huntington Avenue, Boston, MA, 02115, USA.,Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, 181 Longwood Avenue, Boston, MA, 02115, USA.,Department of Nutrition, Harvard T.H. Chan School of Public Health, 677 Huntington Avenue, Boston, MA, 02115, USA
| | - Edward L Giovannucci
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, 677 Huntington Avenue, Boston, MA, 02115, USA.,Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, 181 Longwood Avenue, Boston, MA, 02115, USA.,Department of Nutrition, Harvard T.H. Chan School of Public Health, 677 Huntington Avenue, Boston, MA, 02115, USA
| | - Charles S Fuchs
- Yale Cancer Center, 333 Cedar Street, New Haven, CT, 06510, USA.,Department of Medicine, Yale School of Medicine, 333 Cedar Street, New Haven, CT, 06510, USA.,Smilow Cancer Hospital, 20 York Street, New Haven, CT, 06519, USA
| | - Shuji Ogino
- Department of Oncologic Pathology, Dana-Farber Cancer Institute and Harvard Medical School, 450 Brookline Avenue, Boston, MA, 02215, USA.,Department of Epidemiology, Harvard T.H. Chan School of Public Health, 677 Huntington Avenue, Boston, MA, 02115, USA.,Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, 75 Francis Street, Boston, MA, 02115, USA.,Broad Institute of Massachusetts Institute of Technology and Harvard, 415 Main Street, Cambridge, MA, 02142, USA
| | - Brian M Wolpin
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, 450 Brookline Avenue, Boston, MA, 02215, USA.
| |
Collapse
|
6
|
Underhill M, Hong F, Lawrence J, Blonquist T, Syngal S. Relationship between individual and family characteristics and psychosocial factors in persons with familial pancreatic cancer. Psychooncology 2018; 27:1711-1718. [PMID: 29570238 DOI: 10.1002/pon.4712] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 02/27/2018] [Accepted: 03/09/2018] [Indexed: 12/20/2022]
Abstract
OBJECTIVE Describe relationships between self-reported personal demographics or familial characteristics and psychosocial outcomes (Patient Reported Outcome Measurement Information System Global Health, Impact of Event Scale-Revised [pancreatic cancer risk-related distress], cancer risk perception, and cancer worry) in participants with inherited or familial pancreatic cancer risk. METHODS A multisite cross sectional survey of adults with elevated pancreatic cancer risk based on family history. All variables were summarized with descriptive statistics. To assess univariate associations, t test and chi-square/Fisher's exact test were used, and backward model selection was used in multivariable analysis. RESULTS Respondents (N = 132) reported moderate to high frequency of cancer worry and 59.3% perceived a 50% or more perceived lifetime risk for pancreatic cancer, which far exceeds objective risk estimates. Cancer worry was associated with female gender (P = .03) and pancreatic cancer risk specific distress (P = .05). Higher-risk perception was associated with having a high school education or less (P = .001), higher distress (P = .02), and cancer worry (P = .008) and family cancer death experience (P = .02). Higher distress was associated with experience as a caregiver to a seriously ill family member in the past 5 years (P = .006). CONCLUSIONS Individuals with inherited or familial pancreatic cancer risk experience cancer worry, distress, and have increased risk perception, particularly in the period following caring for a loved one with cancer. Routine evaluation of distress in this setting, as well as the development of supportive care resources, will help support patients living with risk for pancreatic cancer.
Collapse
Affiliation(s)
- Meghan Underhill
- The Phyllis F. Cantor Center for Research in Nursing and Patient Care Services, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Fangxin Hong
- Biostatistics & Computational Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Janette Lawrence
- Center for Cancer Risk Assessment, Massachusetts General Hospital, Boston, MA, USA
| | - Traci Blonquist
- Biostatistics & Computational Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Sapna Syngal
- GI Cancer Genetics and Prevention Program, Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.,Gastroenterology, Brigham and Women's Hospital, Boston, MA, USA
| |
Collapse
|
7
|
Lindström S, Finucane H, Bulik-Sullivan B, Schumacher FR, Amos CI, Hung RJ, Rand K, Gruber SB, Conti D, Permuth JB, Lin HY, Goode EL, Sellers TA, Amundadottir LT, Stolzenberg-Solomon R, Klein A, Petersen G, Risch H, Wolpin B, Hsu L, Huyghe JR, Chang-Claude J, Chan A, Berndt S, Eeles R, Easton D, Haiman CA, Hunter DJ, Neale B, Price AL, Kraft P. Quantifying the Genetic Correlation between Multiple Cancer Types. Cancer Epidemiol Biomarkers Prev 2017; 26:1427-1435. [PMID: 28637796 PMCID: PMC5582139 DOI: 10.1158/1055-9965.epi-17-0211] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 05/03/2017] [Accepted: 06/06/2017] [Indexed: 01/01/2023] Open
Abstract
Background: Many cancers share specific genetic risk factors, including both rare high-penetrance mutations and common SNPs identified through genome-wide association studies (GWAS). However, little is known about the overall shared heritability across cancers. Quantifying the extent to which two distinct cancers share genetic origin will give insights to shared biological mechanisms underlying cancer and inform design for future genetic association studies.Methods: In this study, we estimated the pair-wise genetic correlation between six cancer types (breast, colorectal, lung, ovarian, pancreatic, and prostate) using cancer-specific GWAS summary statistics data based on 66,958 case and 70,665 control subjects of European ancestry. We also estimated genetic correlations between cancers and 14 noncancer diseases and traits.Results: After adjusting for 15 pair-wise genetic correlation tests between cancers, we found significant (P < 0.003) genetic correlations between pancreatic and colorectal cancer (rg = 0.55, P = 0.003), lung and colorectal cancer (rg = 0.31, P = 0.001). We also found suggestive genetic correlations between lung and breast cancer (rg = 0.27, P = 0.009), and colorectal and breast cancer (rg = 0.22, P = 0.01). In contrast, we found no evidence that prostate cancer shared an appreciable proportion of heritability with other cancers. After adjusting for 84 tests studying genetic correlations between cancer types and other traits (Bonferroni-corrected P value: 0.0006), only the genetic correlation between lung cancer and smoking remained significant (rg = 0.41, P = 1.03 × 10-6). We also observed nominally significant genetic correlations between body mass index and all cancers except ovarian cancer.Conclusions: Our results highlight novel genetic correlations and lend support to previous observational studies that have observed links between cancers and risk factors.Impact: This study demonstrates modest genetic correlations between cancers; in particular, breast, colorectal, and lung cancer share some degree of genetic basis. Cancer Epidemiol Biomarkers Prev; 26(9); 1427-35. ©2017 AACR.
Collapse
Affiliation(s)
- Sara Lindström
- Department of Epidemiology, University of Washington, Seattle, Washington.
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Hilary Finucane
- Program in Genetic Epidemiology and Statistical Genetics, Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
- Department of Mathematics, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Brendan Bulik-Sullivan
- The Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, Massachusetts
| | - Fredrick R Schumacher
- Department of Epidemiology and Biostatistics, Case Western Reserve University, Cleveland, Ohio
- Seidman Cancer Center, University Hospitals, Cleveland, Ohio
| | - Christopher I Amos
- Department of Community and Family Medicine, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire
| | - Rayjean J Hung
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario, Canada
| | - Kristin Rand
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Stephen B Gruber
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - David Conti
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Jennifer B Permuth
- Department of Cancer Epidemiology, Moffitt Cancer Center and Research Institute, Tampa, Florida
- Department of Gastrointestinal Oncology, Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Hui-Yi Lin
- Department of Biostatistics and Bioinformatics, Moffitt Cancer Center, Tampa, Florida
| | - Ellen L Goode
- Department of Health Sciences Research, Mayo Clinic College of Medicine, Rochester, Minnesota
| | - Thomas A Sellers
- Department of Cancer Epidemiology, Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Laufey T Amundadottir
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, U.S. Department of Health and Human Services, Bethesda, Maryland
| | - Rachael Stolzenberg-Solomon
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, U.S. Department of Health and Human Services, Bethesda, Maryland
| | - Alison Klein
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, Maryland
- Department of Pathology, Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Gloria Petersen
- Department of Health Sciences Research, Mayo Clinic College of Medicine, Rochester, Minnesota
| | - Harvey Risch
- Department of Chronic Disease Epidemiology, Yale School of Public Health, New Haven, Connecticut
| | - Brian Wolpin
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Li Hsu
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Jeroen R Huyghe
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Jenny Chang-Claude
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- University Cancer Center Hamburg (UCCH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Andrew Chan
- Division of Gastroenterology, Massachusetts General Hospital, Boston, Massachusetts
| | - Sonja Berndt
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, U.S. Department of Health and Human Services, Bethesda, Maryland
| | - Rosalind Eeles
- Division of Genetics and Epidemiology, The Institute of Cancer Research, and Royal Marsden NHS Foundation Trust, London, United Kingdom
| | - Douglas Easton
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, United Kingdom
| | - Christopher A Haiman
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - David J Hunter
- Program in Genetic Epidemiology and Statistical Genetics, Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts
| | - Benjamin Neale
- The Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, Massachusetts
| | - Alkes L Price
- Program in Genetic Epidemiology and Statistical Genetics, Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Peter Kraft
- Program in Genetic Epidemiology and Statistical Genetics, Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| |
Collapse
|
8
|
Kamps R, Brandão RD, Bosch BJVD, Paulussen ADC, Xanthoulea S, Blok MJ, Romano A. Next-Generation Sequencing in Oncology: Genetic Diagnosis, Risk Prediction and Cancer Classification. Int J Mol Sci 2017; 18:ijms18020308. [PMID: 28146134 PMCID: PMC5343844 DOI: 10.3390/ijms18020308] [Citation(s) in RCA: 316] [Impact Index Per Article: 39.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 01/19/2017] [Indexed: 12/17/2022] Open
Abstract
Next-generation sequencing (NGS) technology has expanded in the last decades with significant improvements in the reliability, sequencing chemistry, pipeline analyses, data interpretation and costs. Such advances make the use of NGS feasible in clinical practice today. This review describes the recent technological developments in NGS applied to the field of oncology. A number of clinical applications are reviewed, i.e., mutation detection in inherited cancer syndromes based on DNA-sequencing, detection of spliceogenic variants based on RNA-sequencing, DNA-sequencing to identify risk modifiers and application for pre-implantation genetic diagnosis, cancer somatic mutation analysis, pharmacogenetics and liquid biopsy. Conclusive remarks, clinical limitations, implications and ethical considerations that relate to the different applications are provided.
Collapse
Affiliation(s)
- Rick Kamps
- Department of Clinical Genetics: GROW-School for Oncology and Developmental Biology, Maastricht University Medical Centre, 6229HX Maastricht, The Netherlands.
| | - Rita D Brandão
- Department of Clinical Genetics: GROW-School for Oncology and Developmental Biology, Maastricht University Medical Centre, 6229HX Maastricht, The Netherlands.
| | - Bianca J van den Bosch
- Department of Clinical Genetics: GROW-School for Oncology and Developmental Biology, Maastricht University Medical Centre, 6229HX Maastricht, The Netherlands.
| | - Aimee D C Paulussen
- Department of Clinical Genetics: GROW-School for Oncology and Developmental Biology, Maastricht University Medical Centre, 6229HX Maastricht, The Netherlands.
| | - Sofia Xanthoulea
- Department of Gynaecology and Obstetrics: GROW-School for Oncology and Developmental Biology, Maastricht University Medical Centre, 6229HX Maastricht, The Netherlands.
| | - Marinus J Blok
- Department of Clinical Genetics: GROW-School for Oncology and Developmental Biology, Maastricht University Medical Centre, 6229HX Maastricht, The Netherlands.
| | - Andrea Romano
- Department of Gynaecology and Obstetrics: GROW-School for Oncology and Developmental Biology, Maastricht University Medical Centre, 6229HX Maastricht, The Netherlands.
| |
Collapse
|
9
|
Genomics and the Prediction and Characterization of Cancer and Some Observations About Pancreatic Cancer. Clin Ther 2016; 38:1543-5. [DOI: 10.1016/j.clinthera.2016.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Accepted: 06/03/2016] [Indexed: 11/22/2022]
|
10
|
Cancer Genomics: Targeting Inherited Risk and Somatic Mutations in Precision Oncology. Clin Ther 2016; 38:1548-50. [DOI: 10.1016/j.clinthera.2016.03.037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 03/16/2016] [Accepted: 03/28/2016] [Indexed: 01/02/2023]
|